• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    炭纖維和廢棄聚乙烯在瀝青中的分散行為及其性能

    2016-11-01 00:55:24張茂榮方長青周世生程有亮胡京博
    新型炭材料 2016年4期
    關(guān)鍵詞:炭纖維長青理工大學(xué)

    張茂榮, 方長青, 周世生, 程有亮, 胡京博

    (1.西安理工大學(xué) 機(jī)械與精密儀器工程學(xué)院,陜西 西安710048;2.西安理工大學(xué) 印刷包裝與數(shù)字媒體學(xué)院,陜西 西安710048)

    ?

    炭纖維和廢棄聚乙烯在瀝青中的分散行為及其性能

    張茂榮1,2,方長青1,2,周世生1,2,程有亮2,胡京博1,2

    (1.西安理工大學(xué) 機(jī)械與精密儀器工程學(xué)院,陜西 西安710048;2.西安理工大學(xué) 印刷包裝與數(shù)字媒體學(xué)院,陜西 西安710048)

    聚丙烯腈基炭纖維和廢棄聚乙烯作為改性劑,采用熱熔共混、絮凝處理、熔融共擠3種工藝對(duì)道路瀝青進(jìn)行改性,并研究了炭纖維分散性對(duì)瀝青性能的影響。研究表明:炭纖維和廢棄聚乙烯對(duì)瀝青的改性為物理改性,隨著炭纖維含量的增加,改性瀝青的軟化點(diǎn)和延度上升,針入度降低,改性瀝青高溫性能得到改善。過高的炭纖維含量將不利于分散而發(fā)生纖維團(tuán)聚,當(dāng)炭纖維含量超過0.1%,將造成改性瀝青性能降低。微觀觀察發(fā)現(xiàn),熔融共擠工藝較其他工藝,炭纖維與聚乙烯能較好的分散和結(jié)合,使得聚乙烯與炭纖維形成良好的類荊棘狀吸附,在瀝青中分散最佳,改性瀝青的高溫性和抗車轍性能得到較大提高。

    包裝廢PE; 炭纖維; 復(fù)合改性; 瀝青

    1 Introduction

    The domestic ordinary asphalt is unable to meet the demands of modern high-speed motorway due to its disadvantages, such as high wax,bad cohesive force, low ductility and large temperature-sensitivity. In order to deal with these problems, many polymers were used to modify the asphalt, such as styrene-butadiene-styrene triblock copolymer (SBS), rubber and polyethylene(PE). At present, the asphalt modified by SBS are broadly used. The properties of the asphalt modified by any single polymer could not be improved comprehensively to meet the demands of modern paving[1-4]. There are different materials that have been employed to reinforce asphalt. Fibers and polymers are two important examples used for this purpose[5,6]. Carbon fibers have many advantages, such as high axial force, high modulus, low density, high temperature resistance in non oxidizing environment, high fatigue resistance, good corrosion resistance and good thermal conductivity[7,8]. Carbon fibers are one class of the important materials used to make composites,owing to their good tensile property and softness. Nowadays, environmental protection, as a social responsibility, has become an important task in all countries. Therefore, the recycled waste packaging polymers and carbon fibers appear to be the attractive modifiers.

    Based on the above background, recycled waste packaging polyethylene (WPE) and polyacrylonitrile (PAN) -based carbon fibers (PANCFs) were selected to modify the ordinary paving asphalt instead of the ordinary polymer modifiers. At the same time, three different types of combined modification technologies were studied to reveal the modification mechanism and provide a theoretical basis for the preparation of the low-priced modified asphalt.

    2 Materials and experiments

    2.1Materials

    The recycled WPE bags whose main component was linear low-density polyethylene (LLDPE) were cleaned and dried. The ordinary industrial asphalt was SK-90 produced in petrochemical factory in Xi’an and its main properties are shown in Table 1. PANCFs are made by Institute of Coal Chemistry, Chinese Academy of Sciences. And the carbon fibers are 6 K and cut into 5 mm.

    Table 1 Main properties of ordinary asphalt.

    2.2Preparation

    The recycled WPE bags were washed to remove impurities and dried in a vacuum drying oven until the water content was less than 1%. PANCFs were cut into a length about 5 mm. The compositions of the samples in the experiment are listed in Table 2.

    Table 2 Compositions of the modified asphalt samples in the experiment.

    Before the WPE and short-cut PANCFs were added into the asphalt, they were mixed in the following three methods. In the method A, WPE and PANCFs were weighed separately according to the formulations in Table 2. In the method B, WPE and short-cut PANCFs were added into xylene, heated to 90 ℃ and stirred by a blender for 100 min. The mixture was flocculated in alcohol, filtered and dried at 90 ℃ in a vacuum drying oven. In method C, WPE and short-cut PANCFs were mixed, crushed at high speed by double roller and extruded by an extruder at 170 ℃.

    The asphalt was heated to 170 ℃ until completely melted. To the melted asphalt, the blends of WPE and PANCFs produced in the above three methods were added in the completely melted raw asphalt at 170 ℃ in a reaction kettle. Keeping the temperature constant, the mixture was stirred for 30 min with a glass stirring rod, and then sheared by a shearing machine at a high-speed of 4 000 r/min for 80 min.The temperature of the mixture was then reduced to 130 ℃ and left undisturbed for 50 min for swelling. After fully swelled, the mixture was sheared again by a shearing machine at a high-speed of 3 800 r/min for 60 min until WPE and PANCFs were dispersed uniformly in the asphalt.

    2.3Performance test of the modified asphalts

    The softening point, the penetration degree and the ductility degree of the modified asphalts were measured according to the standards of China, GB/T0606-2000, GB/T0604-2000 and GB/T0605-1993, respectively. The penetration degree of the modified asphalts was measured with a GS-IV type automatic asphalt penetrometer (China). The softening point of the modified asphalts was tested with a SLR-C type digital softening point tester (China). The ductility was tested with a STYD-3 type digital ductility testing machine (China). The softening point, the penetration degree and the ductility degree of the modified asphalts were measured three times at different positions and averaged.

    Besides, a JSM-6390A scanning electron microscope (Japan) was employed to observe the microstructure of the modified asphalts at 5 kV. The modified asphalt samples were obtained at -5 ℃, and coated with gold/pallladium alloy before observation. An Olympus CX40-RFL32J fluorescent microscope was used to investigate the microstructure of the modified asphalts. FT-IR spectra were obtained using a Shimazu FTIR-8400S infrared spectrometer with a scanning range of 400- 4 000 cm-1and a frequency of 20 Hz.

    The samples for softening point were prepared according to GB/T0661-2000. First, three kinds of modified asphalts were put into three test tubes. Next, the test tubes were layered for 48±1 h in an incubator at 163±5 ℃. The test tubes were first cooled to room temperature, then to -5 ℃ for 4 h[9]. Finally, the softening points of the asphalts were measured. The softening points of the samples were measured three times at different positions to get an average value.

    3 Results and discussion

    3.1Softening point

    The softening point of asphalt is the temperature when asphalt changes from a state of being uneasy to flow to a liquid state in the presence of some external force and heat, reflecting the high temperature performance of the asphalt[10-12]. Fig.1 shows the softening point of the three types of modified asphalts. It can be seen that high temperature performance of the asphalts modified by WPE and PANCFs was greatly improved. Besides, the modification methods have great effects on the high temperature performance of the modified asphalts. The softening points of the WPE-modified asphalts with the method B and C are higher than that with the method A, because the particle sizes of WPE with the method B and C are much smaller than that with the method A. The softening points of the modified asphalts all increase with the amount of PANCFs below 0.1 wt% regardless of the method used. When the amount of PANCFs exceeds 0.1 wt%, the softening points of the modified asphalts slightly decrease. The reason for this might be that the dispersion degree of PANCFs reaches saturation in the modified asphalts[13-16]. Too much PANCFs might lead to agglomeration that forms large particles and affects the performance of the modified asphalts.

    Fig. 1 The softening points of the three types of

    3.2Penetration degree

    The penetration degree of asphalt is a representation of asphalt viscosity, reflecting the rheological properties of asphalt[10-12]. Fig.2 shows the penetration degree of the three types of modified asphalts. It can be seen that the penetration degree of the modified asphalts decreases with the increasing amount of PANCFs. The penetration degree declines sharply and levels off when the amount of PANCFs was over 0.02 wt%. It is found that the penetration degree of the modified asphalts with the method A decreases most slowly because the dispersion of PANCFs is better for the method B and C[17,18].

    3.3Ductility

    The ductility of asphalt reflects the rutting resistance properties of asphalt. The changes in ductility of the three types of modified asphalts at 5 ℃ are shown in Fig. 3. It can be found that the ductility of all the three types are higher than those without PANCFs, indicating that PANCFs can improve the rutting resistance of the modified asphalts[19-22]. The ductility of samples prepared by the method A are lowest while those by the method C are highest under the same formulation of the modified asphalts. For the samples prepared with the method B and C, the ductility increases obviously when the amount of PANCFs is below 0.02 wt%, then increases slightly with the amount from 0.02 to 0.1 wt% and decrease with a further increase of the amount beyond 0.1 wt%. The reasons might be that the network of the modified asphalts is destroyed by the agglomeration of the PANCFs.

    Fig. 2 The penetration degree of the three types of modified asphalts.

    Fig. 3 The ductility of the three types of modified asphalts.

    3.4Segregation

    Fig.4, Fig.5 and Fig.6 show the softening points of the upper, the middle and the lower parts of the three kinds of modified asphalts after segregation, respectively. It can be seen from Fig. 4 that change in the softening point of the upper parts is the most obvious, indicating that the segregation phenomenon of modified asphalts without any cross-linking agent is obvious. Because the density of WPE is lower than of asphalt, the content of WPE in the upper part is higher, resulting in a significant increase (by 20-40 ℃) of the softening points. The softening points of the upper parts of modified asphalts with method B and C change slower than those with the method A. Because the upper parts of modified asphalts with the method B and C have a better dispersion of PANCFs in WPE, which prevents segregation obviously. From Fig. 5 and Fig. 6, it can be seen that the softening points of the modified asphalts in the middle and lower parts slightly decrease after segregation. The segregation become weakened when the amount of PANCFs increase.

    Fig. 4 The softening points of the upper

    Fig. 5 The softening points of the middle

    Fig. 6 The softening points of the lower

    3.5Effectiveness of the modification

    It can be seen from Fig.7 that, there are no changes in the FT-IR spectra of the modified asphalts by the three different modification methods, indicating that no chemical reactions take place during the modification. So the performance improvement of the modified asphalts comes from physical dispersion of PANCFs and WPE into the asphalts and the swelling of WPE by asphalt.

    Fig. 7 FT-IR spectra of raw and modified asphalts.

    3.6Microstructure

    Fig.8 shows the SEM images of the three modified asphalts with the amount of PANCFs of 0.08 wt%. The dispersion of WPE and PANCFs in the modified asphalts is significantly different. Although the dispersion of WPE and PANCFs in the asphalts with the method A is uniform, no network structure is

    formed. By contrast, a net structure is formed with the method B and C and the network structure is more uniform with the method C. The net structure prevents the segregation largely and greatly improves the comprehensive performance of the modified asphalts.

    3.7The relationship between the CFs and WPE in asphalts

    Fig.9 shows the microstructures of PANCFs and WPE in the modified asphalts with the method A when the amounts of PANCFs are 0.04 and 0.08 wt%. In the modified asphalts, PANCFs and WPE exist in several forms. PANCFs are wrapped by WPE as “1” shows. The “2” and “6” show that some short-cut PANCFs are dispersed into asphalt and the “7” shows some long-cut PAN-CFs are dispersed into asphalt too. From “3”, it can be seen that part of PANCFs are wrapped by WPE and the rest are dispersed into asphalt. “4” shows that the PANCFs pass through WPE, but both ends of the PANCFs are dispersed in asphalt. The PAN-CFs are adsorbed by two particles of WPE in “5”. By comparing the existing forms of CFs and WPE in asphalt, it is found that the compatibility between the modifiers and the asphalt is better in the cases of “1” ,“3”,“4” and “5”. Under these conditions, the PANCFs promote not only the swelling of WPE but also the dispersion of WPE.

    Fig. 8 SEM images of the three types of modified asphalts with the method (a) A, (b) B and (c) C.

    Fig. 9 Microstructures of PANCFs and WPE in the modified

    A model is proposed to reveal the relationship between PANCFs and WPE in the modified asphalts as shown in Fig.10. This model is simplified as a rigid model. The WPE adsorption to PANCFs, the mixing extent between WPE and PANCFs, and the dispersion of PANCFs and WPE in modified asphalts are the worst in the method A, and best in the method C. In the modified asphalts, if the PANCFs are too long, their homogeneous dispersion in asphalt and WPE is difficult, WPE adsorption to them is weak and aggregation takes place, which are unfavorable for the modification. If the PANCFs are too short, their dispersion in WPE and asphalt is also not good, resulting in floating and suspension of PANCFs in the modified asphalts, which is unfavorable for the swelling of WPE. Experiment results verify that a length of 5 mm is the best for the short-cut PANCFs.

    Fig. 10 The relationship model of PANCFs and WPE in the modified asphalts (a) the method A, (b) the method B and (c) the method C.

    PANCFs have a good chemical stability and do not react with the components in the asphalt. The adsorption or insertion of PANCFs to WPE particles promotes the swelling and dispersion of the WPE in asphalt. In the modified asphalts, a higher swelling degree of the WPE and thicker adsorption layer of the asphalt on the surface of the WPE will make the WPE disperse more evenly in the asphalt and form more easily a spatial network structure. The thicker adsorption layer on the surface of the WPE particles prevent their aggregation in the modified asphalts. The network structure of the modified asphalts is able to inhibit the flow of asphalt at high temperature and also enhance the ability to resist external forces. So, for the modified asphalts with a network structure, only large external force can make the asphalt to bring forth phase displacement, and the ability to resist deformation at high temperature and the stability of hot storage are improved.

    4 Conclusions

    The modification of asphalt with PANCFs and WPE is physical. The of PANCFs with a proper length could promote the swelling and the dispersion of WPE in asphalt.

    The content of PANCFs in the modified asphalts should not exceed 0.1%. Too much CFs form aggregation and have a negative effect on the comprehensive performance of modified asphalts. The modification by WPE and short-cut PANCFs can obviously improve high temperature performance and resist deformation of the modified asphalts. WPE and short-cut PANCFs are best dispersed into asphalt by an extrusion method at 170 ℃.

    In the modified asphalts by the extrusion method, a network structure is well formed by PANCFs and WPE, which prevents segregation and improves the hot storage stability, high temperature performance and resistance to external force.

    [1]Airey G D. Styrene butadiene styrene polymer modification of road bitumen[J]. Journal of Materials Science, 2004, 39(3): 951-959.

    [2]Xiao C, Ling T Q, Qiu Y J. Optimization of technical measures for improving high-temperature performance of asphalt-rubber mixture[J]. J Mod Transport, 2013, 21(4): 273-280.

    [3]Sun L, Xin X T, Ren J L. Pavement performance of nanomaterial modified asphalt mixture[J]. Journal of southeast university, 2013, 43(4): 873-876.

    [4]Fang C Q, Zhou S S, Zhang M R, et al. Optimization of the modification technologies of asphalt by using waste EVA from packaging[J]. Vinyl and Additive Technology, 2009, 15(3): 119-203.

    [5]Mohammad J K, Ahmed K, Hashim R R. Characterization of carbon nano-fiber modified hot mix asphalt mixtures[J]. Construction and Building Materials, 2013, 40: 738-745.

    [6]Sayyed M A, Mohammad S, Sayyed M H. Fiber-reinforced asphalt-concrete-A review[J].Construction and Building Materials, 2010, 24: 871-877.

    [7]Che D M, Saxena I, Han PD, et al. Machining of carbon fiber reinforced plastics/polymers: A literature review[J]. Journal of Manufacturing Science and Engineering, 2014, 136: 034001-1-22.

    [8]Burri F, Fertl M, Feusi P, et al. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications[J]. Vacuum, 2014, 101: 212-216.

    [9]Fang C Q , Zhang Y, Yu R E, et al. Effect of organic montmorillonite on the hot storage stability of asphalt modified by waste packaging polyethylene[J]. Journal of Vinyl & Additive Technology, 2014, 10: 1001-1005.

    [10]Cong P L, Yu J Y, Wu S P, et al. Laboratory investigation of the properties of asphalt and its mixtures modified with flame retardant[J]. Construction and Building Materials, 2008, 22: 1037-1042.

    [11]Industry standards of the People's Republic of China. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering[S]. Issued by the Ministry of Transport of the People's Republic of China JTJ 052-2000.

    [12]Fang C Q, Yu R E, Zhang Y, et al. Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite[J]. Polymer Testing, 2012, 31: 276-281.

    [13]Kesavan K, Ravisankar K, Senthil R, et al. Experimental studies on performance of reinforced concrete beam strengthened with CFRP under cyclic loading using FBG array[J]. Measurement, 2013, 46: 3855-3862.

    [14]Tang B M, Ding Y J, Zhu H Z, et al. Study on agglomeration variation pattern of asphalt molecules[J]. China Journal of Highway and Transport, 2013, 26(3): 50-56.

    [15]Hassan Firoozifar S, Foroutan S, Foroutan S. The effect of asphaltene on thermal properties of bitumen[J]. Chemical Engineering Research and Design, 2011,10: 698-703.

    [16]Haddadi S, Ghorbel E, Laradi N. Effects of the manufacturing process on the performances of the bituminous binders modified with EVA[J]. Construction and Building Materials, 2008, 22: 1212-1219.

    [17]Ye Y, Yang X H, Chen C H. Viscoplastic behaviour of asphalt mixture in compression[J]. Materials Research Innovations, 2011, 15: 45-48.

    [18]Vandellos T, Huchette C, Carrère N. Proposition of a framework for the development of a cohesive zone model adapted to Carbon-Fiber Reinforced Plastic laminated composites[J]. Composite Structures, 2013, 105: 199-206.

    [19]Schreiner C A. Review of mechanistic studies relevant to the potential carcinogenicity of asphalts[J]. Regulatory Toxicology and Pharmacology, 2011, 59: 270-284.

    [20]Chockalingam K, Saravanan U, Krishnan J M. Characterization of petroleum pitch using steady shear experiments[J]. International Journal of Engineering Science, 2010, 48: 1092-1109.

    [21]Adhikari S, You Z P, Hao P W, et al. Image analysis of aggregate, mastic and air void phases for asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2013, 2(13): 1-9.

    [22]Caro S, Masad E, Bhasin A, et al. Micromechanical modeling of the influence of material properties on moisture-induced damage in asphalt mixtures[J]. Construction and Building Materials, 2010, 24: 1184-1192.

    Modification of asphalt by dispersing waste polyethylene and carbon fibers in it

    ZHANG Mao-rong1,2,FANG Chang-qing1,2,ZHOU Shi-sheng1,2,CHENG You-liang2,HU Jing-bo1,2

    (1.SchoolofMechanicalandPrecisionInstrumentEngineering,Xi’anUniversityofTechnology,Xi’an710048,China;2.FacultyofPrinting,PackagingEngineeringandDigitalMediaTechnology,Xi’anUniversityofTechnology,Xi’an710048,China)

    Recycled waste packaging polyethylene (WPE) and chopped polyacrylonitrile-based carbon fibers (PAN-CFs) were dispersed in molten asphalt at 170 ℃ with a shearing machine at 3 800 r/min for 60 min to modify its properties to meet the demands of motorway paving. WPE and PAN-CFs were mixed by three methods before the dispersion: (a) simple blending, (b) first dissolving WPE in xylene, then mixing and evaporating and (c) blending and extrusion to rods of 1mm diameterat 170 ℃ which were fed directly into the hot asphalt. The PAN-CF content was varied in the range 0 to 0.12 wt% while the WPE content was constant(4 wt%). Results indicate that WPE and PAN-CFs are dispersed in asphalt to form a network structure by the xylene-assisted mixing or blending-extrusion methods. The softening points, penetration degree and ductility are improved with increasing content of PAN-CFs up to 0.1 wt%. Aggregation of the two modifiers occurs beyond 0.12 wt% of PAN-CFs, which degrades the properties of the modified asphalts. A fiber length of 5 mm is optimum for their best dispersion in the asphalt. Segregation of the modifiers from the modified asphalts can be prevented by increasing the content of PAN-CFs. The blending-extrusion method is best to form a fine network structure, which achieves a best performance. A model is proposed to explain the observed dispersion behavior in asphalt.

    Waste packaging polyethylene; Carbon fibers; Composite modification; Asphalt

    date: 2016-03-19;Reviseddate: 2016-07-27

    National Natural Science Foundation of China (51172180, 51372200); Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-1045); Local Service Program of Shaanxi Provincial Education Department (2013JC19); Excellent PhD dissertation Foundation of XAUT (102-211208).

    introduction: ZHANG Mao-rong, Ph.D Candidate. E-mail: zmr.1234@163.com

    FANG Chang-qing, Professor. E-mail: fcqxaut@163.com

    1007-8827(2016)04-0424-07

    TQ342+.74

    A

    國家自然科學(xué)基金(51172180, 51372200); 新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET-12-1045); 陜西省教育廳服務(wù)地方專項(xiàng)計(jì)劃項(xiàng)目(2013JC19); 西安理工大學(xué)優(yōu)博基金資助項(xiàng)目(102-211208).

    方長青,教授. E-mail: fcqxaut@163.com

    10.1016/S1872-5805(16)60022-7

    作者介紹:張茂榮,博士生. E-mail: zmr.1234@163.com

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    炭纖維長青理工大學(xué)
    Co@CoO/竹炭纖維的制備及其對(duì)廢水中鹽酸四環(huán)素去除性能
    昆明理工大學(xué)
    論炭纖維復(fù)合材料在智能建筑結(jié)構(gòu)中的應(yīng)用
    昆明理工大學(xué)
    昆明理工大學(xué)
    熱處理對(duì)PAN基炭纖維微觀結(jié)構(gòu)和力學(xué)性能的影響
    浙江理工大學(xué)
    長青開啟中馬圓夢之旅
    長青 邁步環(huán)保公益
    長青榮耀三十載
    久久久久久人妻| 日韩免费高清中文字幕av| 欧美日韩视频高清一区二区三区二| 天美传媒精品一区二区| 热re99久久国产66热| 免费日韩欧美在线观看| 国产黄色视频一区二区在线观看| 97精品久久久久久久久久精品| 亚洲欧美日韩另类电影网站| 久热这里只有精品99| 天堂中文最新版在线下载| 搡女人真爽免费视频火全软件| 18禁在线播放成人免费| 国产成人aa在线观看| 男人添女人高潮全过程视频| 免费观看av网站的网址| 亚洲内射少妇av| 免费观看的影片在线观看| 亚洲av在线观看美女高潮| 免费大片黄手机在线观看| 国产黄频视频在线观看| 日韩成人av中文字幕在线观看| 三级国产精品片| 精品人妻在线不人妻| 国产成人精品久久久久久| 女人精品久久久久毛片| 国产精品熟女久久久久浪| 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 亚洲不卡免费看| 国产精品一区二区三区四区免费观看| 色婷婷av一区二区三区视频| 欧美 亚洲 国产 日韩一| 精品亚洲成a人片在线观看| 成人亚洲精品一区在线观看| 中国三级夫妇交换| 午夜老司机福利剧场| av线在线观看网站| 成年美女黄网站色视频大全免费 | av在线app专区| 成人亚洲精品一区在线观看| 免费不卡的大黄色大毛片视频在线观看| 精品国产国语对白av| 久久精品国产亚洲av天美| 看十八女毛片水多多多| 精品久久蜜臀av无| 国产精品99久久99久久久不卡 | 日韩成人av中文字幕在线观看| 99热这里只有是精品在线观看| 国产精品国产av在线观看| 伊人亚洲综合成人网| 有码 亚洲区| 大片免费播放器 马上看| 飞空精品影院首页| 老司机影院毛片| 日韩不卡一区二区三区视频在线| 成人无遮挡网站| 极品少妇高潮喷水抽搐| 我的老师免费观看完整版| 亚洲国产欧美在线一区| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 两个人的视频大全免费| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 少妇精品久久久久久久| 成人毛片60女人毛片免费| 亚洲国产欧美在线一区| 青春草国产在线视频| 午夜免费观看性视频| 成人毛片a级毛片在线播放| 国产国拍精品亚洲av在线观看| 五月天丁香电影| 夜夜爽夜夜爽视频| 在线观看免费日韩欧美大片 | 九草在线视频观看| 亚州av有码| 国产精品嫩草影院av在线观看| 午夜影院在线不卡| 亚洲精品日韩在线中文字幕| 亚洲情色 制服丝袜| 亚洲精品中文字幕在线视频| 夫妻性生交免费视频一级片| 五月玫瑰六月丁香| 黄色视频在线播放观看不卡| 国产成人一区二区在线| 欧美人与性动交α欧美精品济南到 | 超碰97精品在线观看| 伊人久久精品亚洲午夜| 国产极品粉嫩免费观看在线 | 日本黄色日本黄色录像| 又大又黄又爽视频免费| 欧美日韩国产mv在线观看视频| 久久久国产欧美日韩av| 精品人妻偷拍中文字幕| 午夜免费鲁丝| 午夜福利视频在线观看免费| 边亲边吃奶的免费视频| 天堂8中文在线网| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 美女国产视频在线观看| 人妻少妇偷人精品九色| 黄色配什么色好看| 亚洲熟女精品中文字幕| 丰满少妇做爰视频| av视频免费观看在线观看| 只有这里有精品99| 久久97久久精品| 99久久人妻综合| 肉色欧美久久久久久久蜜桃| 男女国产视频网站| 天堂俺去俺来也www色官网| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 菩萨蛮人人尽说江南好唐韦庄| 91久久精品国产一区二区三区| 天堂俺去俺来也www色官网| 看免费成人av毛片| 精品午夜福利在线看| 成年人午夜在线观看视频| av专区在线播放| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 国产高清三级在线| av在线观看视频网站免费| 天美传媒精品一区二区| 亚洲欧美色中文字幕在线| 美女大奶头黄色视频| 18禁在线播放成人免费| 日本91视频免费播放| 午夜福利网站1000一区二区三区| 激情五月婷婷亚洲| 久久精品国产亚洲av天美| 寂寞人妻少妇视频99o| 精品一区在线观看国产| 乱人伦中国视频| 久久人妻熟女aⅴ| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久精品古装| 久久久国产精品麻豆| 国产欧美另类精品又又久久亚洲欧美| 女性被躁到高潮视频| 亚洲精品一二三| 26uuu在线亚洲综合色| 高清欧美精品videossex| 午夜视频国产福利| 亚洲国产av影院在线观看| 亚洲av免费高清在线观看| 国产又色又爽无遮挡免| 一级毛片 在线播放| 国产精品99久久99久久久不卡 | 国产在视频线精品| 人人妻人人爽人人添夜夜欢视频| av又黄又爽大尺度在线免费看| 久久久久国产精品人妻一区二区| 国产成人精品在线电影| 伦理电影免费视频| 丁香六月天网| 国产精品成人在线| 99久国产av精品国产电影| 国产不卡av网站在线观看| 国产国语露脸激情在线看| 高清欧美精品videossex| 国产不卡av网站在线观看| 视频区图区小说| 国产精品久久久久成人av| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 狂野欧美激情性bbbbbb| 欧美激情极品国产一区二区三区 | 在线 av 中文字幕| 亚洲精品美女久久av网站| 亚洲一级一片aⅴ在线观看| 一级黄片播放器| 精品酒店卫生间| 777米奇影视久久| 久久精品夜色国产| 国产av精品麻豆| 男女高潮啪啪啪动态图| 国产亚洲精品第一综合不卡 | 成人影院久久| 乱码一卡2卡4卡精品| 一级,二级,三级黄色视频| 久久国产亚洲av麻豆专区| 国产精品麻豆人妻色哟哟久久| 亚洲av国产av综合av卡| 高清欧美精品videossex| 久久亚洲国产成人精品v| 国产一区二区在线观看av| 久久国产亚洲av麻豆专区| 成人综合一区亚洲| 亚洲美女视频黄频| 99热这里只有是精品在线观看| 老司机影院毛片| 精品一区在线观看国产| 日本欧美视频一区| 精品久久久久久电影网| 少妇人妻精品综合一区二区| 九九在线视频观看精品| 男女国产视频网站| 天天影视国产精品| 亚洲美女视频黄频| 超碰97精品在线观看| 精品熟女少妇av免费看| 啦啦啦视频在线资源免费观看| 精品久久久噜噜| av免费观看日本| 成年人午夜在线观看视频| 国产一区二区三区综合在线观看 | 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 欧美丝袜亚洲另类| 美女大奶头黄色视频| 国产成人a∨麻豆精品| 考比视频在线观看| 九九久久精品国产亚洲av麻豆| 最近的中文字幕免费完整| 欧美最新免费一区二区三区| xxxhd国产人妻xxx| 热99久久久久精品小说推荐| 亚洲av福利一区| 国产69精品久久久久777片| 欧美三级亚洲精品| 国产免费一区二区三区四区乱码| 国产探花极品一区二区| 男女高潮啪啪啪动态图| 伊人久久国产一区二区| 婷婷色综合大香蕉| 三级国产精品片| 中文字幕人妻丝袜制服| 美女福利国产在线| 99国产精品免费福利视频| 又粗又硬又长又爽又黄的视频| 女的被弄到高潮叫床怎么办| 国产极品天堂在线| 我要看黄色一级片免费的| 亚洲,欧美,日韩| 中文精品一卡2卡3卡4更新| 香蕉精品网在线| 欧美精品人与动牲交sv欧美| 丰满少妇做爰视频| 日韩熟女老妇一区二区性免费视频| 男女国产视频网站| 久久久国产欧美日韩av| 美女主播在线视频| 在线观看www视频免费| 满18在线观看网站| 我要看黄色一级片免费的| 岛国毛片在线播放| 国产综合精华液| 成年女人在线观看亚洲视频| 国产精品人妻久久久影院| 国产乱来视频区| 在线播放无遮挡| 婷婷色av中文字幕| 三上悠亚av全集在线观看| 91精品三级在线观看| 国产黄频视频在线观看| 男女国产视频网站| 成年人午夜在线观看视频| 亚洲丝袜综合中文字幕| 人成视频在线观看免费观看| 日韩免费高清中文字幕av| 久久久久国产网址| 99九九线精品视频在线观看视频| 精品一区二区三卡| 亚洲国产av影院在线观看| 韩国av在线不卡| 国产成人精品久久久久久| 国产成人a∨麻豆精品| 亚洲无线观看免费| 欧美少妇被猛烈插入视频| 黑人巨大精品欧美一区二区蜜桃 | 国产无遮挡羞羞视频在线观看| 久久精品国产a三级三级三级| 国产又色又爽无遮挡免| 免费不卡的大黄色大毛片视频在线观看| 欧美亚洲日本最大视频资源| 91午夜精品亚洲一区二区三区| 日韩免费高清中文字幕av| 岛国毛片在线播放| 久久97久久精品| 91精品一卡2卡3卡4卡| 中文精品一卡2卡3卡4更新| 精品亚洲乱码少妇综合久久| 亚洲av成人精品一二三区| 亚洲成人一二三区av| 亚洲激情五月婷婷啪啪| 精品人妻熟女av久视频| 欧美精品人与动牲交sv欧美| 曰老女人黄片| 边亲边吃奶的免费视频| 男人爽女人下面视频在线观看| 老司机影院毛片| 啦啦啦中文免费视频观看日本| 18+在线观看网站| 久久久国产一区二区| 精品亚洲成国产av| 色婷婷av一区二区三区视频| 精品亚洲乱码少妇综合久久| 亚洲国产精品专区欧美| 亚洲图色成人| 国产精品秋霞免费鲁丝片| 欧美 日韩 精品 国产| 一区二区三区精品91| 久久久久精品性色| 成人毛片a级毛片在线播放| 春色校园在线视频观看| 99视频精品全部免费 在线| 在线观看免费高清a一片| 欧美人与善性xxx| 国产片内射在线| 久久久国产欧美日韩av| 久久久久视频综合| 国产色爽女视频免费观看| 极品人妻少妇av视频| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕| 一级黄片播放器| 美女大奶头黄色视频| 五月天丁香电影| av.在线天堂| 国产免费一区二区三区四区乱码| 亚洲成人av在线免费| 在线观看美女被高潮喷水网站| 午夜免费男女啪啪视频观看| 又粗又硬又长又爽又黄的视频| 国产高清三级在线| 五月玫瑰六月丁香| 欧美97在线视频| 亚洲av.av天堂| 久久精品国产亚洲av天美| 最新中文字幕久久久久| 九九爱精品视频在线观看| 看非洲黑人一级黄片| 老司机亚洲免费影院| 国产av码专区亚洲av| av卡一久久| 看免费成人av毛片| 午夜免费鲁丝| 成年人免费黄色播放视频| 色视频在线一区二区三区| 亚洲国产精品999| 搡老乐熟女国产| 国产成人午夜福利电影在线观看| 亚洲欧洲精品一区二区精品久久久 | 女性生殖器流出的白浆| 嫩草影院入口| 国产av码专区亚洲av| 丰满少妇做爰视频| 欧美三级亚洲精品| 精品国产国语对白av| 两个人免费观看高清视频| 成年美女黄网站色视频大全免费 | 亚洲精品中文字幕在线视频| 99热网站在线观看| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 在线天堂最新版资源| 高清av免费在线| 欧美 日韩 精品 国产| 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 国产一区有黄有色的免费视频| av播播在线观看一区| 18禁在线无遮挡免费观看视频| 久久精品熟女亚洲av麻豆精品| 3wmmmm亚洲av在线观看| 精品人妻熟女av久视频| 国产av精品麻豆| 18禁在线无遮挡免费观看视频| 少妇高潮的动态图| 99久久综合免费| 黄色一级大片看看| 卡戴珊不雅视频在线播放| 欧美激情极品国产一区二区三区 | 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看| 最近手机中文字幕大全| 国产成人精品久久久久久| 日韩免费高清中文字幕av| 免费观看在线日韩| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| 91久久精品国产一区二区成人| 国产av一区二区精品久久| 国产一区二区在线观看av| 国产精品99久久99久久久不卡 | 美女内射精品一级片tv| 大陆偷拍与自拍| 久久午夜福利片| 国产av精品麻豆| 我要看黄色一级片免费的| 午夜福利在线观看免费完整高清在| 日韩亚洲欧美综合| 国产精品 国内视频| 一级黄片播放器| 大香蕉久久成人网| 丝袜在线中文字幕| 极品人妻少妇av视频| 午夜福利视频在线观看免费| 有码 亚洲区| 免费看不卡的av| 成人18禁高潮啪啪吃奶动态图 | 精品一区在线观看国产| 精品少妇黑人巨大在线播放| 99久久综合免费| 国产熟女欧美一区二区| 国产 精品1| 日韩人妻高清精品专区| 久久99热6这里只有精品| 亚洲精品日韩av片在线观看| 亚洲av在线观看美女高潮| 18禁裸乳无遮挡动漫免费视频| 精品一区二区三卡| 久久久久人妻精品一区果冻| 国产午夜精品一二区理论片| 一级毛片 在线播放| 欧美亚洲日本最大视频资源| 日本黄大片高清| 亚洲欧美日韩卡通动漫| 人妻 亚洲 视频| 少妇人妻久久综合中文| 晚上一个人看的免费电影| freevideosex欧美| 亚洲国产精品成人久久小说| 国产av码专区亚洲av| 日日爽夜夜爽网站| 午夜福利,免费看| 搡老乐熟女国产| 日韩一区二区视频免费看| 久久久国产一区二区| 日韩精品免费视频一区二区三区 | 久久精品久久久久久噜噜老黄| 欧美成人精品欧美一级黄| 欧美日韩精品成人综合77777| 亚洲精品中文字幕在线视频| 久久99蜜桃精品久久| 国产亚洲一区二区精品| 18在线观看网站| 免费观看的影片在线观看| 成人亚洲精品一区在线观看| 丰满迷人的少妇在线观看| 三级国产精品片| 国产 一区精品| 黑人巨大精品欧美一区二区蜜桃 | 一本一本综合久久| 亚洲精品自拍成人| 丝袜在线中文字幕| 最近最新中文字幕免费大全7| 国产淫语在线视频| 欧美日韩视频高清一区二区三区二| 日韩熟女老妇一区二区性免费视频| 午夜福利影视在线免费观看| 91午夜精品亚洲一区二区三区| 成人二区视频| av免费在线看不卡| 国产av一区二区精品久久| 视频中文字幕在线观看| 黑丝袜美女国产一区| 国产高清有码在线观看视频| 人人妻人人爽人人添夜夜欢视频| 成人影院久久| 国产av一区二区精品久久| 777米奇影视久久| 一个人免费看片子| 26uuu在线亚洲综合色| 黄色视频在线播放观看不卡| 国产av码专区亚洲av| 中文字幕av电影在线播放| 国产伦理片在线播放av一区| √禁漫天堂资源中文www| 夜夜爽夜夜爽视频| 99久久中文字幕三级久久日本| 成年av动漫网址| 3wmmmm亚洲av在线观看| 妹子高潮喷水视频| 日产精品乱码卡一卡2卡三| 狂野欧美白嫩少妇大欣赏| 91久久精品电影网| 夜夜骑夜夜射夜夜干| 国产高清不卡午夜福利| 国产成人a∨麻豆精品| 亚洲国产日韩一区二区| 天堂8中文在线网| a级片在线免费高清观看视频| a级毛片免费高清观看在线播放| 亚洲三级黄色毛片| 国产男人的电影天堂91| 久久久a久久爽久久v久久| 草草在线视频免费看| 下体分泌物呈黄色| 一级爰片在线观看| 国产极品粉嫩免费观看在线 | 少妇猛男粗大的猛烈进出视频| 免费高清在线观看视频在线观看| 国产成人精品福利久久| 精品一品国产午夜福利视频| 黄色配什么色好看| 这个男人来自地球电影免费观看 | 久久影院123| 午夜精品国产一区二区电影| 母亲3免费完整高清在线观看 | 国产伦理片在线播放av一区| 亚洲av.av天堂| 晚上一个人看的免费电影| 三级国产精品欧美在线观看| 九色亚洲精品在线播放| 一区二区三区精品91| 亚洲精品乱码久久久v下载方式| 成人国语在线视频| 在线播放无遮挡| 99久久综合免费| 天天操日日干夜夜撸| a级毛色黄片| 亚洲美女视频黄频| 国产淫语在线视频| 精品少妇久久久久久888优播| 老司机影院毛片| 国产精品99久久99久久久不卡 | 日本欧美视频一区| 国产日韩一区二区三区精品不卡 | 久久青草综合色| 欧美xxⅹ黑人| 999精品在线视频| 黑人高潮一二区| 尾随美女入室| 国模一区二区三区四区视频| freevideosex欧美| 伊人久久国产一区二区| 久久ye,这里只有精品| 成人亚洲精品一区在线观看| 亚洲人与动物交配视频| 久久久久精品久久久久真实原创| 美女中出高潮动态图| 成人18禁高潮啪啪吃奶动态图 | 啦啦啦中文免费视频观看日本| 夜夜看夜夜爽夜夜摸| 国产精品一二三区在线看| 国产成人免费观看mmmm| 在线播放无遮挡| 国产在视频线精品| 街头女战士在线观看网站| 日日啪夜夜爽| 成人18禁高潮啪啪吃奶动态图 | 男男h啪啪无遮挡| 三级国产精品欧美在线观看| 亚洲av不卡在线观看| 国产成人精品婷婷| 精品酒店卫生间| 国产精品一区www在线观看| 久久精品久久久久久噜噜老黄| 秋霞伦理黄片| 美女福利国产在线| 日韩av不卡免费在线播放| 成年av动漫网址| 亚洲欧洲日产国产| 国产成人精品在线电影| 少妇熟女欧美另类| av免费在线看不卡| 高清视频免费观看一区二区| 免费观看的影片在线观看| av播播在线观看一区| 韩国高清视频一区二区三区| 最新的欧美精品一区二区| 日韩欧美精品免费久久| 啦啦啦啦在线视频资源| 边亲边吃奶的免费视频| 日韩欧美精品免费久久| 99精国产麻豆久久婷婷| 好男人视频免费观看在线| 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 午夜福利在线观看免费完整高清在| 在现免费观看毛片| av有码第一页| 久久久国产一区二区| 国产色婷婷99| 久久 成人 亚洲| 美女大奶头黄色视频| 黑人巨大精品欧美一区二区蜜桃 | 精品卡一卡二卡四卡免费| 国产黄色免费在线视频| 精品亚洲成国产av| 黄片播放在线免费| 成年美女黄网站色视频大全免费 | av又黄又爽大尺度在线免费看| 欧美激情国产日韩精品一区| 老司机亚洲免费影院| 观看av在线不卡| 久热这里只有精品99| 精品卡一卡二卡四卡免费| 国产精品偷伦视频观看了| 久久久久久久亚洲中文字幕| 亚洲精品久久午夜乱码| 伊人亚洲综合成人网| 亚洲国产精品国产精品| 18禁在线播放成人免费| 日本-黄色视频高清免费观看| 飞空精品影院首页| 中文精品一卡2卡3卡4更新| 岛国毛片在线播放| 51国产日韩欧美| 久久久久久伊人网av| 国产毛片在线视频| 亚洲精品日本国产第一区| 国产伦精品一区二区三区视频9| 免费看不卡的av| 最近手机中文字幕大全| 看非洲黑人一级黄片| 国产又色又爽无遮挡免|