黃燕琪HUANG Yanqi
馬澤蘭1,2MA Zelan
何 蘭2 HE Lan
梁翠珊1,2LIANG Cuishan
梁長虹2LIANG Changhong
劉再毅2 LIU Zaiyi
基于CT圖像的紋理分析鑒別肝臟實性局灶性病變
黃燕琪1,2HUANG Yanqi
馬澤蘭1,2MA Zelan
何 蘭2HE Lan
梁翠珊1,2LIANG Cuishan
梁長虹2LIANG Changhong
劉再毅2LIU Zaiyi
作者單位
1.南方醫(yī)科大學研究生院 廣東廣州 510515
2.廣東省人民醫(yī)院 廣東省醫(yī)學科學院放射科 廣東廣州 510080
2016-01-13
中國醫(yī)學影像學雜志
2016年 第24卷 第4期:289-292,297
Chinese Journal of Medical Imaging
2016 Volume 24 (4): 289-292,297
目的 CT是鑒別肝臟實性局灶性病灶的常用檢查方法,但其對不典型病灶的鑒別診斷仍有較大的經(jīng)驗依賴性,而紋理分析可以提供客觀、定量的圖像描述特征。本研究旨在探討基于CT圖像的紋理分析在肝臟實性局灶性病變鑒別診斷中的價值。資料與方法 回顧性分析258例經(jīng)病理證實或臨床確診的肝臟局灶性病變患者的CT圖像,其中肝臟局灶性結(jié)節(jié)增生(FNH)34例,血管瘤(HEM)60例,肝細胞肝癌(HCC)60例,肝內(nèi)膽管細胞癌(ICC)44例,轉(zhuǎn)移瘤(MET)60例。所有患者均行腹部CT平掃與三期增強掃描。以MaZda軟件生成CT圖像的紋理特征并進行特征篩選,進行各組病灶的判別。結(jié)果 258例患者中,基于增強CT圖像的紋理分析對于肝臟實性局灶性病變的鑒別診斷錯判率(4.26%~37.80%)低于基于平掃圖像的紋理分析(9.57%~39.02%)。對于良惡性病變的鑒別,門靜脈期圖像紋理分析錯判率最低(13.57%);對于FNH與HEM的鑒別,動脈期及門靜脈期圖像紋理分析效果相當(錯判率為4.26%);對于惡性腫瘤間的鑒別紋理分析錯判率相對較高,若于惡性腫瘤間兩兩鑒別則錯判率可降低(錯判率最低為HCC 與MET,約11.67%)。結(jié)論
肝疾??;結(jié)節(jié)病;肝腫瘤;血管瘤;癌,肝細胞;膽管腫瘤;腫瘤轉(zhuǎn)移;體層攝影術,螺旋計算機;圖像增強;診斷,鑒別
肝臟實性局灶性病灶的鑒別診斷對于后續(xù)治療方案的制訂至關重要[1]。CT是較常用于鑒別肝臟實性局灶性病灶的手段[2-3],然而其對于不典型病灶的鑒別診斷仍有較大的經(jīng)驗依賴性[4]。通過量化分析圖像像素灰度值局部特征、像素灰度值變化規(guī)律及其分布模式,紋理分析可反映感興趣區(qū)(ROI)內(nèi)的生理不均質(zhì)性,近年被應用于多種醫(yī)學成像圖像中以輔助疾病診療[5-10]。以往有關紋理分析在肝臟輔助診斷中的研究多采用平掃圖像[11]。然而近年來CT增強掃描在肝臟病變診斷中的應用逐漸廣泛,它可以提供病變血供的信息、提高病灶的檢出[4,12]。目前關于應用基于三期增強圖像紋理分析鑒別肝臟實性局灶性病變的研究鮮有報道,本研究應用基于三期增強掃描圖像紋理分析判別肝臟實性局灶性病變,以期對其鑒別診斷提供輔助手段。
1.1 研究對象 回顧性納入2010年12月—2013年12月廣東省人民醫(yī)院(廣東省醫(yī)學科學院)經(jīng)手術病理確診為肝臟局灶性結(jié)節(jié)增生(focal nodular hyperplasia,F(xiàn)NH)的258例患者,其中女97例,男161例;年齡28~68歲,平均(46.50±13.19)歲;FNH 34例,肝細胞癌(hepatocellular carcinoma,HCC)60例,肝內(nèi)膽管細胞癌(intrahepatic cholangiocarcinoma,ICC)44例,肝轉(zhuǎn)移瘤(metastasis,MET)60例,血管瘤(hemangioma,HEM)60例。納入標準:①病理證實為FNH、HCC、
ICC、MET者;CT影像典型的HEM,并經(jīng)隨訪證實者;②同時行常規(guī)平掃及三期CT增強掃描者。排除標準:圖像存在偽影,影響病灶觀察者。
1.2 儀器與方法 采用GE 64排螺旋CT掃描儀(64-slice LightSpeed VCT,GE Medical systems,Milwaukee,Wis)。掃描參數(shù):準直器0.625 mm,視野350 mm,管電壓120 kV,管電流160 mAs,層厚5.0 mm。注射對比劑前先行平掃。增強掃描采用雙筒高壓注射器于肘靜脈注射90~100 ml對比劑(Ultravist 370,Bayer Schering Pharma AG,Berlin,Germany),注射速度3 ml/s。注射對比劑后25~30 s、60~70 s、128~180 s分別行動脈期、門靜脈期及延遲期掃描。CT掃描圖像以DICOM格式導出。
1.3 紋理分析 采用MaZda軟件(Version 4.6,下載頁面:http://www.eletel.p.lodz.pl/mazda/)進行紋理分析[13]。選取病灶最大層面沿病灶輪廓放置ROI,然后生成ROI內(nèi)的各個紋理參數(shù)值。為了減小不同時相間ROI的放置誤差,先于病灶邊界最清晰的時相中勾畫ROI,隨后將ROI復制粘貼于其他時相,錯位較大時根據(jù)鄰近解剖結(jié)構(gòu)進行適當?shù)奈恢谜{(diào)整。所有ROI由1名有20年腹部CT診斷經(jīng)驗的主治醫(yī)師放置。在紋理特征生成之前先進行圖像灰階的標準化。生成的基于灰度共生矩陣、灰度直方圖、游程矩陣、基于傅里葉變換的紋理特征、自回歸模型的各紋理特征見表1[13]。
表1 生成的紋理特征
1.4 研究方法
1.4.1 判別分組 ①良性病變間的鑒別(HEM與FNH);②良性病變與惡性病變間的鑒別(HEM+FNH 與HCC+MET+ICC);③惡性病變間的鑒別(HCC與MET與ICC);④惡性病變間的兩兩比較(HCC與ICC;HCC與MET;ICC與MET)。
1.4.2 判別分析 根據(jù)MaZda軟件自帶的程序進行判別分析。其中,以互信息系數(shù)為標準對特征進行篩選排序。對于每一判別分組,選擇排序前10位的紋理特征組成特征子集進行后續(xù)判別?;谥疤崛〉奶卣髯蛹?,以線性判別分析篩選出最優(yōu)判別特征,使不同類別間差距最大化,同一類別間差距最小化。利用k-鄰域(k-NN)分類器計算基于這些最優(yōu)鑒別特征的錯判率(MCR)。根據(jù)公式(1)計算MCR。
根據(jù)MCR將鑒別能力分為5個等級:MCR≤10%為優(yōu)秀,10%<MCR≤20%為良好,20%<MCR≤30%為中等,30%<MCR≤40%為一般,MCR>40%為差。
2.1 各期CT圖像用于紋理分析的MCR 基于CT增強掃描圖像的紋理分析得到的MCR較基于CT平掃圖像的MCR低,見表2、3。
2.2 各鑒別分組的MCR 無論是基于平掃還是各期CT增強圖像,紋理分析用于良性腫瘤間的鑒別及良惡性腫瘤的鑒別較惡性腫瘤間的鑒別MCR低,見表2、3。2.2.1 良性病變間的鑒別 良性病變間(FNH與HEM)基于平掃及CT增強掃描圖像的紋理分析鑒別能力均為優(yōu)秀;動脈期及門靜脈期CT圖像的紋理分析MCR均為4.26%(4/94),見圖1。
表2 各病變鑒別組MCR[%(n1/n2)]
表3 惡性病變兩兩鑒別MCR[%(n1/n2)]
圖1 A、B分別為基于增強掃描動脈期、門靜脈期CT圖像的紋理分析鑒別肝臟良性實性局灶性病變。1表示FNH,2表示HEM。3種特征為區(qū)分2種病變的最優(yōu)紋理特征?!?”與“2”區(qū)分較明顯,表明紋理分析鑒別能力均較好
圖2 基于增強掃描門靜脈期CT圖像的紋理分析鑒別肝臟良性與惡性實性局灶性病變。1表示良性病變,2表示惡性病變。3種特征為區(qū)分2種病變的最優(yōu)紋理特征?!?”與“2”區(qū)分較明顯,表明紋理分析鑒別能力較好
2.2.2 良性與惡性病變的鑒別 對于良性病變與惡性病變間的鑒別(FNH+HEM 與ICC+HCC+MET),基于增強掃描圖像的紋理分析鑒別能力(MCR為8.91%~12.68%,優(yōu)秀或良好)亦優(yōu)于基于平掃圖像的鑒別能力(MCR 為31.01%,一般)。其中,基于門靜脈期圖像的紋理分析鑒別能力優(yōu)秀,MCR為8.91%(圖2);而增強掃描動脈期與延遲期鑒別能力良好。
2.2.3 惡性病變間的鑒別 對于惡性病變間基于平掃及增強掃描圖像紋理分析的鑒別能力均為一般(MCR 為32.93%~39.02%),其中基于動脈期圖像的MCR最低。當兩兩鑒別惡性病變時,圖像紋理分析的鑒別能力為良好與中等(MCR為11.67%~29.17%)?;趧用}期圖像的紋理分析對于惡性病變間兩兩鑒別的能力均為良好,其中對于鑒別HCC與MET的MCR最低,為11.67%(圖3)。
3.1 基于CT增強掃描圖像的紋理分析 本研究顯示,對于肝臟實性局灶性病變的鑒別,基于增強掃描CT圖像的紋理分析較基于平掃圖像能提供更大的價值。增強掃描可以提供病灶血供的信息,目前肝臟實性局灶性病變的術前評估多普及多期CT增強掃描[12];類似于傳統(tǒng)的主觀影像判斷,對于肝臟實性局灶性病變的鑒別診斷,紋理分析亦應基于CT增強掃描圖像[14-15]。Gletsos等[16]的研究顯示,基于平掃CT圖像紋理分析建立的計算機輔助診斷系統(tǒng)用于鑒別正常肝臟組織、肝囊腫、HEM、HCC的最低MCR為15.79%;而本研究基于CT增強掃描圖像的紋理分析對于良惡性病變及良性病變的鑒別準確度更高(MCR為4.26%、8.91%)。3.2 肝臟良性病變的鑒別及良惡性病變的鑒別 對于良性病變的鑒別,由于FNH和HEM均為相對富血供病變,對于影像學表現(xiàn)不典型者仍存在錯判的可能[17-18]。本研究應用基于動脈期或門靜脈期CT圖像的紋理分析鑒別兩者MCR較低(4.26%),提示對于鑒別FNH 與HEM,基于CT圖像的紋理分析推薦使用動脈期或門靜脈期采集的圖像。目前,基于CT圖像的紋理分析鑒別FNH與HEM的相關研究鮮有報道,而紋理分析鑒別良惡性實性局灶性病變可減免不必要的有創(chuàng)治療手段[3,17]。本研究鑒別良惡性病變的MCR較低,其中基于門靜脈期的紋理分析MCR低至8.91%。因此,對于良惡性實性局灶性肝臟病變的鑒別,紋理分析推薦使用門靜脈期的圖像。
3.3 肝臟惡性病變的鑒別 由于不同肝臟惡性占位病變的治療方式不同,因此術前正確鑒別惡性腫瘤的具體類型尤為重要[19]。本研究鑒別惡性腫瘤間的MCR較高,紋理分析鑒別能力為中等。本文使用線性判別分析進行判別,而目前醫(yī)學圖像紋理分析應用于病灶的分類、鑒別手段較多,使用其他判別手段能否提高惡性腫瘤內(nèi)鑒別的準確度亦是亟待解決的問題[14,20]。若用于惡性病灶間的兩兩鑒別,本研究發(fā)現(xiàn)紋理分析鑒別能力提高,如HCC與MET的鑒別MCR為11.67%。目前鮮見關于紋理分析鑒別HCC與MET的文獻,但文獻[14]中紋理分析鑒別HCC與ICC的準確度為51.42%~91.02%,而本研究關于HCC與ICC的鑒別在動脈期亦有較高的準確度(82.96%)。
3.4 本研究的局限性 本研究中特征提取是基于單張CT圖像進行,理想的情況應該是對CT圖像序列進行三維建模,從三維空間分析病灶的紋理特征[21]。因此,未來需進一步應用CT圖像序列的三維建模,提取可更全面描述病灶的紋理特征。此外,本研究僅比較基于平掃及三期增強掃描CT圖像的紋理分析鑒別能力的差異;而醫(yī)師識別診斷過程常通過綜合考量平掃及增強掃描各期病灶的特點才能得到較完備的診斷結(jié)論[4,12,21]。雖然目前鮮見結(jié)合平掃及CT增強掃描圖像的紋理分析對肝臟實性局灶性病變鑒別能力的研究,但這可能是提高鑒別準確度的途徑。
總之,對于肝臟實性局灶性病變的鑒別診斷,基于CT圖像的紋理分析可以作為輔助手段,尤其是用于FNH與HEM、良性病灶與惡性病灶、惡性病灶間的兩兩鑒別?;谌谠鰪姃呙璧募y理分析較基于平掃圖像者效果更優(yōu)。對于其中不同病變的鑒別,基于增強掃描各期圖像的紋理分析鑒別能力亦有不同。
圖3 基于增強掃描動脈期CT圖像的紋理分析鑒別肝臟惡性實性局灶性病變。1表示ICC,2表示HCC,3表示MET。3個紋理特征為區(qū)分2種病變的最優(yōu)紋理特征?!?”、“2”、“3”區(qū)分部分區(qū)域尚可,部分區(qū)域存在重疊現(xiàn)象,表明紋理分析鑒別能力一般
[1]Bottcher J,Hansch A,Pfeil A,et al. Detection and classification of different liver lesions: comparison of Gd-EOB-DTPA-enhanced MRI versus multiphasic spiral CT in a clinical single centre investigation. Eur J Radiol,2013,82(11): 1860-1869.
[2]Halavaara J,Breuer J,Ayuso C,et al. Liver tumor characterization: comparison between liver-specific gadoxetic acid disodium-enhanced MRI and biphasic CT--a multicenter trial. J Comput Assist Tomogr,2006,30(3): 345-354.
[3]Ros PR,Mortele KJ. Hepatic imaging. An overview. Clin Liver Dis,2002,6(1): 1-16.
[4]Van Leeuwen MS,Noordzij J,F(xiàn)eldberg MA,et al. Focal liver lesions: characterization with triphasic spiral CT. Radiology,1996,201(2): 327-336.
[5]劉衛(wèi)芳,夏翃,周震,等. 多發(fā)性硬化患者腦磁共振圖像的紋理分析. 中國醫(yī)學影像學雜志,2013,21(4): 297-300.
[6]Castellano G,Bonilha L,Li LM,et al. Texture analysis of medical images. Clin Radiol,2004,59(12): 1061-1069.
[7]Hahn S,Heusner T,Zhou X,et al. Computer-aided detection (CAD) and assessment of malignant lesions in the liver and lung using a novel PET/CT software tool: initial results. Rofo,2010,182(3): 243-247.
[8]House MJ,Bangma SJ,Thomas M,et al. Texture-based classification of liver fibrosis using MRI. J Magn Reson Imaging,2015,41(2): 322-328.
[9]Virmani J,Kumar V,Kalra N,et al. Neural network ensemble based CAD system for focal liver lesions from b-mode ultrasound. J Digit Imaging,2014,27(4): 520-537.
[10]于鵬,田嘉禾.18F-FDG PET圖像紋理分析的研究進展. 中國醫(yī)學影像學雜志,2014,22(9): 711-713.
[11]Mougiakakou SG,Valavanis IK,Nikita A,et al. Differential diagnosis of CT focal liver lesions using texture features,feature selection and ensemble driven classifiers. Artif Intell Med,2007,41(1): 25-37.
[12]Hafeez S,Alam MS,Sajjad Z,et al. Triphasic computed tomography (CT) scan in focal tumoral liver lesions. J Pak Med Assoc,2011,61(6): 571-575.
[13]Szczypinski PM,Strzelecki M,Materka A,et al. MaZda--a software package for image texture analysis. Comput Methods Programs Biomed,2009,94(1): 66-76.
[14]Duda D,Kretowski M,Bezy-Wendling J. Texture characterization for hepatic tumor recognition in multiphase CT. Biocybern Biomed Eng,2006,26(4): 15-24.
[15]Ganeshan B,Miles KA,Young RC,et al. Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol,2007,62(8): 761-768.
[16]Gletsos M,Mougiakakou SG,Matsopoulos GK,et al. A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier. IEEE Trans Inf Technol Biomed,2003,7(3): 153-162.
[17]Cherqui D. Benign liver tumors. J Chir (Paris),2001,138(1):19-26.
[18]Hussain SM,Terkivatan T,Zondervan PE,et al. Focal nodular hyperplasia:findings at state-of-the-art MR imaging,US,CT,and pathologic analysis. Radiographics,2004,24(1): 3-17.
[19]Powerski MJ,Scheurig-Muenkler C,Banzer J,et al. Clinical practice in radioembolization of hepatic malignancies: a survey among interventional centers in Europe. Eur J Radiol,2012,81(7): e804-811.
[20]朱碧云,陳卉. 醫(yī)學圖像紋理分析的方法及應用. 中國醫(yī)學裝備,2013,10(8): 77-81.
[21]Tesar L,Shimizu A,Smutek D,et al. Medical image analysis of 3D CT images based on extension of Haralick texture features. Comput Med Imaging Graph,2008,32(6): 513-520.
(本文編輯 馮 婕)
Differentiation of Solid Focal Liver Lesions: A CT-based Texture Analysis
Liver diseases; Sarcoidosis; Liver neoplasms; Hemangioma; Carcinoma,hepatocellular; Bile duct neoplasms; Neoplasm metastasis; Tomography,spiral computed;Image enhancement; Diagnosis,differential
劉再毅
國家自然科學基金資助項目(81271569)。
2015-12-15
10.3969/j.issn.1005-5185.2016.04.013
Department of Radiology,Guangdong General Hospital (Guangdong Academy of Medical Sciences),Guangzhou 510080,China
Address Correspondence to: LIU Zaiyi E-mail: zyliu@163.com
R445.3;R735.7
基于CT圖像的紋理分析可以作為肝臟實性局灶性病灶鑒別診斷的輔助手段,尤其是FNH與HEM、良性病灶與惡性病灶、惡性病灶間的兩兩鑒別;其中基于三期增強掃描的紋理分析較基于平掃圖像者效果更優(yōu)。
【Abstract】Purpose CT is a common tool for the differentiation of solid focal liver lesions. However,the traditional CT assessment relies heavily on radiologists’ experience,which leaves the differential diagnosis unfaithful. Conversely,texture analysis (TA) provides an objective and quantitative description of images. Under such circumstances,this study aims to discuss the value of TA based on both non-enhanced and triphasic contrast-enhanced CT in the differentiation of solid focal liver lesions.Materials and Methods The CT images of 258 patients with pathologically proven focal nodular hyperplasia (FNH,n=34),hemangioma (HEM,n=60),hepatocellular carcinoma (HCC,n=60),intrahepatic cholangiocarcinoma (ICC,n=44),metastasis (MET,n=60) were retrospectively analyzed. All the patients underwent non-enhanced CT and triphasic contrast-enhanced CT (CECT) scan with a standard protocol. A list of texture features was generated with free software MaZda for lesions' classification.Results The TA based on CECT had lower misclassification rate (MCR) of differentiation (4.26%-37.80%) compared with that on NECT (9.57%-39.02%)in general. In the differentiation between benign and malignant lesions,the lowest MCR was obtained on portal venous phase (13.57%); in the differentiation between FNH and HEM,similar MCR was observed on both arterial and portal venous phases (4.26%); in the differentiation of malignant lesions,although TA yielded a comparably higher MCR,better results were observed in the differentiation of malignant masses in pairs (the lowest MCR was 11.67% for HCC versus MET).Conclusion The CT-based TA could serve as a supplementary tool in the differentiation of solid focal liver lesions,and it has better performance in the differential analysis of FNH and HEM,benign and malignant lesions,and malignant lesions in pairs. The triphasic CECT contains more relevant discriminatory textural information in compared with the non-enhanced CT.