• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈰鑭比對CexNi0.5La0.5-xO系催化劑甘油氧化蒸汽重整制氫性能的影響

    2016-09-09 03:32:00黨成雄楊浩波余皓王紅娟彭峰
    物理化學(xué)學(xué)報 2016年6期
    關(guān)鍵詞:華南理工大學(xué)晶格重整

    黨成雄 楊浩波 余皓 王紅娟 彭峰

    (華南理工大學(xué)化學(xué)與化工學(xué)院,廣州510640)

    鈰鑭比對CexNi0.5La0.5-xO系催化劑甘油氧化蒸汽重整制氫性能的影響

    黨成雄楊浩波余皓*王紅娟彭峰

    (華南理工大學(xué)化學(xué)與化工學(xué)院,廣州510640)

    利用共沉淀法制備了CeO2和La2O3復(fù)合載體的CexNi0.5La0.5-xO(CeNiLaO)系催化劑,在固定床反應(yīng)器中考察其甘油氧化蒸汽重整制氫(OSRG)性能,并采用X射線衍射(XRD)、程序升溫還原(H2-TPR)、激光拉曼光譜(Raman)、掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)和X射線光電子能譜(XPS)等手段對催化劑進(jìn)行表征分析。結(jié)果表明:La2O3能夠有效地分散Ni顆粒,減弱Ni顆粒在反應(yīng)過程中的燒結(jié),CeO2提供的晶格氧能夠消除催化劑表面的積碳,同時La會部分進(jìn)入Ce的晶格取代部分Ce4+造成晶格畸變,提高表面的氧空穴數(shù)。La2O3和CeO2的共同作用有利于減弱Ni因為燒結(jié)和積碳引起的失活。在不同Ce/La摩爾比的催化劑中,Ce0.4Ni0.5La0.1O表現(xiàn)出最好的催化活性,并且該催化劑在長達(dá)210 h的穩(wěn)定性測試中,甘油的轉(zhuǎn)化率都在95%以上,氣相產(chǎn)物中的氫氣濃度達(dá)50%。

    氧化鈰;氧化鑭;鎳;穩(wěn)定性;甘油;制氫;蒸汽重整

    1 Introduction

    Hydrogen has been widely applied in fine chemicals and petroleum industries as a chemical raw material.Meanwhile,hydrogen is also considered as a potential clean and environmentalfriendly energy carrier,with high calorific value and zero pollution. At present,hydrogen is produced mainly by the steam reforming of natural gas in chemical industry.However,this process suffers from the unsustainable raw material and substantial carbon dioxide emissions.Renewable sources,especially those from biomass,are ideal feedstock to produce hydrogen,which makes this process sustainable and recycle CO2back to grow more biomass1.

    Glycerol is the major by-product from the transesterification of fatty acids to manufacture biodiesel,providing about 10%as glycerol.With the rapid growth of biodiesel production,glycerol has been increasingly produced in recent years.Thus,the application of glycerol has constrained the development of biodiesel industry2.Conversion of glycerol to hydrogen is one of the most attractive ways to make use of glycerol,which can either alleviate the oversupply of glycerol,or afford a renewable hydrogen production independent on fossil fuels.

    Hydrogen can be produced from glycerol by the steam reforming(SRG)reaction with catalysts.Noble metal catalysts,such as Pt,Ru,Rh,and Ir3-5,have been proved to be highly active for the SRG reaction,but are limited by the cost and resources. Compared with noble metal,Ni has attracted intensive research interests as a representative base metal catalyst6-9.Wu et al.6fabricated the supported Ni/Al2O3catalyst with different Ni precursors.Under the optimum conditions,the yield of H2was about 5.5 mol?mol-1glycerol,approaching to the thermodynamic equilibriumvalue,5.7 mol?mol-1.Wang et al.8developed a Ni-Mg-Al catalyst,which showed an optimal performance with the conversion of glycerol up to 88.0%and the yield of H2up to 78.5%at 650°C.However,Ni-based catalysts generally suffer from the rapid deactivation caused by sintering and coke deposition during the SRG reaction process10,11,which remains a major challenge for developing stable Ni-based catalysts.

    It has been widely documented that an appropriate support is very important for the stability of Ni-based catalysts,because the supports may affect the metal dispersion and inhibit particle sintering and carbon formation12-15.Various oxides,including La2O3,Al2O3,CeO2,ZrO2,SiO2,and MgO,have been investigated as supports of nickel6,12,15,16.CeO2has excellent oxygen storagerelease capability by readily altering its oxidation states between Ce4+and Ce3+17.This property can be used to remove coke deposition on the metal surface and suppress deactivation.Gong et al.18studied the effect of CeO2on the performance of steam reforming of ethanol(SRE)over ceria-promoted Ni/SBA-15 catalysts and found that ceria promoter suppressed the coke formation on catalyst surfaces.Liu et al.19also found that at temperatures above 327°C,the lattice oxygen from ceria could eliminate the coke formed in the process of SRE.Our previous works3,11show that La2O3is beneficial for the redispersion of active metals,thereby slows the deactivation caused by sintering. Moreover,La2O3has a strong interaction with nickel at high temperatures through forming La-Ni-O phases,which stabilize the nickel20,21.The incorporation of La2O3could increase the dispersion of metallic Ni on Ni/γ-Al2O3and restrain the sintering of Ni particles,thus improve the stability of Ni/γ-Al2O3catalysts22.Both CeO2and La2O3could improve the stability of Ni-based catalysts as supports.Ce and La composite oxide may further enhance the stability as a catalyst carrier20,23.Venezia et al.20compared the catalytic behavior of Ni catalysts supported over CeO2,La2O3,and CeO2-La2O3mixed oxide in the methane partial oxidation reaction. It was found that in the presence of mixed CeO2-La2O3there was no coke formed.Arias et al.23also found that,when CeO2and La2O3co-existed simultaneously,the catalysts displayed excellent stability.In this work,we synthesized CexNi0.5La0.5-xO catalysts utilizing Ce and La composite oxide as a carrier via co-precipitation method and optimized the ratio of CeO2to La2O3,to enhance the stability of Ni-based catalysts for the oxidative steam reforming of glycerol(OSRG)reaction.

    2 Experimental

    2.1Preparation of catalysts

    All the reagents are analytic pure and were purchased from Sinopharm Chemical Reagent Co.,Ltd.Catalysts in this paper were synthesized via a co-precipitation method.Typically,Ce(NO3)3?6H2O,Ni(NO3)2?6H2O and La(NO3)3?nH2O were dissolved in deionized water with desired Ce2+/La3+molar ratios and a Ni content of 50%(atomic fraction)in final products,then the pH of the solution was adjusted to 11 by adding triethylamine solution dropwise.After continuously stirring for 4 h,the resulting white suspension was aged at room temperature for 2 h.The precipitates were filtered and washed with deionized water,followed by drying at 110°C for 12 h,and then calcined in air at 650°C for 6 h to obtain the catalysts.The samples were denoted as CexNi0.5La0.5-xO,where x represents the molar fraction of Ce.

    2.2Characterizations

    Specific surface areas of catalysts were measured by N2adsorption at-196°C(ASAP 2010,Micromeritics,America). Before the measurements,the samples were degassed at 300°C under vacuum overnight.Electron probe microanalysis(EPMA-1600,Shimadzu,Japan)was used to analyze the compositions of catalysts.Powder X-ray diffraction(XRD)measurements were performed in a Rigaku D/max-IIIAX diffractometer(Rigaku,Japan)using Cu Kαradiation(operating at 40 kV and 40 mA).H2temperature-programmed reduction(H2-TPR)was employed to analyze the reduction behavior of the catalysts in a TP5080 adsorption instrument(Xian Quan,China)equipped with a thermal conductivity detector(TCD).The hydrogen consumption was measured by calculating the reduction peaks in the range of 100-500°C referenced to the reduction peak of CuO as a standard material.X-ray photoelectron spectroscopy(XPS)was performed in a Kratos Axis ultra(DLD)spectrometer(Kratos,England)equipped with an Al KαX-ray source.The binding energies were referenced to the C 1s peak at 284.8 eV.Raman spectra were recorded on a LabRAM Aramis micro Raman spectrometer(Renishaw,England)with 633 nm wavelength laser and 2 μm spot size. Transmission electron microscopy(TEM)measurements were performed in a TECNAI10 microscope(Philips-FEI,Holland)equipped with an INCA energy dispersive spectrometer operatedat 200 kV.Specimens for TEM were prepared by ultrasonically suspending the sample in acetone and depositing a drop of the suspension onto a copper grid covered by amorphous carbon.SEM was performed in a LEO-1530VP microscope(LEO,German).

    2.3Catalytic tests

    The OSRG reaction was carried out in a quartz tubular reactor with inner diameter of 8 mm and length of 280 mm to evaluate the catalytic activity of the catalysts.The configuration and operation of reactor had been described in our previous work24.Before reaction,0.2 g catalyst was activated with H2at a flow rate of 30 mL?min-1at 500°C for 20 min,then heated the reactor to the desired temperature under N2atmosphere.The gaseous products were analyzed by a gas chromatograph(He as carrier gas)equipped with a TCD and a flame ionization detector(FID).A TDX 01 column was used for H2,CO and CO2analysis in TCD. CH4and C2H4were analyzed by FID with a packed column for analyzing transformer oil.

    Fig.1 XRD patterns of(a)fresh,(b)reduced,and(c)used CexNi0.5La0.5-xO catalystsInset shows the characteristic peaks of CeO2shifting to low-angle region.

    3 Results and discussion

    3.1Catalyst characterizations

    XRD patterns of fresh,reduced,and used catalysts with different Ce/La ratios are presented in Fig.1.CeO2,NiO,La(OH)3and some characteristic peaks from LaNiO3were detected in the fresh catalysts.As the content of La increases,the characteristic peaks of CeO2shift to low-angle region(see inset of Fig.1(a)). Meanwhile,there are no peaks from La species at lower La contents,indicating that some La ions may enter into the lattice of CeO2and induce a lattice distortion.In addition,the peaks of NiO gradually broaden with the introduction of La,proving that La2O3could increase the dispersion of NiO particles.The appearance of La(OH)3may be resulted from the reaction between La species and moisture.After H2reduction at 500°C,NiO turns into Ni completely(Fig.1(b)).La(OH)3would turn into La2O2CO3after the OSRG reaction(Fig.1(c)),probably through the decomposition of La(OH)3to La2O3and the carbonization of La2O3to La2O2CO33,24.

    Table 1 summarizes the textual properties and crystallite sizes of fresh,reduced,and used catalysts with different Ce/La molar ratios.The Scherrer equation was used to estimate the mean crystallite size from the(111)diffraction peak of Ni or the(012)peak of NiO.The crystallite sizes of NiO and Ni decreased greatly after incorporating La,indicating the dispersion effect of La2O3on nickel.The smallest Ni crystallite size is reached over the Ce0.4Ni0.5La0.1O catalyst.In addition,the Ce0.4Ni0.5La0.1O also shows the highest specific surface area and pore volume.For all the catalysts,the sintering of Ni can be observed after the OSRG reaction,indicated by the increasing size of Ni particles.Nevertheless,the sintering of Ni particles would be somewhat retarded over the La-containing samples,indicated by the less increase of Ni particle size after the OSRG reaction,suggesting the improved thermal stability of catalyst22.

    The TPR curves of CexNi0.5La0.5-xO catalysts are shown in Fig.2. The weak reduction peak below 300°C could be ascribed to the reduction of highly dispersed Ni species on surfaces25.The two overlapping peaks in the range of 300-500°C could be assigned as the reduction of Ni2+which has weak and strong interaction with support,respectively.The high temperature reduction peak of Ce0.5Ni0.5O at 800°C is from the reduction of Ce4+to Ce3+26,27,which is absent for other catalysts,probably due to the strongeras the reducible species,the H2comsuptions are very close to the theoretical values of CexNi0.5La0.5-xO(from 90.8 to 94.3 mL?g-1).

    As shown in Fig.3,the fresh CexNi0.5La0.5-xO catalysts display similar porous structures composed of aggregated particles.H2-reduction has little effect on the catalyst morphology.Ni crystallites can be observed in TEM images(Fig.4).Compared with Ce0.5Ni0.5O,the Ce0.4Ni0.5La0.1O is comprised of smaller particles,being consistent with the results of XRD.It should be noticed that the lattice spacing of the(200)planes of CeO2in the Ce0.4Ni0.5La0.1O is 0.284 nm(inset of Fig.4(b)),which is larger than pure CeO2(0.2706 nm,PDF#43-1002),indicating the substitution of La for Ce ions as revealed by XRDresults.The formation of Ce-La-O mixed oxides is also supported by the absence of any La species in the HR-TEM observation.

    Fig.5 shows the Raman spectra of CexNi0.5La0.5-xO catalysts and pure CeO2.Because of the intense fluorescent effect of La species on Raman spectra,the measurements were conducted for the samples with x<0.3 to avoid the excessive amounts of La.The band at 464 cm-1could be ascribed to the F2gvibration mode of fluorite structure of CeO228.When the amount of La increased,the band shifted to lower wave numbers,which may be caused by the metal-support interaction(MSI)over the mixed oxides.The strongest MSI is achieved on the composition of Ce0.4Ni0.5La0.1O,evidenced by the highest reduction peak temperature.Considering the refractory nature of La,the minor peaks of Ni0.5La0.5O in the range from 500 to 650°C can be attributed to the decomposition of La2O2CO33.The H2comsuptions were calculated by integrating the peaks from room temperature(r.t.)to 500°C.Assuming Ni2+incorporation of heteroatom ions into the lattice of CeO229.Herein,we conclude that the shift probably stems from the incorporation of La or Ni as revealed by aforementioned analysis.Two overlapping bands in the range of 500-650 cm-1can be observed for all the CexNi0.5La0.5-xO catalysts.The band at 545 cm-1could be attributed to the O2-vacancy on catalyst surfaces,and the one at 615 cm-1could be ascribed to the vacancy-interstitial oxygen defects in ceria30.As shown in Fig.5,either La or Ni would create oxygen vacancies on catalyst surfaces,and the strong intensity of the defect-related bands of Ce0.3Ni0.5La0.2O suggests that the amount of oxygen vacancies could be tuned by catalyst composition.

    Table 1Compositions and physical properties of the fresh,reduced,and used CexNi0.5La0.5-xO catalysts

    Fig.2H2-TPR profiles of CexNi0.5La0.5-xO catalysts

    Fig.3SEM images of fresh(a)and reduced(b)Ce0.5Ni0.5O,fresh(c)and reduced(d)Ce0.4Ni0.5La0.1O catalysts

    Fig.6 reports the XPS spectra of CexNi0.5La0.5-xO in the O 1s binding energy(BE)regions.The XPS spectra exhibit similar broad doublet peaks in all catalysts.The lower BEs can be assigned to lattice oxygen(labeled as OI)and the BEs with higher values are attributed to other surface oxygen species(labeled as OII)31-33.The surface oxygens(OII)increase with the incorporation of La34because of the formation of La(OH)3or La2O2CO3,as revealed by XRD,but,the amount of lattice oxygen changes in a contrary tendency.The results indicate La would increase the amount of OII and Ce could improve OI.Meanwhile,the shift of BE of OI toward lower values with incorporating La3+,see the cases x=0.1,0.2,0.3,indicates that La ions have entered into the lattice of CeO232,which is agreement with the analysis of XRD,HR-TEM,and Raman spectroscopy.

    Fig.4TEM images of reduced(a)Ce0.5Ni0.5O and(b)Ce0.4Ni0.5La0.1O and HR-TEM images of used Ce0.4Ni0.5La0.1O after OSRG reaction reaction conditions:T=650°C,carbon-to-oxygen molar ratio=1,steam-to-carbon molar ratio=4,GHSV=60000 h-1,t=210 h

    Fig.5Raman spectra of pure CeO2and CexNi0.5La0.5-xO catalysts

    Fig.6O 1s XPS spectra of fresh CexNi0.5La0.5-xO catalysts

    Table 2Catalytic performance of CexNi0.5La0.5-xO catalysts in SRG and oxidative SRG(OSRG)

    3.2Catalytic performance of CexNi0.5La0.5-xO catalysts OSRG and SRG reactions were performed under the optimized conditions established in our previous work3.Table 2 compares their catalytic performances.In SRG,Ce0.4Ni0.5La0.1O showed the best activity,indicated by the highest conversion of glycerol andmuch lower selectivity of C2H4.Since C2H4is a typical precursor of polymerized condensation resulting in carbon deposition,the lower selectivity of C2H4links to the better stability against coking.Introduction of oxygen could relieve the deactivation by coking and improve the thermodynamic equilibrium conversion of reaction system3.Therefore,all the catalysts displayed the higher activity in OSRG.Meanwhile,Ce0.4Ni0.5La0.1O still performed the best.It is worth pointing out that Ce0.4Ni0.5La0.1O also presented very high yield of H2.In the case of OSRG,the H2STY value could reach 13.4 L?g-1?h-1.In the case of SRG,a very high STY value could be reached at 21.6 L?g-1?h-1,which is much higher than most of literature35.According to the results of catalyst characterizations,two reasons may be responsible for the high performance of Ce0.4Ni0.5La0.1O,detailed as follows:(i)the existence of La2O3could increase the dispersity of metallic Ni and enhance the MSI,thus suppress the sintering of metallic Ni particles;(ii)the lattice oxygen from CeO2could inhibit the coke formation and facilitate the removal of coke simultaneously on the catalyst surfaces.The substitution of La for Ce would improve the amount of the surface oxygen.However,the excessive La would decrease the activity due to the decreased lattice oxygen,specific surface area and pore volume.This has also been proved by Xu et al.22.

    Fig.7Stability test of Ce0.4Ni0.5La0.1O in the OSRG reaction reaction conditions:T=650°C,carbon-to-oxygen molar ratio=1,steam-to-carbon molar ratio=4,GHSV=60000 h-1

    The Ce0.4Ni0.5La0.1O catalyst was subjected to a long-term stability test for 210 h.As shown in Fig.7,Ce0.4Ni0.5La0.1O showed an excellent stability,indicated by the high conversion of glycerol above 95%and the steady production of H2-enriched gas with about 85%H2selectivity(~50%purity)during the 210 h time on stream.At the meantime,the concentrations of CH4and C2H4stayed very low(less than 0.3%).The aforementioned results demonstrated that the Ce0.4Ni0.5La0.1O catalyst can be used as an efficient and stable material for reforming glycerol to produce hydrogen-enriched gas.

    4 Conclusions

    We synthesized CexNi0.5La0.5-xO catalysts utilizing Ce and La composite oxides as carrier via co-precipitation method and studied the effect of Ce to La ratios on the catalytic performance in reforming glycerol for hydrogen production.Catalyst characterizations indicate that La2O3could disperse and stabilize Ni particles.The substitution of La for Ce would increase the amount of the oxygen species on catalyst surfaces.The synergy of La2O3and CeO2could prevent the Ni-based catalyst from deactivation caused by the sintering and coke deposition.Ce0.4Ni0.5La0.1O was the optimal catalyst,because of the highest lattice oxygen concentration,surface area,the strong MSI and the smallest Ni particle size.The conversion of glycerol retained no change above 95%and the H2concentration was maintained around 50%in a long-term stability test for 210 h.Our work suggests the Ce-La composite is promising as a support of Ni-based catalysts to achieve a highly efficient and stable catalyst for the OSRG reaction.

    References

    (1)Yang,G.X.;Lai,C.F.;Li,S.;Yu,H.;Peng,F(xiàn).Industrial Catal. 2010,18,1.[楊光星,賴超鳳,李爽,余皓,彭峰.工業(yè)催化,2010,18,1.]

    (2)Dou,B.L.;Chen,H.S.Chem.Ind.Eng.Prog.2011,30,967.[豆斌林,陳海生.化工進(jìn)展,2011,30,967.]

    (3)Huang,X.Y.;Dang,C.X.;Yu,H.;Wang,H.J.;Peng,F(xiàn).ACS Catal.2015,5,1155.doi:10.1021/cs5014305

    (4)Slinn,M.;Kendall,K.;Mallon,C.;Andrews,J.Bioresource Technol.2008,99,5851.doi:10.1016/j.biortech.2007.10.003

    (5)Hirai,T.;Ikenaga,N.;Miyake,T.;Suzuki,T.Energy&Fuels 2005,19,1761.doi:10.1021/ef050121q

    (6)Wu,G.W.;Zhang,C.X.;Li,S.R.;Han,Z.P.;Wang,T.;Ma,X. B.;Gong,J.L.ACS Sustain.Chem.Eng.2013,1,1052. doi:10.1021/sc400123f

    (7)Wu,G.W.;Li,S.R.;Zhang,C.X.;Wang,T.;Gong,J.L.Appl. Catal.B 2014,144,277.doi:10.1016/j.apcatb.2013.07.028

    (8)Wang,C.;Dou,B.L.;Chen,H.S.;Song,Y.C.;Xu,Y.J.;Du,X.;Luo,T,T.;Tan,C.Q.Chem.Eng.J.2013,220,133. doi:10.1016/j.cej.2013.01.050

    (9)Li,L.;Guo,W.L.;Li,J.L.;Dai,X.;Zhu,H.;Wang,X.B.;Deng,X.Z.Chem.Ind.Eng.Prog.2013,32,122.[李磊,郭瓦力,李俊磊,戴璽,朱虹,王曉冰,鄧信忠.化工進(jìn)展,2013,32,122.]

    (10)Ma,H.Y.;Zeng,L.;Tian,H.;Li,D.;Wang,X.;Li,X.Y.;Gong,J.L.Appl.Catal.B 2016,181,321.doi:10.1016/j. apcatb.2015.08.019

    (11)Chen,H.Q.;Yu,H.;Peng,F(xiàn).;Yang,G.X.;Wang,H.J.;Yang,J.;Tang,Y.Chem.Eng.J.2010,160,333.doi:10.1016/j. cej.2010.03.054

    (12)Yang,Y.;Wu,F(xiàn).;Ma,J.X.Chin.J.Catal.2005,26,131.[楊宇,吳緋,馬建新.催化學(xué)報,2005,26,131.]

    (13)Jiang,H.T.;Hua,W.;Ji,J.B.Prog.Chem.2013,25,859.[姜洪濤,華煒,計建炳.化學(xué)進(jìn)展,2013,25,859.]

    (14)Srinivas,D.;Satyanarayana,C.V.V.;Potdar,H.S.;Ratnasamy,P.Appl.Catal.A 2003,246,323.doi:10.1016/S0926-860X(03)00085-1

    (15)Nichele,V.;Signoretto,M.;Menwgazzo,F(xiàn).;Gallo,A.;Santo,V. D.;Cruciani,G.;Cerrato,G.Appl.Catal.B 2012,111-112,225. doi:10.1016/j.apcatb.2011.10.003

    (16)Adhikari,S.;Fernando,S.D.;Haryanto,A.Renew.Energy 2008,33,1097.doi:10.1016/j.renene.2007.09.005

    (17)Soykal,I.I.;Sohn,H.;Singh,D.;Miller,J.T.;Ozkan,U.S.ACS Catal.2014,4,585.doi:10.1021/cs400908h

    (18)Li,D.;Zeng,L.;Li,X.Y.;Wang,X.;Ma,H.Y.;Assabumrungrat,S.;Gong,J.L.Appl.Catal.B 2015,176-177,532.doi:10.1016/j.apcatb.2015.04.020

    (19)Liu,Z.Y.;Duchon,T.;Wang,H.R.;Peterson,E.W.;Zhou,Y. H.;Luo,S.;Zhou,J.;Matolin,V.;Stacchiola,D.J.;Rodriguez,J.A.;Senanayake,S.D.J.Phys.Chem.C 2015,119,18248. doi:10.1021/acs.jpcc.5b04310

    (20)Pantaleo,G.;Parola,V.L.;Deganello,F(xiàn).;Calatozzo,P.;Bal,R.;Venezia,A.M.Appl.Catal.B 2015,164,135.doi:10.1016/j. apcatb.2014.09.011

    (21)Tsipouriari,V.A.;Verykios,X.E.J.Catal.1998,179,292. doi:10.1006/jcat.1998.2183

    (22)Xu,J.K.;Ren,K.W.;Wang,X.L.;Zhou,W.;Pan,X.M.;Ma,J.X.Acta Phys.-Chim.Sin.2008,24,1568.[徐軍科,任克威,王曉蕾,周偉,潘相敏,馬建新.物理化學(xué)學(xué)報,2008,24,1568.]doi:10.3866/PKU.WHXB20080907

    (23)Mileti?,N.;Izquierdo,U.;Obregón,I.;Bizkarra,K.;Agirrezabal-Telleria,I.;Bario,L.V.;Arias,P.L.Catal.Sci. Technol.2015,5,1704.doi:10.1039/c4cy01438c

    (24)Yang,G.X.;Yu,H.;Huang,X.Y.;Peng,F(xiàn).;Wang,H.J.Appl. Catal.B 2012,127,89.doi:10.1016/j.apcatb.2012.08.003

    (25)Jalowiecki-Duhamel,L.;Zarrou,H.;D?Huysser,A.Int.J. Hydrog.Energy 2008,33,5527.doi:10.1016/j. ijhydene.2008.07.031

    (26)Xu,S.;Wang,X.L.Fuel 2005,84,563.doi:10.1016/j. fuel.2004.10.008

    (27)Fornasiero,P.;Dimonte,R.;Rao,G.R.;Kaspar,J.;Meriani,S.;Trovarelli,A.;Graziani,M.J.Catal.1995,151,168. doi:10.1006/jcat.1995.1019

    (28)Reddy,B.M.;Khan,A.;Lakshmanan,P.;Aouine,M.;Loridant,S.;Volta,J.C.J.Phys.Chem.B 2005,109,3355.doi:10.1021/ jp045193h

    (29)Liu,Y.M.;Wang,L.C.;Chen,M.;Xu,J.;Cao,Y.;He,H.Y.;Fan,K.N.Catal.Lett.2009,130,350.doi:10.1007/s10562-009-9977-z

    (30)Wang,S.Y.;Li,N.;Luo,L.F.;Huang,W.X.;Pu,Z.Y.;Wang,Y.J.;Hu,G.S.;Luo,M.F.;Lu,J.Q.App.Catal.B 2014,144,325.doi:10.1016/j.apcatb.2013.07.037

    (31)Piumetti,M.;Bensaid,S.;Russo,N.;Fino,D.Appl.Catal.B 2016,180,271.doi:10.1016/j.apcatb.2015.06.018

    (32)Liu,F(xiàn).;Zhao,L.;Wang,H.;Bai,X.;Liu,Y.Int.J.Hydrog. Energy 2014,39,10454.doi:10.1016/j.ijhydene.2014.05.036

    (33)Han,X.;Yu,Y.B.;He,H.;Shan,W.P.Int.J.Hydrog.Energy 2013,38,10293.doi:10.1016/j.ijhydene.2013.05.137

    (34)Yan,Y.;Yang,Z.Z.;Xu,H.D.;Xu,B.Q.;Zhang,Y.H.;Gong,M.C.;Chen,Y.Q.Acta Phys.-Chim.Sin.2015,31,2358.[楊怡,楊錚錚,徐海迪,徐寶強,張艷華,龔茂初,陳耀強.物理化學(xué)學(xué)報,2015,31,2358.]doi:10.3866/PKU.WHXB201510135

    (35)Lin,Y.C.Int.J.Hydrog.Energy 2013,38,2678.doi:10.1016/j. ijhydene.2012.12.079

    CexNi0.5La0.5-xO Catalysts for Hydrogen Production by Oxidative Steam Reforming of Glycerol:Influence of the Ce-to-La Ratio

    DANG Cheng-XiongYANG Hao-BoYU Hao*WANG Hong-JuanPENG Feng
    (School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,P.R.China)

    CexNi0.5La0.5-xO(CeNiLaO)catalysts were synthesized using a Ce-La composite oxide as the carrier via co-precipitation.They were applied in the oxidative steamreforming of glycerol(OSRG)in a fixed-bed reactor. The catalysts were characterized by X-ray diffraction(XRD),H2-temperature-programmed reduction(H2-TPR),Raman spectroscopy,scanning electron microscopy(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).The results showed that La2O3improved the dispersion of metallic Ni and suppressed the sintering of metallic Ni particles;the lattice oxygen of CeO2inhibited and eliminated carbon deposition on the surface of the catalysts;and the substitution of some La3+for Ce4+ions induced a distortion of the lattice.The synergy of La2O3and CeO2lessened the deactivation caused by the sintering and coke deposition and improved the catalytic performance.Among the catalysts with different molar ratios of Ce to La,Ce0.4Ni0.5La0.1O had the best catalytic activity.The conversion of glycerol remained above 95%after a 210 h stability test,while a gaseous reformate of about 50%hydrogen could be steadily produced.

    CeO2;La2O3;Ni;Stability;Glycerol;Hydrogen production;Steam reforming

    January 4,2016;Revised:March 15,2016;Published on Web:March 16,2016.

    O643

    [Article]10.3866/PKU.WHXB201603161www.whxb.pku.edu.cn

    *Corresponding author.Email:yuhao@scut.edu.cn;Tel/Fax:+86-20-87114916.

    The project was supported by the National Natural Science Foundation of China(20176094),Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0190),and Pearl River Nova Program of Guangzhou City,China(2011J2200062).

    國家自然科學(xué)基金(20176094),教育部新世紀(jì)優(yōu)秀人才支持計劃項目(NCET-12-0190)和廣州市珠江科技新星項目(2011J2200062)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    華南理工大學(xué)晶格重整
    信托公司在破產(chǎn)重整實務(wù)中的機會
    銀行家(2022年5期)2022-05-24 12:54:58
    非線性光學(xué)晶格中的梯度流方法
    本期作者
    世界建筑(2018年5期)2018-05-25 09:51:38
    一個新非線性可積晶格族和它們的可積辛映射
    當(dāng)機器人遇上人工智能——記華南理工大學(xué)自動化科學(xué)與工程學(xué)院副教授張智軍
    一族拉克斯可積晶格方程
    焦唯、王琪斐美術(shù)作品
    王雁、謝盼盼藝術(shù)作品
    醫(yī)患關(guān)系需重整“程序”
    旋轉(zhuǎn)真空浸漬法制備NiO/MgO=γ=Al2 O3催化劑用于CO2/CH4重整研究
    av天堂中文字幕网| 久久热精品热| 一级毛片电影观看| 人妻制服诱惑在线中文字幕| 国产精品麻豆人妻色哟哟久久| 久久久久久久亚洲中文字幕| 国产高清三级在线| 又黄又爽又刺激的免费视频.| 精品亚洲乱码少妇综合久久| 在线亚洲精品国产二区图片欧美 | 综合色丁香网| 国产亚洲最大av| 日韩中字成人| av免费观看日本| 亚洲精品日韩av片在线观看| 久久久久精品久久久久真实原创| 精华霜和精华液先用哪个| 亚洲天堂av无毛| 国产亚洲5aaaaa淫片| 国产真实伦视频高清在线观看| 男女啪啪激烈高潮av片| 国产永久视频网站| 国内少妇人妻偷人精品xxx网站| 成人毛片60女人毛片免费| 国产有黄有色有爽视频| 成年女人看的毛片在线观看| 伦理电影大哥的女人| 国产欧美亚洲国产| .国产精品久久| 成年版毛片免费区| 亚洲成人av在线免费| 久久精品国产亚洲av涩爱| 国产成人精品福利久久| 国产av码专区亚洲av| 2022亚洲国产成人精品| 2022亚洲国产成人精品| 精品久久久久久电影网| 欧美一区二区亚洲| av在线天堂中文字幕| 国产精品女同一区二区软件| 一级毛片久久久久久久久女| 久久影院123| 国产高清国产精品国产三级 | 久久精品综合一区二区三区| 欧美日韩视频高清一区二区三区二| 国产精品av视频在线免费观看| 国产 一区精品| 欧美日韩在线观看h| 一级毛片 在线播放| 黑人高潮一二区| 综合色av麻豆| 综合色丁香网| 欧美成人a在线观看| 国语对白做爰xxxⅹ性视频网站| 婷婷色综合www| 国产精品久久久久久精品电影小说 | 欧美区成人在线视频| 国产爱豆传媒在线观看| 亚洲av国产av综合av卡| 五月伊人婷婷丁香| 九九久久精品国产亚洲av麻豆| 97超视频在线观看视频| 丰满乱子伦码专区| 18禁在线播放成人免费| 午夜福利视频精品| 最近手机中文字幕大全| 一本一本综合久久| 水蜜桃什么品种好| 婷婷色av中文字幕| 99热这里只有是精品50| 国产大屁股一区二区在线视频| 成年人午夜在线观看视频| 欧美xxxx性猛交bbbb| 建设人人有责人人尽责人人享有的 | 少妇丰满av| 国产伦精品一区二区三区视频9| 亚洲精品自拍成人| 国产黄色免费在线视频| av国产免费在线观看| 高清日韩中文字幕在线| 一级a做视频免费观看| 国产成人精品婷婷| freevideosex欧美| 免费播放大片免费观看视频在线观看| 久久久久久久久大av| 日本猛色少妇xxxxx猛交久久| 青青草视频在线视频观看| 亚洲精品久久午夜乱码| 丰满少妇做爰视频| 少妇人妻精品综合一区二区| 欧美xxxx性猛交bbbb| 狠狠精品人妻久久久久久综合| 黄色欧美视频在线观看| 少妇的逼水好多| 亚洲欧美日韩东京热| 在线天堂最新版资源| 久久久午夜欧美精品| 欧美日韩在线观看h| 菩萨蛮人人尽说江南好唐韦庄| 日韩三级伦理在线观看| 亚洲自拍偷在线| 久久99蜜桃精品久久| 日韩精品有码人妻一区| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩,欧美,国产一区二区三区| 成人亚洲精品一区在线观看 | 天天躁日日操中文字幕| 欧美区成人在线视频| 亚洲欧美日韩东京热| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩另类电影网站 | 18+在线观看网站| 最近手机中文字幕大全| 国产成人91sexporn| 少妇人妻一区二区三区视频| 国产欧美另类精品又又久久亚洲欧美| 成人黄色视频免费在线看| 在线观看国产h片| 亚洲国产最新在线播放| 亚洲av不卡在线观看| 亚洲在久久综合| 中文欧美无线码| 综合色av麻豆| 麻豆成人午夜福利视频| 国产成人午夜福利电影在线观看| 久久国产乱子免费精品| 能在线免费看毛片的网站| 高清在线视频一区二区三区| 国产女主播在线喷水免费视频网站| 精华霜和精华液先用哪个| 69人妻影院| 久久人人爽人人片av| 亚洲国产精品999| 欧美亚洲 丝袜 人妻 在线| 成人漫画全彩无遮挡| 欧美3d第一页| 国产老妇女一区| 18禁裸乳无遮挡动漫免费视频 | 亚洲精品一二三| 久久久午夜欧美精品| 我要看日韩黄色一级片| 久久精品国产亚洲网站| 久久鲁丝午夜福利片| 久久精品国产自在天天线| 91在线精品国自产拍蜜月| a级毛色黄片| 一个人看视频在线观看www免费| 久久99蜜桃精品久久| 国产精品人妻久久久影院| 简卡轻食公司| 黄色配什么色好看| 777米奇影视久久| 久久综合国产亚洲精品| 秋霞在线观看毛片| 亚洲色图av天堂| 欧美国产精品一级二级三级 | 欧美日韩亚洲高清精品| 色5月婷婷丁香| 日韩欧美 国产精品| 男的添女的下面高潮视频| 色网站视频免费| 我的女老师完整版在线观看| 夫妻性生交免费视频一级片| 国产亚洲精品久久久com| 久久99热这里只有精品18| 国产黄色免费在线视频| 国产精品.久久久| 在线播放无遮挡| 亚洲,欧美,日韩| 在线播放无遮挡| 午夜免费男女啪啪视频观看| 少妇高潮的动态图| 少妇高潮的动态图| 大话2 男鬼变身卡| 神马国产精品三级电影在线观看| 国产精品成人在线| 国产午夜精品久久久久久一区二区三区| 国产精品偷伦视频观看了| 26uuu在线亚洲综合色| 国产黄频视频在线观看| 3wmmmm亚洲av在线观看| 亚洲精品日韩av片在线观看| 婷婷色综合www| 成年女人在线观看亚洲视频 | 亚洲欧美一区二区三区国产| 国产白丝娇喘喷水9色精品| 精品久久久久久电影网| 少妇 在线观看| 在线精品无人区一区二区三 | 国产高清有码在线观看视频| av专区在线播放| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 久久久久久久亚洲中文字幕| 久久99蜜桃精品久久| 男男h啪啪无遮挡| 国产色爽女视频免费观看| 中文天堂在线官网| 久久综合国产亚洲精品| 天堂网av新在线| 久久久午夜欧美精品| 久久久久久久精品精品| 最近最新中文字幕大全电影3| 日韩av在线免费看完整版不卡| 久久精品久久精品一区二区三区| 国产乱人偷精品视频| 国产女主播在线喷水免费视频网站| 美女xxoo啪啪120秒动态图| 亚洲精品456在线播放app| 久久久久久久久久久免费av| 久久久精品94久久精品| 亚洲成人久久爱视频| 亚洲最大成人中文| 国产成年人精品一区二区| 天堂俺去俺来也www色官网| 亚洲av二区三区四区| av又黄又爽大尺度在线免费看| a级毛色黄片| 美女脱内裤让男人舔精品视频| 97在线视频观看| 成年av动漫网址| 亚洲精品aⅴ在线观看| 综合色丁香网| 午夜免费观看性视频| av国产免费在线观看| 国内精品宾馆在线| 国产精品.久久久| 国产av不卡久久| 国产 精品1| 午夜视频国产福利| 国产精品国产三级国产av玫瑰| 狂野欧美激情性bbbbbb| 久久久久久久久久人人人人人人| 91久久精品国产一区二区三区| av线在线观看网站| 国产真实伦视频高清在线观看| 精品久久久久久久末码| 亚洲性久久影院| 爱豆传媒免费全集在线观看| 如何舔出高潮| 只有这里有精品99| 黄色视频在线播放观看不卡| 精品酒店卫生间| 欧美另类一区| 男女那种视频在线观看| 国产一区二区在线观看日韩| 国产亚洲一区二区精品| 亚洲欧美一区二区三区黑人 | 综合色av麻豆| 中文字幕久久专区| 我的女老师完整版在线观看| 内地一区二区视频在线| 国产午夜精品久久久久久一区二区三区| 免费观看的影片在线观看| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 国产日韩欧美亚洲二区| 在线观看一区二区三区| 免费看av在线观看网站| 午夜日本视频在线| 中文乱码字字幕精品一区二区三区| 日韩,欧美,国产一区二区三区| 亚洲精品色激情综合| 免费在线观看成人毛片| 1000部很黄的大片| 丰满少妇做爰视频| 岛国毛片在线播放| 青青草视频在线视频观看| 成人美女网站在线观看视频| 久久99热这里只有精品18| 性色av一级| 肉色欧美久久久久久久蜜桃 | 午夜福利在线观看免费完整高清在| 观看美女的网站| 国产探花在线观看一区二区| freevideosex欧美| 国产片特级美女逼逼视频| 女人久久www免费人成看片| 久久ye,这里只有精品| 观看免费一级毛片| 一区二区av电影网| 免费在线观看成人毛片| 国产乱人视频| 精品一区二区三区视频在线| 成人亚洲欧美一区二区av| 激情 狠狠 欧美| 夜夜爽夜夜爽视频| 成人国产av品久久久| 91午夜精品亚洲一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 午夜视频国产福利| 九色成人免费人妻av| av黄色大香蕉| 26uuu在线亚洲综合色| 三级国产精品片| 亚洲av日韩在线播放| 欧美成人a在线观看| 久久久精品免费免费高清| 亚洲怡红院男人天堂| 久久精品国产亚洲网站| 亚洲精品视频女| 2021少妇久久久久久久久久久| 高清视频免费观看一区二区| 狂野欧美激情性xxxx在线观看| 观看免费一级毛片| 高清日韩中文字幕在线| 直男gayav资源| 亚洲天堂av无毛| 久久久久国产精品人妻一区二区| 精品人妻偷拍中文字幕| 在线 av 中文字幕| 欧美xxⅹ黑人| 亚洲四区av| 国产毛片a区久久久久| 丰满乱子伦码专区| 女的被弄到高潮叫床怎么办| 国产成人午夜福利电影在线观看| 成年版毛片免费区| 日韩av在线免费看完整版不卡| 麻豆国产97在线/欧美| 熟女人妻精品中文字幕| 久热这里只有精品99| 在线a可以看的网站| 欧美日韩在线观看h| 深爱激情五月婷婷| 成人亚洲精品av一区二区| 老司机影院毛片| 久久人人爽人人爽人人片va| 亚洲国产色片| 亚洲国产精品999| 免费播放大片免费观看视频在线观看| 日韩免费高清中文字幕av| 国产色婷婷99| 男女啪啪激烈高潮av片| 69人妻影院| 老师上课跳d突然被开到最大视频| 国产高潮美女av| 免费观看性生交大片5| 极品教师在线视频| 精品国产一区二区三区久久久樱花 | 99re6热这里在线精品视频| 视频区图区小说| 91精品国产九色| 91aial.com中文字幕在线观看| 久久久久国产精品人妻一区二区| 男人舔奶头视频| 国产片特级美女逼逼视频| 日本-黄色视频高清免费观看| 一区二区三区乱码不卡18| 国产欧美亚洲国产| 亚洲,一卡二卡三卡| 国产伦在线观看视频一区| 亚洲精品国产色婷婷电影| 欧美潮喷喷水| 国国产精品蜜臀av免费| 国产欧美日韩精品一区二区| 男女边吃奶边做爰视频| 免费看不卡的av| 日本猛色少妇xxxxx猛交久久| 又黄又爽又刺激的免费视频.| 日本色播在线视频| 狠狠精品人妻久久久久久综合| 国产亚洲5aaaaa淫片| 免费黄色在线免费观看| 只有这里有精品99| 一级av片app| 欧美日韩在线观看h| 成人鲁丝片一二三区免费| 黄片无遮挡物在线观看| 免费观看的影片在线观看| av.在线天堂| 高清欧美精品videossex| 夜夜看夜夜爽夜夜摸| 国语对白做爰xxxⅹ性视频网站| 国产精品一区二区在线观看99| 欧美激情在线99| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 欧美一区二区亚洲| 国产爱豆传媒在线观看| 激情五月婷婷亚洲| 特大巨黑吊av在线直播| av天堂中文字幕网| 嫩草影院新地址| 欧美高清成人免费视频www| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久国产电影| 国内少妇人妻偷人精品xxx网站| 久久午夜福利片| 18+在线观看网站| 大片电影免费在线观看免费| 久久精品国产亚洲av天美| 国产真实伦视频高清在线观看| 国产 精品1| 在线看a的网站| av国产精品久久久久影院| 青春草国产在线视频| 午夜精品一区二区三区免费看| 看黄色毛片网站| 97在线视频观看| 青春草视频在线免费观看| 少妇丰满av| 少妇熟女欧美另类| 天堂中文最新版在线下载 | 午夜激情福利司机影院| 一级毛片黄色毛片免费观看视频| 深爱激情五月婷婷| 国产又色又爽无遮挡免| 亚洲一级一片aⅴ在线观看| 如何舔出高潮| 22中文网久久字幕| 亚洲国产最新在线播放| 九草在线视频观看| 一级毛片久久久久久久久女| 国产综合懂色| 国产黄频视频在线观看| 久久久色成人| 老司机影院毛片| 美女内射精品一级片tv| 看十八女毛片水多多多| 亚洲成人中文字幕在线播放| 久久韩国三级中文字幕| 亚洲最大成人手机在线| 国产午夜精品一二区理论片| 国产精品成人在线| 午夜免费鲁丝| 日日摸夜夜添夜夜添av毛片| 日本wwww免费看| 99热全是精品| 国产有黄有色有爽视频| av国产精品久久久久影院| 中文在线观看免费www的网站| 精华霜和精华液先用哪个| 青春草国产在线视频| 日韩一本色道免费dvd| 最近手机中文字幕大全| 国产黄片美女视频| 中国国产av一级| 国产精品国产av在线观看| 精品国产乱码久久久久久小说| 五月天丁香电影| 色网站视频免费| 好男人视频免费观看在线| 五月开心婷婷网| 啦啦啦在线观看免费高清www| 水蜜桃什么品种好| 天堂中文最新版在线下载 | 国产欧美日韩精品一区二区| 高清日韩中文字幕在线| 丝瓜视频免费看黄片| 自拍偷自拍亚洲精品老妇| 一区二区三区乱码不卡18| 久久久久久久久久久免费av| 国产高清有码在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 中文资源天堂在线| 亚洲欧洲日产国产| 97在线人人人人妻| 亚洲欧美成人综合另类久久久| 一本一本综合久久| 久久久久久久久久人人人人人人| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 精品久久久久久久久av| 国产欧美日韩一区二区三区在线 | 亚洲不卡免费看| 国产女主播在线喷水免费视频网站| 超碰av人人做人人爽久久| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 精品亚洲乱码少妇综合久久| freevideosex欧美| 亚洲婷婷狠狠爱综合网| 天天一区二区日本电影三级| 国产精品精品国产色婷婷| 久久精品熟女亚洲av麻豆精品| 亚洲一级一片aⅴ在线观看| 国产欧美日韩一区二区三区在线 | 国产精品久久久久久av不卡| 伊人久久精品亚洲午夜| 欧美性感艳星| av专区在线播放| 婷婷色综合大香蕉| 下体分泌物呈黄色| 国产成人精品久久久久久| 深爱激情五月婷婷| kizo精华| 亚洲精品国产成人久久av| 亚洲av中文字字幕乱码综合| av免费在线看不卡| av在线app专区| 九九久久精品国产亚洲av麻豆| 国产欧美日韩一区二区三区在线 | 国产高清有码在线观看视频| 伊人久久精品亚洲午夜| 亚洲精品国产色婷婷电影| 国产探花在线观看一区二区| 国产av不卡久久| 日韩一区二区视频免费看| 成人特级av手机在线观看| 99热这里只有是精品50| 一边亲一边摸免费视频| av专区在线播放| 亚洲国产欧美人成| 成人综合一区亚洲| 国产一区二区亚洲精品在线观看| 日本一本二区三区精品| xxx大片免费视频| 亚洲三级黄色毛片| 亚洲自偷自拍三级| 国产成人精品一,二区| 亚洲国产欧美在线一区| 别揉我奶头 嗯啊视频| 日韩制服骚丝袜av| 极品少妇高潮喷水抽搐| 亚州av有码| 国产成人精品一,二区| 国产成人福利小说| 国产伦精品一区二区三区四那| 大片电影免费在线观看免费| 成人美女网站在线观看视频| 看非洲黑人一级黄片| 国产精品久久久久久精品电影小说 | 人妻 亚洲 视频| 少妇人妻久久综合中文| 99热这里只有精品一区| 少妇人妻 视频| 99久久人妻综合| 国产一区亚洲一区在线观看| 中文在线观看免费www的网站| 国产成人免费观看mmmm| tube8黄色片| 亚洲精品乱久久久久久| 亚洲丝袜综合中文字幕| 精品一区在线观看国产| 欧美老熟妇乱子伦牲交| 亚洲av一区综合| 一级二级三级毛片免费看| 国产精品99久久久久久久久| 听说在线观看完整版免费高清| 日韩电影二区| 欧美少妇被猛烈插入视频| 熟女av电影| 国产免费视频播放在线视频| 欧美最新免费一区二区三区| 能在线免费看毛片的网站| 欧美三级亚洲精品| 久久久久网色| 男人舔奶头视频| 蜜桃亚洲精品一区二区三区| 亚洲精品成人久久久久久| 久久精品国产亚洲av天美| 免费不卡的大黄色大毛片视频在线观看| 午夜精品一区二区三区免费看| 久久精品综合一区二区三区| 97超碰精品成人国产| 女人十人毛片免费观看3o分钟| 黄色一级大片看看| 美女内射精品一级片tv| av.在线天堂| 黄色视频在线播放观看不卡| 国产精品国产三级专区第一集| 成人二区视频| 少妇人妻 视频| 国产精品麻豆人妻色哟哟久久| 国产精品人妻久久久影院| 18+在线观看网站| 久久6这里有精品| 亚洲色图av天堂| 精品久久久久久久末码| 美女脱内裤让男人舔精品视频| 久久久久九九精品影院| 欧美三级亚洲精品| 老司机影院成人| 在线看a的网站| 亚洲国产色片| 黄片无遮挡物在线观看| 涩涩av久久男人的天堂| 日本猛色少妇xxxxx猛交久久| 伊人久久精品亚洲午夜| 久久国内精品自在自线图片| 男女边摸边吃奶| 国产乱来视频区| 欧美日韩精品成人综合77777| 国产乱人偷精品视频| 久久人人爽人人爽人人片va| 欧美日本视频| 亚洲精品影视一区二区三区av| 亚洲精品成人av观看孕妇| 日产精品乱码卡一卡2卡三| 啦啦啦在线观看免费高清www| 高清视频免费观看一区二区| 亚洲va在线va天堂va国产| 我的老师免费观看完整版| 麻豆乱淫一区二区| 国产精品秋霞免费鲁丝片| 秋霞伦理黄片| 欧美激情在线99| 身体一侧抽搐| 婷婷色av中文字幕| 少妇丰满av| 成人一区二区视频在线观看| 午夜免费鲁丝| 精品熟女少妇av免费看| 少妇熟女欧美另类| 国产成人91sexporn| 小蜜桃在线观看免费完整版高清| 日本爱情动作片www.在线观看| 99精国产麻豆久久婷婷| 秋霞在线观看毛片| 菩萨蛮人人尽说江南好唐韦庄| 亚洲三级黄色毛片| 视频中文字幕在线观看| 插逼视频在线观看| 最近手机中文字幕大全|