• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一步法合成螺雙芴及螺氧雜蒽衍生物及其在有機(jī)發(fā)光二極管中的應(yīng)用:性能增強(qiáng)及相關(guān)的光學(xué)現(xiàn)象

    2016-09-09 03:32:02關(guān)玉巧宋娟孫威章琴湯超李雪馮曉苗錢妍陶友田陳淑芬汪聯(lián)輝黃維
    物理化學(xué)學(xué)報(bào) 2016年6期
    關(guān)鍵詞:郵電大學(xué)綠光工程學(xué)院

    關(guān)玉巧 宋娟 孫威 章琴 湯超 李雪 馮曉苗 錢妍 陶友田 陳淑芬,* 汪聯(lián)輝 黃維,*

    (1南京郵電大學(xué)信息材料與納米技術(shù)研究院,先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,有機(jī)電子與信息顯示國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,南京210023;2南京工業(yè)大學(xué),先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,柔性電子重點(diǎn)實(shí)驗(yàn)室,南京211816;3南京工程學(xué)院機(jī)械工程學(xué)院,南京211167)

    一步法合成螺雙芴及螺氧雜蒽衍生物及其在有機(jī)發(fā)光二極管中的應(yīng)用:性能增強(qiáng)及相關(guān)的光學(xué)現(xiàn)象

    關(guān)玉巧1,#宋娟1,#孫威1章琴1湯超2李雪3馮曉苗1錢妍1陶友田2陳淑芬1,*汪聯(lián)輝1黃維2,*

    (1南京郵電大學(xué)信息材料與納米技術(shù)研究院,先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,有機(jī)電子與信息顯示國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,南京210023;2南京工業(yè)大學(xué),先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,柔性電子重點(diǎn)實(shí)驗(yàn)室,南京211816;3南京工程學(xué)院機(jī)械工程學(xué)院,南京211167)

    以芴為原料,以鈀為催化劑一步合成了2-(9-苯基芴基)-9,9′螺二芴(PF-SBF)。以PF-SBF作為有機(jī)發(fā)光二極管的發(fā)光及主體材料(FIrpic為磷光客體)時(shí),觀察到了不同于PF-SBF及FIrpic發(fā)光的紅光帶。這分別源于PF-SBF分子間的聚集和發(fā)光層/傳輸層誘導(dǎo)的激基復(fù)合物。通過(guò)選擇合適的空穴和電子傳輸層,有效抑制了激基復(fù)合物的發(fā)光。同時(shí),PF-SBF和TAPC雙主體的結(jié)構(gòu)不僅實(shí)現(xiàn)了純FIrpic和Ir(ppy)3藍(lán)光和綠光,還大幅提升了器件性能。藍(lán)光、綠光器件的最大電流效率和最大亮度分達(dá)到16.7、50.5 cd?A-1和7857 cd?m-2(11 V)、23390 cd?m-2(8 V)。另外,除了PF-SBF,利用相似的合成方法,我們也合成了2-(9-苯基芴基)-9,9′螺芴氧雜蒽(PF-SFX),其較大的三線態(tài)能級(jí)(2.8 eV)較PF-SBF更適合做藍(lán)光主體。以TAPC和PFSFX為雙主體的器件最大電流效率提升到了22.6 cd?A-1。所有實(shí)驗(yàn)結(jié)果均表明,PF-SBF和PF-SFX是構(gòu)建高效綠光/藍(lán)光磷光主體材料的有效結(jié)構(gòu)單元。

    鈀催化;一步法;激基復(fù)合物;雙主體;藍(lán)光有機(jī)發(fā)光二極管

    The project was supported by the National Key Basic Research Program of China(973)(2015CB932202,2012CB933301),National Natural

    Science Foundation of China(61274065,51173081,61136003,BZ2010043,51372119,51172110,21304047,21373114,21003076),Innovation

    Team of the Ministry of Education of China(IRT1148),Ministry of Education Humanities and Social Science Research Projects,China

    (13YJCZH091),Natural Science Foundation of Jiangsu Province,China(BK20141424),PriorityAcademic Program Development of Jiangsu

    Provincial Higher Education Institutions,China(YX030001),Ordinary University Graduate Student Practical Innovation Projects of Jiangsu

    Province,China(SJLX15_0390),Pandeng Project of Nanjing University of Posts and Telecommunications,China(NY214085),and Open

    Foundation from Jilin University,China(IOSKL2015KF32).

    (1Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials,and Jiangsu National Synergetic Innovation Center for Advanced Materials,Nanjing University of Posts and Telecommunications,Nanjing 210023,P.R.China;2Key Laboratory of Flexible Electronics and Institute of Advanced Materials,National Synergistic Innovation Center for Advanced Materials,Nanjing Tech University,Nanjing 211816,P.R.China;3Mechanical Engineering Institute,Nanjing Institute of Technology,Nanjing 211167,P.R.China)

    1 lntroduction

    Organic light-emitting devices(OLEDs)have attracted great attention because of their potential applications in full-color displays,backlight sources,and solid state lighting1-4.After three decades?research and development,red and green OLEDs have been rapidly developed with satisfactory efficiency and saturated chromaticity,however,blue OLEDs with high efficiencies are still rather rare due to intrinsically wide band gaps of blue emitting materials and their hosts5-9.Fluorene-based compounds have been one of the most wellknown blue emission materials in the past several years due to their high photoluminescence(PL)quantum efficiencies and good thermal stability10-12.As one type of fluorenes,spirofluorene compounds own advantages of high glass transition temperature,good solubility,and amorphous nature due to a high steric and rigid structure brought by perpendicular arrangement of two π-electron systems.Furthermore,this perpendicular arrangement of the two π-electron systems in spirofluorenes is able to effectively suppress excimer formation which is frequently observed in many solid state fluorescent dyes13,14.Organic spirofluorene materials,e.g.,spirobifluorenes with asymmetric substitution,spiro-substituted spiro fluorene,spirofluorenelinked phenylanthracene,and spirofluorene-linked anthracene,usually emit blue light15-20.Since Tour et al.10successfully introduced spirobifluorene unit into organic electronics in 1996,spirobifluorene and its derivatives are frequently used as blue emitters or hosts of blue light materials to achieve high performances blue OLEDs11.In 2002,Wu and his colleagues12used 2,7-bis[2-(4-tert-butylphenyl)pyrimidine-5-yl-9,9?-spirobifluorene as a host of perylene in a blue OLED and obtained a maximum brightness of 80000 cd?m-2.Lee et al.21fabricated a simple blue device using 2,7-bis(diphenylphosphoryl)-9,9?-spirobi[fluorene]as a host material and realized a quantum efficiency of as high as 20.3%without any LiF electron injection layer.Recently,Wang?s team22synthesized 3,6-di(9H-carbazol-9-yl)-9,9?-spirobi[fluorene],with which as a host they exhibited a OLED with a very low turnon voltage of 2.8 V and a high current efficiency of 34.2 cd?A-1.

    In this paper,we synthesized a new spirobi[fluorene]derivative named 2?-(9-phenyl-fluoren-9-yl)-9,9?-spirobi[fluorene](PF-SBF),which contains fluorene-substituted spirobifluorene units,and applied it as a blue emitter or a host of a blue phosphor bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyri-dyl)iridium(III)(FIrpic)in OLEDs.We found an emission in red light band in addition to the PF-SBF and FIrpic?s intrinsic blue light and removed this red light band through analyzing the origin of this phenomenon and designing the device structure.We finally fabricated a high-performance blue-emission OLED structure with a cohost and a proper electron/hole transport layer.In addition,we replaced the fluorene with a xanthene in spirobifluorene structure of PF-SBF and obtained a new host material 2-(9-phenyl-fluoren-9-yl)spiro[fluorene-9,9?-xanthene](PF-SFX),which owns a wide band gap and is more suitable for a blue light host.Using PF-SFX as a host of FIrpic,we acquired a high luminous efficiency of 22.6 cd?A-1and a pure chromaticity of(0.15,0.32).

    2 Experimental

    All the materials used in OLEDs except PF-SBF,PF-SFX,andpoly(3,4-ethyienedioxythiophene):poly(styrenesulfonate)(PEDOT: PSS)were purchased from Hanfeng Chemical with purity of 99% and were directly used without further purification.Noting that PEDOT:PSS was obtained from Heraeus Precious Metals GmbH &Co.KG(Germany).All reagents used in synthesis were purchased from J&K Chemical with purity of>97%.The new materials PF-SBF and PF-SFX we synthesized were purified by column chromatography first,then further purified by recrystallization.The purity of the materials meets the requirement of the device.The ultraviolet-visible(UV-Vis)spectra,room-temperature and low temperature PL spectra of PF-SBF and PF-SFX were respectively measured with an ultraviolet-visible spectrophotometer(Japan,Shimadzu,UV-3600),a spectrofluorophotometer (Japan,Shimadzu,RF-5301PC),and a Hitachi F-4500(Japan)fluorescence spectrophotometer.The cyclic voltammetry(CV)measurementswereperformedwithaCHI660Csystem (Shanghai)in a typical there-electrode cell.The highest occupied molecular orbital(HOMO)energy level was estimated with regard to the reference oxidation energy level of ferrocene(-4.8 eV)and the lowest unoccupied molecular orbital(LUMO)energy level was estimated through the HOMO energy level and the band gap. The thermogravimetry analysis(TGA)of PF-SBF and PF-SFX was performed in a DTG-60 system(Japan,Shimadzu)at a ramping rate of 10°C?min-1under an argon flow rate of 20 mL?min-1from room temperature to 600°C.The differential scanning calorimetry(DSC)of these two complexes were performed in a DSC-60Asystem(Japan,Shimadzu)at a ramping rate of 10°C?min-1under an argon flow rate of 20 mL?min-1from room temperature to 240°C.The electroluminescence(EL)characteristics including luminance,Commission Internationale de L'Eclairage (CIE)coordinates,and EL spectra were measured with a PR655 spectrometer(America).The luminance-voltage curves were simultaneously measured with a Keithley 2400 voltage-current sourcemeter(America),while the efficiencies were directly calculated from the above measured parameters.

    PF-SBF was synthesized via a one-step method23.PtBuPh2(12.1 mg,0.05 mmol,0.1 equiv)and KOtBu(67 mg,0.6 mmol,1.2 equiv)were added into a dried Schlenk tube in an argon-filled glove box,where the Schlenk tube contained a mixture solution of 2-bromo-9,9?-spirobi[fluorene](197 mg,0.5 mmol,1 equiv),9-phenylfluorene(145 mg,0.6 mmol,1.2 equiv),Pd(dba)2(14.3 mg,0.025 mmol,0.05 equiv),and 2 mL toluene.The mixtures were stirred at 100°C for 10 h and then quenched with water.The final reaction mixture was extracted with ethyl ether for 3 times (3×10 mL).The organic layers were combined,dried(Na2SO4),and filtered,with the solvent removed under a reduced pressure. Column chromatography on silica gel(hexane:CH2Cl2,10:1 (volume ratio))afforded the desired product of white solid(279 mg)with a yield of 86%.1H NMR(400 MHz,CDCl3)δ 7.87-7.72 (m,5H),7.64(d,J=8.0 Hz,1H),7.36(m,6H),7.22-7.13(m,6H),7.11-6.95(m,7H),6.92(s,1H),6.80(d,J=7.5 Hz,2H),6.72(d,J=7.6 Hz,1H).13C NMR(100 MHz,CDCl3)δ 151.3,149.2,148.9,148.8,146.0,145.3,141.7,141.3,140.7,140.1,128.0,127.8,127.7,127.7,127.6,127.4,127.1,126.5,126.0, 125.0,123.9,120.1,120.1,119.9,119.5,66.1,65.6.HRMS (MALDI/DHB)(Waters Micromass GCT,Waters Q-Tof Premier,America):calcd for C44H28[M]+556.2189;found 556.2185.

    PF-SFX was also synthesized with a similar method with PFSBF.PtBuPh2(12.1 mg,0.05 mmol,0.1 equiv)and tBuOK(67 mg,0.6 mmol,1.2 equiv)added into a dried Schlenk tube in an argon-filled glove box,where the Schlenk tube contained a mixture solution of 2-bromo-9,9?-spiro[fluorene-9,9?-xanthene](205 mg,0.5 mmol,1 equiv),9-phenylfluorene(145 mg,0.6 mmol,1.2 equiv),Pd(dba)2(14.3 mg,0.025 mmol,0.05 equiv),and 2 mL toluene.The reaction conditions,extraction approach and post-treatment process of the product were same with those of PF-SBF.Column chromatography on silica gel(hexane:CH2Cl2,10:1 for volume ratio)afforded the desired product(269 mg)with a yield of 94%.1H NMR(400 MHz,CDCl3)δ 7.79(d,J=7.6 Hz,2H),7.70(d,J=7.5 Hz,1H),7.60(d,J=8.0 Hz,1H),7.44 (d,J=1.4 Hz,1H),7.41-7.34(m,2H),7.33-7.14(m,12H),7.08 (ddd,J=15.7,7.6,2.4 Hz,6H),6.89-6.81(m,2H),6.52(d,J= 7.7 Hz,2H).13C NMR(100 MHz,CDCl3)δ 155.42,153.58,151.67,151.18,146.18,146.01,140.13,139.67,138.06,128.17,128.12,128.07,127.83,127.76,127.66,127.48,127.45,127.20,127.03,126.59,126.08,125.51,125.22,123.16,120.20,119.94,119.49,116.78,65.69,54.54.HRMS(MALDI/DHB)(Waters Micromass GCT,Waters Q-Tof Premier,America):calcd for C44H28O[M]+572.2140;found 572.2140.

    3 Results and discussion

    PF-SBF was synthesized through palladium-catalyzed crosscoupling of triarylmethyl C―H bonds with aryl halides via one step reaction,with the synthetic route shown in Scheme 1(a).The approach was detailedly described in Experimental details23.It should be noted that the PF-SBF?s yield is as high as 86%,which is quite high compared to those similar structure materials synthesized by Friedel-Crafts or Suzuki reaction.The UV absorption and PLspectra of PF-SBF show a main absorption peak of 295 nm with a 307 nm shoulder and PL peaks of 334 and 384.5 nm in anhydrous ethanol solution,as shown in Fig.1.The LUMO and HOMO energy levels of PF-SBF were measured by a CV method and its detailed information was described in Supporting Information.The CV curve of PF-SBF is shown in Fig.S1(a)(Supporting Information)and the LUMO and HOMO energy levels are calculated to be-1.9 and-5.6 eV,respectively.As the TGAcurve shown in Fig.2,the decomposition temperature(Td)value is 348°C which corresponds to a 5%weight loss.As indicated in the DSC curve shown in Fig.S2(Supporting Information),no significant signal of glass transition temperature(Tg)is observed. From the above characteristics,we inferred that as-synthesized PFSBF can be used as a deep-blue emitting material or a host for other emitting materials.

    We first employed PF-SBF as a blue emission material with a common OLED structure of ITO/MoO3(2 nm)/4,4?,4?-tris[3-methylphenylphenylamino]-triphenylamine(m-MTDATA):MoO3(mass ratio of 3:1,15 nm)/m-MTDATA(25 nm)/tris-(phenyl-pyrazole)-iridium((Ir(ppz)3,10 nm)/PF-SBF(30 nm)/4,7-diphenyl-1,10-phenanthroline(Bphen,30 nm)/LiF(1 nm)/Al(100 nm).This structure was denoted as Structure A.Fig.S3(Supporting Information)shows luminance-voltage-current efficiency(L-V-CE)characteristics and normalized EL spectra of Structure A.Detailed data were summarized in Table S1(Supporting Information). Analysis on these data indicates that both the luminance and the current efficiency in StructureAare quite low when using only PFSBF as an emitting layer(EML).In addition,the normalized EL spectrum has a strong emission in red light band in addition to the PF-SBF?s intrinsic blue light,which is possibly caused by intermolecular aggregation24.The above information indicates that PFSBF may be more suitable for a host than a blue emitter.

    Scheme 1Synthetic routes of PF-SBF(a)and PF-SFX(b)

    Fig.1 Room-temperature absorption(a)and PL(b)spectra of PF-SBF and PF-SFX in anhydrous ethanol solution

    Fig.2TGAcurve s of PF-SBF and PF-SFX

    In the following part,PF-SBF was used as the host of the blue phosphor FIrpic with a device structure similar with Structure A except replacing PF-SBF with FIrpic-doped PF-SBF(10%(w)),which was denoted as Structure B.Doping FIrpic not only reduces intermolecular aggregation of PF-SBF,accompanied with the restrainment of the red emitting band,but also realizes energy transfer from PF-SBF to the blue light guest FIrpic with a further improved device efficiency.As shown in Fig.S4(Supporting Information)and Table S1,the performances including turn-on voltage(Von),L and CE have great improvements compared with those of Structure A.It should be noted that when PF-SBF was used as the FIrpic host,the EL spectrum shows a typical emission of FIrpic,indicating an efficient energy transfer from PF-SBF toFIrpic.This point was further approved by the energy level in Fig.3 (a),in which the LUMO and HOMO energy levels of FIrpic(2.8 and 5.5 eV)are located within those(1.9 and 5.6 eV)of the PFSBF host.

    Electron withdrawing/donating-inefficient group on PF-SBF implied its poor charge transport ability,which can be calculated with Mott-Gurney equation25

    where,ε0is the vacuum permittivity,ε is the relative dielectric constant of PF-SBF,μ is the carrier mobility,V is the voltage drop,and d is the thickness of PF-SBF.

    The hole and electron mobilities of PF-SBF are 6.1×10-6and 8.0×10-5cm2?V-1?s-1,estimated from the injection current density-voltage characteristics in Fig.S5(Supporting Information). The low mobility values of both holes and electrons lead to poor performances in above devices.

    In order to improve device performances as well as suppressing red light band,we fabricated cohost devices named Structure C,in which di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane(TAPC)owning a fine hole transport ability and PF-SBF were employed as cohost.Structure C still utilized a similar configuration with Structure B,except replacing PF-SBF with PF-SBF:TAPC.The mass ratios of TAPC:PF-SBF were 2:1,1:1,0:1,and 1:0,respectively.Fig.4(a)shows L-V-CE characteristics of Structure C,while the parameters including Von,L,and CE are summarized in Table S2(Supporting Information).From Fig.4(a),we observed that the device employing TAPC and PF-SBF as a cohost exhibits obvious enhancements on brightness and efficiency compared with a TAPC or PF-SBF single host.The best performances occurs at the mass ratio of around 1:1 for the TAPC:PF-SBF cohost,realizing L and CE of 2907 cd?m-2and 5.4 cd?A-1.When employing TAPC:PF-SBF as a cohost,it occurs another shoulder on the EL spectra at around 580 nm in addition to the blue emission of FIrpic(Fig.4(b)),while this shoulder is totally suppressed with only PF-SBF,indicating it is different from the aggregation of PFSBF molecules.So in the following part,we investigated the phosphorescence spectra of PF-SBF,the energy levels of hosts and adjacent hole/electron transport layers to explore the origin of the 580 nm shoulder peak.

    Fig.3Device structures and energy levels of Structures B,C(a)and D(b)ITO:indium tin oxide

    Fig.4L-V-CE characteristics(a)and normalized ELspectra(b)of Structure CHollow symbols represent luminance and solid symbols represent current efficiency.

    In common,fluorene usually generates a green emission band totally different from its intrinsic emission,which is normally attributed to fluorenone defects generated at C9 position with a substituent of alkyl group26.For the case of PF-SBF,there are noalkyl groups at any position,which is hard to be oxidized,so that the fluorenone defect will not occur.We also suspected that the 580 nm shoulder peak is from the phosphorescent emission of PFSBF,so we tested PF-SBF?s phosphorescence spectra at 77 K,as shown in Fig.5,from which we found the phosphorescent emission peak is at 496 and 530 nm.In the vicinity of 580 nm,the phosphorescent emission of PF-SBF has already significantly decayed,indicating that the 580 nm shoulder in the EL spectra is not induced by the PF-SBF?s phosphorescence.

    Fig.5Phosphorescence spectra of PF-SBF and PF-SFX in toluene solvent at 77 K

    Fig.6Normalized absorption(a)and PL(b)intensities of EMLand its adjacent layers in Structure C

    In addition to the molecular aggregation and the intrinsic phosphorescent emission of the host material,the energy mismatch between the hosts and the adjacent electron/hole transport layer may also induce a long-waveband emission,normally called “exciplex”.So we gave energy levels of EML and its adjacent electron and hole transport layers.As shown in Fig.3(b),the LUMO and HOMO energy levels of PF-SBF and TAPC are 1.9/ 5.6 eV and 2.4/5.8 eV,respectively.Alarge LUMO energy barrier of≥0.6 eV between TAPC(or PF-SBF)and Bphen(3.0/6.4 eV)together with a poor electron transport property of TAPC made electrons injection into EML very difficult.Furthermore,a large HOMO energy barrier of more than 0.6 eV as well as poor hole conduction capability of Bphen led to holes accumulation at the Bphen/EML interface,making it easily produce exciplex at this interface27.To further verify the presence of exciplex,we measured the absorption and PL spectra of the TAPC:PF-SBF host and its adjacent layers,respectively,as shown in Fig.6(a).The absorption spectrum of TAPC:PF-SBF/Bphen layer shows no obvious change but its PL spectrum(Fig.6(b))generates a new shoulder at 571.5 nm compared with those of the TAPC,PF-SBF,and Bphen film. And this orange peak in the PL spectrum is consistent with that in the EL spectrum,proving its origin from an exciplex.In addition,the PL spectrum of Ir(ppz)3/TAPC:PF-SBF also produces a redshifted emission compared with the Ir(ppz)3,TAPC or PF-SBF layer,indicating that there also exists an exciplex emission at the interface of Ir(ppz)3and TAPC:PF-SBF.

    In order to eliminate the exciplex emission,we replaced the present hole and electron transport layers with TAPC and 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene(TmPyPb).Amuch lower LUMO energy level of TmPyPb(2.7 eV)reduced the electron injection barrier,while a larger HOMO energy level efficiently confined the holes into the TmPyPb(Fig.3(b)).The new device structure was ITO/PEDOT:PSS/TAPC(10 nm)/TAPC:PF-SBF:FIrpic(mass ratio of 1:1:0.2,30 nm)/TmPyPb/LiF(1 nm)/Al,denoted as Structure D.With optimal PEDOT:PSS and TmPyPb thicknesses of~40-50 nm and 40 nm,the maximum current efficiency and brightness rise up to 16.7 cd?A-1(6 V)and 7857 cd?m-2(11 V),as shown in Fig.7(a)and Table 1.The Vonis as low as 3.4 V along with the employment of new electron transport layer and the elimination of Ir(ppz)3.As can be seen from Fig.7(b),a more important point is that the optimized device exhibits a typical FIrpic emission property and effectively gets rid of the exciplex-induced red light band,indicating a proper device structure and an efficient energy transfer from mixed host TAPC:PF-SBF to the EML.

    Referring to the low-temperature phosphorescence spectra in Fig.5,we calculated the triplet energy level of PF-SBF to be 2.5 eV,and this value suggests that PF-SBF may be more suitable for a green light host.So we fabricated a green OLED named Structure E in order to make sure of this idea.Structure E still utilized a similar device configuration with Structure D with only TAPC:PF-SBF:FIrpic(10%(w),30 nm)being replaced by TAPC: PF-SBF:tris(2-phenylpyridine)iridium(III)(Ir(ppy)3,8%(w),30 nm).Fig.8 shows L-V-CE characteristics and normalized EL spectra of Structure E,with all parameters including Von,L,and CE being summarized in Table 1.The maximum current efficiency and brightness are as high as 50.5 cd?A-1(6 V)and 23390 cd?m-2(8 V),while Vonis as low as 3.0 V.As can be seen in Fig.8(b),thedevice exhibits a typical Ir(ppy)3emission property without any other additional emission band.

    Fig.7L-V-CE characteristics(a)and normalized ELspectrum(b)of Structure D

    Table 1Summarized OLED performances for Structures D,E,and F

    Fig.8L-V-CE characteristics(a)and normalized ELspectrum(b)of Structure E

    Fig.9L-V-CE characteristics(a)and normalized ELspectrum(b)of Structure F

    Above data demonstrated that the narrow band gap PF-SBF is suitable for a green phosphorescent host instead of a blue one,which may be due to the π-π interaction between fluorene substituent and fluorene unit in spirobifluorene structure.We wondered if we replace one fluorene unit in spirobifluorene structure with xanthene,this π-π interaction will be restrained and the corresponding energy band will be broadened.To prove the hypothesis,we newly synthesized PF-SFX,where xanthene replaced fluorene in spirobifluorene structure of PF-SBF,with the synthetic route shown in Scheme 1(b).Comparing with PF-SBF in Fig.1,we observed an obvious blue shift in both absorption and PL spectra of PF-SFX,with a main absorption peak of 295 nm with a 307 nm shoulder and a main PL peak of 384.5 nm with a shoulder of 392.5 nm.From the CV curve of PF-SFX in Fig.S1(b),we calculated the LUMO and HOMO energy levels to be-1.9 and -5.7 eV.In addition,we also calculated its triplet energy level from Fig.5 to be 2.8 eV,demonstrating that PF-SFX is more suitable for a blue host than PF-SBF.Others parameters like Td(337°C),Tg,and the hole/electron mobility(7.3×10-6and 9.2× 10-5cm2?V-1?s-1)were also measured(Fig.2 and Fig.S2(Supporting Information))and results indicate that PF-SFX owns a similar property with PF-SBF.Thus we fabricated a device (Structure F)by replacing PF-SBF in Structure D with PF-SFX,with L-V-CE characteristics and normalized EL spectra shown in Fig.9 and Table 1.Structure F exhibits improved current efficiency and brightness of 22.6 cd?A-1(6 V)and 6421 cd?m-2(8 V),as well as a slight decline in Vonto 3.3 V.Much better performances in the PF-SFX-based blue OLED powerfully confirm that reducing π-π interaction is helpful to broaden the band gap and enhance the EL performances.

    4 Conclusions

    In summary,we synthesized a new spirobifluorene derivative PF-SBF and a xanthene derivative PF-SFX with high yields via one-step synthesis.Utilizing PF-SBF as an emitter and a host of blue phosphor FIrpic,we observed a red light band different from the intrinsic blue emission of PF-SBF and FIrpic,which is respectively attributed to intermolecular aggregation of PF-SBF and exciplexes generated at the interfaces of EML and electron transport/blocking layer.The exciplex emission was restrained with a proper hole and electron transport layer.Employing a PFSBF:TAPC cohost,the high-performance blue and green emissions were achieved with maximum current efficiencies of 16.7 and 50.5 cd?A-1and maximum brightnesses of 7857 and 23390 cd?m-2for FIrpic and Ir(ppy)3,respectively.Actually,PF-SBF is not suitable for a blue phosphorescent host due to its narrow triplet energy level of only 2.5 eV.Therefore,a new xanthene derivative PF-SFX with a large triplet energy level of 2.8 eV was synthesized via reducing π-π interaction between the fluorene substituent and the fluorene unit in spirobifluorene structure by replacing one fluorene unit in spirobifluorene structure with xanthene.Using PFSFX as the FIrpic host,the luminous efficiency and brightness were significantly improved,reaching 22.6 cd?A-1and 6421 cd?m-2.Carrier-transport unit-free in PF-SBF and PF-SFX limits their carrier mobilities and device performances.Our future work will focus on new materials?design based on PF-SBF and PF-SFX with high carrier transport abilities,and we believe that the device performances will be further improved in the near future.

    Supporting lnformation:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1)Xiao,L.X.;Hu,S.Y.;Kong,S.;Chen,Z.J.;Qu,B.;Gong,Q. H.Acta Phys.-Chim.Sin.2011,27,977.[肖立新,胡雙元,孔勝,陳志堅(jiān),曲波,龔旗煌.物理化學(xué)學(xué)報(bào),2011,27,977.]doi:10.3866/PKU.WHXB20110325

    (2)Kido,J.;Kimura,M.;Nagai,K.Science 1995,267,1332. doi:10.1126/science.267.5202.1332

    (3)Tang,P.;Xiao,J.J.;Zheng,C.;Wang,S.;Chen,R.F.Acta Phys.-Chim.Sin.2013,29,667.[湯鵬,肖堅(jiān)堅(jiān),鄭超,王石,陳潤(rùn)鋒.物理化學(xué)學(xué)報(bào),2013,29,667.]doi:10.3866/ PKU.WHXB201302062

    (4)Chen,S.F.;Deng,L.L.;Xie,J.;Peng,L.;Xie,L.H.;Fan,Q. L.;Huang,W.Adv.Mater.2010,22,5227.doi:10.1002/ adma.201001167

    (5)Adachi,C.;Baldo,M.A.;Thompson,M.E.;Forrest,S.R. J.Appl.Phys.2001,90,5048.doi:10.1063/1.1409582

    (6)Fan,C.H.;Sun,P.;Su,T.H.;Cheng,C.H.Adv.Mater.2011,23,2981.doi:10.1002/adma.v23.26

    (7)Ho,C.L.;Li,H.;Wong,W.Y.J.Organomet.Chem.2014,751,261.doi:10.1016/j.jorganchem.2013.09.035

    (8)Lu,P.;Hong,H.;Cai,G.;Djurovich,P.;Weber,W.P.;Thompson,M.E.J.Am.Chem.Soc.2000,122,7480. doi:10.1021/ja000354q

    (9)Su,S.J.;Cai,C.;Kido,J.Chem.Mater.2011,23,274. doi:10.1021/cm102975d

    (10)Wu,R.L.;Schumm,J.S.;Pearson,D.L.;Tour,J.M.J.Org. Chem.1996,61,6906.doi:10.1021/jo960897b

    (11)Xiao,H.;Shen,H.;Lin,Y.;Su,J.;Tian,H.Dyes Pigm.2007,73,224.doi:10.1016/j.dyepig.2005.11.010

    (12)Wu,C.C.;Lin,Y.T.;Chiang,H.H.;Cho,T.Y.;Chen,C.W.;Wong,K.T.;Liao,Y.L;Lee,G.H.;Peng,S.M.Appl.Phys. Lett.2002,81,577.doi:10.1063/1.1493669

    (13)Kim,K.S.;Jeon,Y.M.;Kim,J.W.;Lee,C.W.;Gong,M.S. Org.Electron.2008,9,797.doi:10.1016/j.orgel.2008.05.013

    (14)Tsuzuki,T.;Tokio,S.Appl.Phys.Lett.2009,94,033302. doi:10.1063/1.3073709

    (15)Lin,Y.;Chen,Z.K.;Ye,T.L.;Dai,Y.F.;Ma,D.G.;Ma,Z.;Liu,Q.D.;Chen,Y.J.Polym.Sci.,Part A:Polym.Chem.2010,48,292.doi:10.1002/pola.23783

    (16)Prelog,V.;Bedekovi?,D.Helv.Chim.Acta 1979,62,2285. doi:10.1002/hlca.19790620725

    (17)Harada,N.;Ono,H.;Nishiwaki,T.;Uda,H.J.Chem.Soc.,Chem.Commun.1991,No.24,1753.doi:10.1039/ C39910001753

    (18)Spehr,T.;Siebert,A.;Lieker,T.F.;Salbeck,S.;Rabe,T.;Riedl,T.;Johannes,H.H.;Kowalsky,W.;Wang,J.;Weimann,T.;Hinze,P.Appl.Phys.Lett.2005,87,161103.doi:10.1063/ 1.2105996

    (19)Shen,W.J.;Dodda,R.;Wu,C.C.;Wu,F(xiàn).I.;Liu,T.H.;Chen,H.H.;Chen,C.H.;Shu,C.F.Chem.Mater.2004,16,930.doi: 10.1021/cm0345117

    (20)Gebeyehu,D.;Walzer,K.;He,G.;Pfeiffer,M.;Leo,K.;Brandt,J.;Gerhard,A.;Stoessel,P.;Vestweber,H.Synth.Met.2005,148,205.doi:10.1016/j.synthmet.2004.09.024

    (21)Jeon,S.O.;Lee,H.S.;Jeon,Y.M.;Kim,J.W.;Lee,C.W.;Gong,M.S.Bull.Korean Chem.Soc.2009,30,863. doi:10.5012/bkcs.2009.30.4.863

    (22)Wang,L.;Pan,B.;Zhu,L.P.;Wang,B.;Wang,Y.X.;Liu,Y.K.;Jin,J.J.;Chen,J.S.;Ma,D.G.Dyes Pigm.2015,114,222.doi: 10.1016/j.dyepig.2014.11.011

    (23)Cao,X.;Yang,W.;Liu,C.;Wei,F(xiàn).;Wu,K.;Sun,W.;Song,J.;Xie,L.H.;Huang,W.Org.Lett.2013,15,3102.doi:10.1021/ ol4013052

    (24)Huang,J.;Sun,N.;Chen,P.;Tang,R.;Li,Q.;Ma,D.;Li,Z. Chem.Commun.2014,50,2136.doi:10.1039/c3cc49313j

    (25)Brutting,W.;Berleb,S.;Mueckl,A.G.Org.Electron.2001,2 (1),1.doi:10.1016/S1566-1199(01)00009-X

    (26)Jang,S.E.;Joo,C.W.;Jeon,S.O.;Yook,K.S.;Lee,J.Y.Org. Electron.2010,11,1059.doi:10.1016/j.orgel.2010.03.005

    (27)Shin,H.;Lee,S.;Kim,K.H.;Moon,C.K.;Yoo,S.J.;Lee,J. H.;Kim,J.J.Adv.Mater.2014,26,4730.doi:10.1002/adma. v26.27

    One-Step Synthesis of Spirobi[fluorene]and Spiro[fluorene-9,9′-xanthene]Derivatives and Their Applications in Organic Light-Emitting Devices:Performance Enhancement and Related Optical Phenomena

    GUAN Yu-Qiao1,#SONG Juan1,#SUN Wei1ZHANG Qin1TANG Chao2
    LI Xue3FENG Xiao-Miao1QIAN Yan1TAO You-Tian2CHEN Shu-Fen1,*WANG Lian-Hui1HUANG Wei2,*

    January 5,2016;Revised:March 22,2016;Published on Web:March 23,2016.

    Employing fluorene as substrate,we synthesized a new spirobifluorene derivative,2′-(9-phenylfluoren-9-yl)-9,9′-spirobi[fluorene](PF-SBF),through a one-step palladium-catalyzed cross-coupling reaction. Utilizing PF-SBF as an emitter and as a host of the blue phosphor bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyri-dyl))iridium(III)(FIrpic)in organic light-emitting devices(OLEDs),we observed a red light band different from the intrinsic blue emission of PF-SBF and FIrpic.This was attributed to the intermolecular aggregation of PF-SBF and to exciplexes generated at the interfaces of the emitting layer and the electron transport layer.The exciplex emission was then restrained through a suitable selection of hole and electron transport layer.Employing PF-SBF with di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane(TAPC)as a cohost,we obtained high-performance blue and green emissions from FIrpic and tris(2-phenylpyridine)iridium(III)(Ir(ppy)3). The maximum current efficiencies and luminances of the blue and green OLEDs were as high as 16.7 and 50.5 cd?A-1and 7857(at 11 V)and 23390 cd?m-2(at 8 V),respectively.As an alternative to PF-SBF,we also synthesized a new xanthene derivative,2-(9-phenyl-fluoren-9-yl)spiro[fluorene-9,9′-xanthene](PF-SFX),with a large triplet energy level of 2.8 eV.Using PF-SFX similarly as a host of FIrpic,the current efficiency and luminance were significantly improved to 22.6 cd?A-1and 6421 cd?m-2(at 10 V).These results demonstrate the potential of PF-SBF and PF-SFX as new building blocks for high-efficiency green/blue phosphorescent host materials.

    Palladium catalysis;One-step method;Exciplex;Cohost;Blue organic light-emitting diode

    O649

    [Article]10.3866/PKU.WHXB201603232www.whxb.pku.edu.cn

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2015CB932202,2012CB933301),國(guó)家自然科學(xué)基金(61274065,51173081,61136003,BZ2010043,

    51372119,51172110,21304047,21373114,21003076),教育部創(chuàng)新團(tuán)隊(duì)(IRT1148),教育部人文社會(huì)科學(xué)基金(13YJCZH091),江蘇省自然科學(xué)基金(BK20141424),江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(YX030001),江蘇省普通高校研究生實(shí)踐創(chuàng)新項(xiàng)目(SJLX15_0390),南京郵電大學(xué)攀登項(xiàng)目(NY214085)及吉林大學(xué)開(kāi)放課題(IOSKL2015KF32)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    *Corresponding authors.CHEN Shu-Fen,Email:iamsfchen@njupt.edu.cn.HUANG Wei,Email:wei-huang@njtech.edu.cn;Tel:+86-25-85866332.#These authors contributed equally to this work.

    猜你喜歡
    郵電大學(xué)綠光工程學(xué)院
    福建工程學(xué)院
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    西安郵電大學(xué)設(shè)計(jì)作品
    包裝工程(2022年10期)2022-05-27 05:17:12
    福建工程學(xué)院
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    福建工程學(xué)院
    福建工程學(xué)院
    重慶郵電大學(xué)學(xué)報(bào)( 自然科學(xué)版》2016年第28卷第1-6期總第114-125期
    機(jī)器 人
    渴望
    av国产免费在线观看| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站| 国产av在哪里看| 老司机深夜福利视频在线观看| 最新在线观看一区二区三区| 老司机午夜福利在线观看视频| 搡老妇女老女人老熟妇| 最好的美女福利视频网| 国产白丝娇喘喷水9色精品| 成熟少妇高潮喷水视频| 欧美成人性av电影在线观看| 久久婷婷人人爽人人干人人爱| 丰满的人妻完整版| 三级男女做爰猛烈吃奶摸视频| 成人美女网站在线观看视频| 人妻丰满熟妇av一区二区三区| 色尼玛亚洲综合影院| 欧洲精品卡2卡3卡4卡5卡区| 国产中年淑女户外野战色| 中文字幕精品亚洲无线码一区| 99久久精品国产亚洲精品| 日韩有码中文字幕| 中出人妻视频一区二区| 最近最新免费中文字幕在线| 嫁个100分男人电影在线观看| 99热只有精品国产| 欧美+亚洲+日韩+国产| 欧美绝顶高潮抽搐喷水| 久久精品国产亚洲av天美| 亚洲av免费高清在线观看| 久久久久久大精品| 五月伊人婷婷丁香| 国产在线男女| 午夜精品久久久久久毛片777| 搡老岳熟女国产| 九九在线视频观看精品| 国产精品野战在线观看| 欧美丝袜亚洲另类 | 久久亚洲精品不卡| 亚洲一区二区三区色噜噜| 国产免费男女视频| 一卡2卡三卡四卡精品乱码亚洲| 在线观看午夜福利视频| 亚洲国产欧美人成| 美女免费视频网站| 亚洲中文字幕日韩| netflix在线观看网站| 国产成人啪精品午夜网站| 午夜精品在线福利| 欧美一区二区亚洲| 亚洲综合色惰| 波多野结衣高清无吗| 国产黄片美女视频| 日日夜夜操网爽| 特大巨黑吊av在线直播| 国产亚洲av嫩草精品影院| 最近视频中文字幕2019在线8| 亚洲av美国av| 自拍偷自拍亚洲精品老妇| 亚洲色图av天堂| 啦啦啦观看免费观看视频高清| 欧美黄色淫秽网站| 日本一二三区视频观看| 露出奶头的视频| 日韩欧美一区二区三区在线观看| 久久热精品热| 看十八女毛片水多多多| 欧美潮喷喷水| 久久精品国产亚洲av天美| 国产中年淑女户外野战色| 久久天躁狠狠躁夜夜2o2o| 色综合站精品国产| 久久婷婷人人爽人人干人人爱| 日韩精品青青久久久久久| .国产精品久久| 成人精品一区二区免费| xxxwww97欧美| 欧美黑人欧美精品刺激| 日韩成人在线观看一区二区三区| 怎么达到女性高潮| 成人性生交大片免费视频hd| 国产精品,欧美在线| 亚洲美女黄片视频| 夜夜看夜夜爽夜夜摸| 欧美日韩国产亚洲二区| 国产在线精品亚洲第一网站| 欧美黄色淫秽网站| 1024手机看黄色片| 嫩草影院新地址| 九色成人免费人妻av| 国产精品免费一区二区三区在线| 成人国产一区最新在线观看| 国语自产精品视频在线第100页| 成人毛片a级毛片在线播放| 精品一区二区三区人妻视频| 伊人久久精品亚洲午夜| 免费观看精品视频网站| 亚洲久久久久久中文字幕| 51国产日韩欧美| 一本久久中文字幕| 一个人免费在线观看电影| www.999成人在线观看| 国产不卡一卡二| 成人国产一区最新在线观看| 在线天堂最新版资源| 内射极品少妇av片p| 国产av麻豆久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 久久久国产成人精品二区| 在现免费观看毛片| 色播亚洲综合网| a级毛片a级免费在线| 天堂√8在线中文| 日本 av在线| 亚州av有码| 国产精品女同一区二区软件 | 在线观看一区二区三区| 亚洲av成人不卡在线观看播放网| 亚洲中文字幕日韩| 免费无遮挡裸体视频| 亚洲国产日韩欧美精品在线观看| 精品一区二区三区av网在线观看| 老司机福利观看| 99热6这里只有精品| 国产亚洲精品久久久com| 欧美黑人巨大hd| 在线观看美女被高潮喷水网站 | 久久久久九九精品影院| 久久6这里有精品| 99国产综合亚洲精品| a级毛片免费高清观看在线播放| 久久亚洲精品不卡| 18禁黄网站禁片免费观看直播| 中文字幕av成人在线电影| 亚洲 欧美 日韩 在线 免费| 欧美+日韩+精品| 日韩欧美在线乱码| 国产欧美日韩精品一区二区| 国产aⅴ精品一区二区三区波| 99热这里只有精品一区| 欧美中文日本在线观看视频| 99热6这里只有精品| 亚洲成人久久爱视频| 1024手机看黄色片| 免费观看的影片在线观看| 99国产精品一区二区蜜桃av| 日韩欧美免费精品| 午夜福利免费观看在线| 99在线人妻在线中文字幕| 色吧在线观看| 3wmmmm亚洲av在线观看| 久久国产乱子伦精品免费另类| 好男人电影高清在线观看| 一区二区三区激情视频| 免费av不卡在线播放| 国产毛片a区久久久久| 少妇熟女aⅴ在线视频| 好看av亚洲va欧美ⅴa在| 欧美高清成人免费视频www| 看片在线看免费视频| 人妻丰满熟妇av一区二区三区| 又黄又爽又刺激的免费视频.| 别揉我奶头 嗯啊视频| 一卡2卡三卡四卡精品乱码亚洲| 免费看日本二区| 欧美黄色淫秽网站| 日本黄色片子视频| 桃色一区二区三区在线观看| 欧美色欧美亚洲另类二区| 真人一进一出gif抽搐免费| 禁无遮挡网站| 午夜精品在线福利| 国产精品嫩草影院av在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 精华霜和精华液先用哪个| 97人妻精品一区二区三区麻豆| av天堂在线播放| av在线观看视频网站免费| 亚洲精品在线观看二区| 欧美又色又爽又黄视频| 久久欧美精品欧美久久欧美| 亚洲av成人不卡在线观看播放网| 嫩草影视91久久| 人妻制服诱惑在线中文字幕| netflix在线观看网站| 午夜免费男女啪啪视频观看 | 嫩草影院精品99| 色哟哟·www| 亚洲av电影在线进入| 欧美日韩乱码在线| 日日干狠狠操夜夜爽| 99久久无色码亚洲精品果冻| 毛片一级片免费看久久久久 | 亚洲国产精品sss在线观看| 亚洲精品成人久久久久久| 少妇丰满av| 国产伦精品一区二区三区视频9| 国产蜜桃级精品一区二区三区| 久久精品国产清高在天天线| 久久中文看片网| 天堂动漫精品| 有码 亚洲区| 一个人免费在线观看的高清视频| 舔av片在线| 国产伦人伦偷精品视频| 免费人成视频x8x8入口观看| 久久6这里有精品| 91久久精品国产一区二区成人| 69人妻影院| 欧美xxxx黑人xx丫x性爽| 日韩高清综合在线| 久久九九热精品免费| 熟女人妻精品中文字幕| 亚洲人成伊人成综合网2020| 美女高潮的动态| 精品99又大又爽又粗少妇毛片 | 国产精品亚洲av一区麻豆| 能在线免费观看的黄片| 日本a在线网址| 亚洲精华国产精华精| 美女cb高潮喷水在线观看| 一级作爱视频免费观看| 久久久久性生活片| 人妻久久中文字幕网| 日韩欧美国产在线观看| 99久久精品一区二区三区| 国产亚洲精品av在线| 少妇熟女aⅴ在线视频| 女同久久另类99精品国产91| 国产一级毛片七仙女欲春2| 国产乱人视频| 日韩成人在线观看一区二区三区| 精品国产三级普通话版| 国产成年人精品一区二区| 午夜福利免费观看在线| 国产高清有码在线观看视频| 高清毛片免费观看视频网站| 18禁黄网站禁片午夜丰满| 亚洲第一欧美日韩一区二区三区| 天堂影院成人在线观看| 免费一级毛片在线播放高清视频| 久久久久免费精品人妻一区二区| 看十八女毛片水多多多| 国产精品一区二区性色av| 国产男靠女视频免费网站| av欧美777| 九色成人免费人妻av| 岛国在线免费视频观看| 午夜免费激情av| 国内精品久久久久久久电影| 免费黄网站久久成人精品 | 国产免费av片在线观看野外av| 一二三四社区在线视频社区8| 噜噜噜噜噜久久久久久91| 亚洲精品影视一区二区三区av| 成人性生交大片免费视频hd| 亚洲精品456在线播放app | 丰满人妻熟妇乱又伦精品不卡| 欧美最黄视频在线播放免费| 老司机深夜福利视频在线观看| 亚洲成人免费电影在线观看| 国内少妇人妻偷人精品xxx网站| 日韩成人在线观看一区二区三区| 国产91精品成人一区二区三区| 噜噜噜噜噜久久久久久91| 欧美黑人巨大hd| 日韩 亚洲 欧美在线| 国产精品久久电影中文字幕| 久久久精品大字幕| 特级一级黄色大片| 99精品在免费线老司机午夜| 精品久久久久久久人妻蜜臀av| 黄色一级大片看看| 久久久久国产精品人妻aⅴ院| 欧美高清成人免费视频www| 丁香六月欧美| 麻豆一二三区av精品| 国产精品98久久久久久宅男小说| 在线观看av片永久免费下载| 3wmmmm亚洲av在线观看| 变态另类丝袜制服| 日韩av在线大香蕉| 18禁黄网站禁片午夜丰满| 亚洲不卡免费看| 亚洲中文日韩欧美视频| 亚洲成av人片在线播放无| 亚洲经典国产精华液单 | 国产亚洲精品久久久com| 国产精品亚洲av一区麻豆| 国产av麻豆久久久久久久| 欧美激情久久久久久爽电影| 人妻夜夜爽99麻豆av| 色噜噜av男人的天堂激情| 国产成人福利小说| 亚洲精品影视一区二区三区av| 午夜激情福利司机影院| 中文字幕人妻熟人妻熟丝袜美| 国产熟女xx| 午夜福利在线观看免费完整高清在 | 麻豆成人午夜福利视频| 中文字幕免费在线视频6| 美女被艹到高潮喷水动态| 亚洲经典国产精华液单 | 欧美色视频一区免费| 亚洲人成网站在线播| 国产精品人妻久久久久久| 国产精品亚洲一级av第二区| 亚洲精品一区av在线观看| 国产蜜桃级精品一区二区三区| 深爱激情五月婷婷| 午夜精品在线福利| 内地一区二区视频在线| 91九色精品人成在线观看| 欧美三级亚洲精品| 最新中文字幕久久久久| 中文字幕熟女人妻在线| 成年人黄色毛片网站| 成熟少妇高潮喷水视频| 亚洲中文日韩欧美视频| 动漫黄色视频在线观看| 在线观看一区二区三区| 黄色视频,在线免费观看| 青草久久国产| 内地一区二区视频在线| 国产伦在线观看视频一区| 老熟妇仑乱视频hdxx| 他把我摸到了高潮在线观看| 国产黄色小视频在线观看| 成人av在线播放网站| 国产综合懂色| 白带黄色成豆腐渣| 亚洲国产精品sss在线观看| 成人特级av手机在线观看| 午夜精品在线福利| 国产精品永久免费网站| 亚洲va日本ⅴa欧美va伊人久久| 大型黄色视频在线免费观看| 欧美黄色片欧美黄色片| 嫩草影院入口| 99热精品在线国产| 人妻夜夜爽99麻豆av| 国产欧美日韩一区二区三| 久久久久久久精品吃奶| 欧美丝袜亚洲另类 | 99久久成人亚洲精品观看| 免费看光身美女| 欧美日本亚洲视频在线播放| 琪琪午夜伦伦电影理论片6080| 欧美成狂野欧美在线观看| 日韩欧美国产在线观看| 少妇高潮的动态图| 18禁黄网站禁片免费观看直播| 久久久精品欧美日韩精品| 日韩有码中文字幕| 啦啦啦观看免费观看视频高清| 亚洲成人免费电影在线观看| 久久婷婷人人爽人人干人人爱| 日日干狠狠操夜夜爽| 色av中文字幕| 中文资源天堂在线| 国产精品久久久久久亚洲av鲁大| 哪里可以看免费的av片| 在现免费观看毛片| 又黄又爽又刺激的免费视频.| 久久国产精品影院| 亚洲美女视频黄频| 欧美zozozo另类| 91麻豆av在线| 一个人看视频在线观看www免费| 神马国产精品三级电影在线观看| 国产一区二区在线av高清观看| 日韩亚洲欧美综合| 天堂网av新在线| 999久久久精品免费观看国产| 黄片小视频在线播放| 18禁裸乳无遮挡免费网站照片| www.熟女人妻精品国产| 国产精品98久久久久久宅男小说| 国产不卡一卡二| 69av精品久久久久久| 老司机福利观看| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 日韩欧美免费精品| av在线老鸭窝| 精华霜和精华液先用哪个| 最近视频中文字幕2019在线8| 亚洲人与动物交配视频| 成人精品一区二区免费| 亚洲精品亚洲一区二区| 国产亚洲欧美在线一区二区| 亚洲成av人片免费观看| 久久久久久久亚洲中文字幕 | 男女视频在线观看网站免费| 午夜福利成人在线免费观看| 国内精品一区二区在线观看| 日韩欧美精品v在线| 嫩草影院新地址| 成人亚洲精品av一区二区| 网址你懂的国产日韩在线| 国产蜜桃级精品一区二区三区| 欧美成人一区二区免费高清观看| 国内久久婷婷六月综合欲色啪| 黄色日韩在线| 国产精品,欧美在线| 欧美成狂野欧美在线观看| 亚洲五月婷婷丁香| 亚洲av成人精品一区久久| 精品一区二区三区人妻视频| 精品久久久久久久久av| 51国产日韩欧美| 好看av亚洲va欧美ⅴa在| 一a级毛片在线观看| 嫩草影院入口| av在线老鸭窝| 欧美一区二区精品小视频在线| 色综合站精品国产| 色视频www国产| 成人国产综合亚洲| 久久精品国产亚洲av香蕉五月| 国产成人影院久久av| 欧美一级a爱片免费观看看| 日本免费一区二区三区高清不卡| 一个人免费在线观看的高清视频| 首页视频小说图片口味搜索| 成人国产综合亚洲| 香蕉av资源在线| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 丝袜美腿在线中文| 亚洲无线观看免费| 很黄的视频免费| 国产黄片美女视频| 亚洲最大成人av| 国产 一区 欧美 日韩| 国产成人福利小说| 国产午夜福利久久久久久| 天堂动漫精品| 中文字幕精品亚洲无线码一区| 人人妻人人看人人澡| 亚洲中文字幕日韩| 五月玫瑰六月丁香| 亚洲人成伊人成综合网2020| 成人高潮视频无遮挡免费网站| 欧美午夜高清在线| 久99久视频精品免费| 熟妇人妻久久中文字幕3abv| 亚洲综合色惰| 成人av在线播放网站| 特级一级黄色大片| 欧美午夜高清在线| 亚洲人与动物交配视频| 伊人久久精品亚洲午夜| 久久精品国产清高在天天线| 成人av在线播放网站| 国产免费男女视频| 高清日韩中文字幕在线| 一进一出抽搐动态| 757午夜福利合集在线观看| 国产精品,欧美在线| 精品无人区乱码1区二区| 看十八女毛片水多多多| 国产国拍精品亚洲av在线观看| 99久国产av精品| 一区二区三区激情视频| 中文字幕熟女人妻在线| 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在 | 中文在线观看免费www的网站| 中文字幕av成人在线电影| 69av精品久久久久久| 精品国内亚洲2022精品成人| 精品人妻视频免费看| 国产精华一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 午夜亚洲福利在线播放| 免费观看精品视频网站| 精品久久久久久,| 毛片女人毛片| 久久精品国产亚洲av涩爱 | 亚洲激情在线av| 免费在线观看成人毛片| 日本成人三级电影网站| 久久久久久国产a免费观看| 中文字幕免费在线视频6| 国产高潮美女av| 欧美在线一区亚洲| 亚洲av中文字字幕乱码综合| 婷婷色综合大香蕉| 欧美色视频一区免费| 成人永久免费在线观看视频| 国产91精品成人一区二区三区| aaaaa片日本免费| 亚洲人成网站在线播放欧美日韩| 黄色视频,在线免费观看| 久久人妻av系列| 亚洲精品日韩av片在线观看| 日韩亚洲欧美综合| 白带黄色成豆腐渣| 成人特级av手机在线观看| 国产av一区在线观看免费| av在线观看视频网站免费| 男插女下体视频免费在线播放| 欧美日韩国产亚洲二区| 亚洲熟妇中文字幕五十中出| 欧美极品一区二区三区四区| 成人av一区二区三区在线看| 天天躁日日操中文字幕| 在线播放无遮挡| 男女床上黄色一级片免费看| 很黄的视频免费| 91九色精品人成在线观看| 少妇被粗大猛烈的视频| 国产美女午夜福利| 小说图片视频综合网站| 亚洲av电影在线进入| 99热6这里只有精品| 婷婷亚洲欧美| 少妇的逼好多水| 三级毛片av免费| 国产精品一区二区三区四区免费观看 | 国产精品久久久久久人妻精品电影| 亚洲av中文字字幕乱码综合| 欧美午夜高清在线| 久久草成人影院| 嫩草影视91久久| 青草久久国产| 国产乱人伦免费视频| 99国产综合亚洲精品| 波多野结衣巨乳人妻| 黄色女人牲交| 成年女人毛片免费观看观看9| 91久久精品电影网| a在线观看视频网站| 在线十欧美十亚洲十日本专区| 丰满乱子伦码专区| 淫妇啪啪啪对白视频| 久久这里只有精品中国| 首页视频小说图片口味搜索| 欧美一区二区精品小视频在线| 在线观看午夜福利视频| 欧美精品啪啪一区二区三区| a级毛片a级免费在线| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区视频9| 性欧美人与动物交配| 在线观看av片永久免费下载| 嫁个100分男人电影在线观看| 国产精品一区二区三区四区免费观看 | 成年人黄色毛片网站| 身体一侧抽搐| a在线观看视频网站| 国产乱人伦免费视频| 嫩草影院新地址| 91九色精品人成在线观看| 国产一区二区激情短视频| 国产色爽女视频免费观看| 国产高清激情床上av| 国产v大片淫在线免费观看| 国产男靠女视频免费网站| 国产麻豆成人av免费视频| 1000部很黄的大片| 禁无遮挡网站| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| 老司机深夜福利视频在线观看| 国产精品自产拍在线观看55亚洲| 可以在线观看毛片的网站| 亚洲精品色激情综合| 国产大屁股一区二区在线视频| 一a级毛片在线观看| 亚洲精品456在线播放app | 国产高潮美女av| 久久午夜亚洲精品久久| 夜夜看夜夜爽夜夜摸| 国模一区二区三区四区视频| 激情在线观看视频在线高清| 亚洲七黄色美女视频| 搞女人的毛片| 一级毛片久久久久久久久女| 欧美日本视频| 久久久精品欧美日韩精品| 少妇的逼水好多| 精品久久久久久久久av| 免费观看精品视频网站| 欧美精品国产亚洲| 久久人妻av系列| 91麻豆精品激情在线观看国产| 色尼玛亚洲综合影院| 久久这里只有精品中国| 日韩欧美在线二视频| 国产高清激情床上av| 亚洲国产精品久久男人天堂| 热99在线观看视频| 日韩欧美在线二视频| 国产伦精品一区二区三区视频9| 免费黄网站久久成人精品 | 首页视频小说图片口味搜索| 久久人人精品亚洲av| 又爽又黄无遮挡网站| 国产真实伦视频高清在线观看 | 亚洲成人久久爱视频| 大型黄色视频在线免费观看| bbb黄色大片| 婷婷精品国产亚洲av在线| 在线看三级毛片| 日韩成人在线观看一区二区三区| 性欧美人与动物交配| 一级a爱片免费观看的视频| 特大巨黑吊av在线直播| 在线观看一区二区三区| 国产成人啪精品午夜网站| 久久婷婷人人爽人人干人人爱| 黄色丝袜av网址大全|