• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FT-IR、XPS和DFT研究水楊酸鈉在針鐵礦或赤鐵礦上的吸附機理

    2016-09-09 09:35:54胡慧萍,王夢,丁治英
    物理化學(xué)學(xué)報 2016年8期
    關(guān)鍵詞:水楊酸鈉王夢氧原子

    ?

    FT-IR、XPS和DFT研究水楊酸鈉在針鐵礦或赤鐵礦上的吸附機理

    胡慧萍1王夢1,*丁治英1,*姬廣富2

    (1中南大學(xué)化學(xué)化工學(xué)院,長沙410083;2中國工程物理研究院流體物理研究所,四川綿陽621900)

    采用傅里葉變換紅外(FT-IR)光譜、X射線光電子能譜(XPS)以及基于周期平面波的密度泛函理論(DFT)分別研究了水楊酸鈉在針鐵礦或赤鐵礦表面上的吸附結(jié)構(gòu),并將計算得到的光電子能譜移動(CLS)和電荷轉(zhuǎn)移與實驗得到的XPS結(jié)果進行對比。FT-IR結(jié)果表明,水楊酸鈉可能以雙齒雙核(V)和雙齒單核(IV)的形式分別吸附于針鐵礦或赤鐵礦表面。由DFT計算結(jié)果可知,水楊酸鈉在針鐵礦(101)晶面上形成雙齒雙核化合物(V)的吸附能為-5.46 eV。而水楊酸鈉在針鐵礦(101)晶面上形成雙齒單核化合物(IV)的吸附能為3.80 eV,因此水楊酸鈉在針鐵礦上基本不以雙齒單核化合物(IV)構(gòu)型存在。水楊酸鈉在赤鐵礦(001)晶面上形成雙齒單核化合物(IV)時吸附能為-4.07 eV,說明水楊酸鈉在赤鐵礦(001)晶面上形成了雙齒單核化合物(IV)。另外,理論計算的針鐵礦(101)晶面上吸附位點鐵原子的Fe 2p的CLS值(-0.68 eV)與實驗觀察到的Fe 2p的CLS值(-0.5 eV)吻合。理論計算的赤鐵礦(001)晶面上吸附位點鐵原子的Fe 2p的CLS值(-0.80 eV)與實驗觀察到的Fe 2p的CLS值(-0.8 eV)吻合。因此,水楊酸鈉吸附在針鐵礦表面時能夠通過羧酸基團上一個氧原子和酚羥基上的氧原子與針鐵礦(101)表面上的兩個鐵原子形成雙齒雙核(V)結(jié)構(gòu),而在赤鐵礦(001)表面上,水楊酸鈉中羧酸基團上一個氧原子和酚羥基上的氧原子與赤鐵礦(001)表面上的一個鐵原子形成了雙齒單核(IV)結(jié)構(gòu)。

    針鐵礦;赤鐵礦;水楊酸鈉吸附;FT-IR;XPS;DFT計算

    www.whxb.pku.edu.cn

    1 Introduction

    The bauxite ores ordinarily contain from 0.1%to 0.4%(w,mass fraction)organic compounds and occasionally as high as 0.6% (w)1.These organic compounds are comprised of a complex mixture of humates,lignin,and cellulose2.On digestion of this bauxite in the Bayer process,between 50%and 90%of the organic compounds in the bauxite ore may be extracted into the Bayer liquor as dissolved organic compounds which build up to an equilibrium level.The dissolved organic compounds presented in Bayer liquors are mainly aliphatic and aromatic compounds with carboxylic groups and hydroxyl groups(such as sodium formate, sodium acetate,sodium oxalate,sodium salicylate,disodium phthalate and so on).Goethite and hematite,the most common iron-containing minerals in red mud,play an important role in the entrainment,adsorption and precipitation of the dissolved organic species in the Bayer liquor due to their high surface areas and high densities of reactive surface sites.According to previous studies3,4, we have found that the dissolved organic compounds had negative effects on the settling performance of goethite or hematite slurries in the absence of flocculants,and sodium salicylate had a more remarkable negative effect than the sodium formate did.We have also investigated the adsorption mechanism of sodium formate onto the goethite or hematite surface by Fourier transform infrared (FT-IR)spectroscopy,X-ray photoemission spectroscopy(XPS), and periodic plane-wave density functional theory(DFT)calculation methods5,which showed that chemisorptions with different interfacial structures occurred between sodium formate and the goethite or hematite surface.Thus,an effort of molecular-level understanding of interfacial structure-property relationships between sodium salicylate and the goethite or hematite surface was made in this paper.

    The interfacial structure of sodium salicylate on the goethite or hematite surface has not been well understood.From a critical perusal of the public literature,the complex that occurred in natural aquatic systems6,7and fluid/rock systems8over a pH range from 2 to 10 between sodium salicylate and the goethite or hematite surface has been widely investigated by batch adsorption experiments and FT-IR measurement9-12,but no consistent conclusion was drawn about the interfacial structures.For example, via FT-IR measurement,the adsorption of sodium salicylate on the goethite or hematite surface was described as a bidentate mononuclear structure involving the phenolic oxygen atom(Ph-O-),one oxygen atom of carboxylic group(COO-),and one surface iron atom of goethite or hematite11,12.In addition,Yost et al.11proposed that the interfacial structure on the goethite surface could be either an electrostatic outer-sphere complex or a very weakly bound bridging bidentate complex around pH 5.5.Meanwhile,Biber and Stumm12proposed an alternate surface complex structure for salicylate adsorption to goethite involving binding one oxygen atom of carboxylate groups(COO-),and hydrogen bonding between surface oxygen atoms of goethite and phenolic functional groups at pH 7.However,the Bayer liquor is extremely alkaline with NaOH concentration range from 2 to 3 mol·L-1,and the interfacial structure of sodium salicylate on the goethite or hematite surface under this condition has not been investigated.

    XPS is one of the most extensively used surface analytical techniques due to its high sensitivity of 0.1%(atomic ratio)13and the ability to probe the electronic and geometric structures of solid surface with adsorbed molecules14,15.In this technique,the binding energies of emitted core electrons are determined through their escape kinetic energies.When referred to a given reference,that binding energy shift can be expressed as core level shift(CLS) which reflects the local atomic coordination and the relative oxidation state16.

    DFT calculations are suitable for a variety of surface science applications17,and the increased application of DFT modeling to chemical questions about environmental interface reactivity is emerging in literatures:DFT employing a Gaussian-type basis set on molecular clusters containing two iron ions has been used to study the competitive adsorption of salicylate and catechol on goethite surface18.While it captures some aspects of the adsorption process,the small cluster size does not allow realistic modeling of the goethite surface structure.The periodic DFT calculations are valuable for estimating surface complex structures and adsorption energies because they explicitly include details of the mineral surface.Otte et al.19employed DFT calculation using a projected augmented wave to investigate the adsorption of arsenate on the goethite(101)surface.Spin-polarized DFT calculations17were carried out to model analogs of arsenic surface complexes on the hematite(001)surface which is a prevalent growth face.Furthermore,the adsorptions and reactions of SO2on clean and oxygen-precovered Pd(100)were investigated with XPSand DFT calculations,and the adsorbed SO2species were identified by comparing the calculated CLS20with the experimental photoemission.This(incomplete,but demonstrative)summary represents the emerging role of,and growing interest in,DFT modeling applied to chemical questions about environmental interface reactivity.

    In this paper,goethite(101)and hematite(001)surfaces which represent the high reactivity properties of goethite and hematite are taken into account.A combination of FT-IR,XPS,and DFT calculations was performed to study the surface structures of sodium salicylate bound to goethite or hematite in the highly caustic liquor.Modeling of the structures,energetics,electronic structures and CLS of sodium salicylate on goethite(101)and hematite(001)surfaces were performed in a self-consistent manner.Possible interfacial structures of sodium salicylate on goethite(101)or hematite(001)surface are obtained.And these CLS of Fe 2p and charge transfer of the adsorption iron sites calculated by DFT with periodic interfacial structures are confronted to the X-ray photoemission experiments.

    2 Methods

    2.1Experimental details

    2.1.1Materials and characterization

    Goethite and hematite were prepared according to the procedure of Schwertmann and Cornell21,then dried at 60°C for 24 h.The resulting particles of goethite or hematite were identified by X-ray powder diffraction(XRD)pattern on X-ray diffractometer(D/max 2500,Rigaku Corporation,Cu Kαradiation,Japan).The XRD patterns are presented in Fig.1.The surface area and particle size distribution were measured by adsorption/desorption N2(g)isotherm(Monosorb Autosorb,Quantachrome Instruments Ltd., USA)and laser diffraction(Mastersizer2000,Malvern Instruments Ltd.,UK),respectively.The results are given in Table 1.Sodium hydroxide and sodium salicylate were of analytical grade.

    2.1.2Spectral measurements

    Fig.1 XRD patterns of samples

    Table 1 Properties of goethite and hematite samples

    The technique used for adsorbing sodium salicylate on the goethite or hematite surface was modified from that developed by Jones et al.22.0.25 g goethite or hematite was placed in an airtight conical flask with 50 mL of 0.001 mol·L-1sodium hydroxide solution and sonicated at 60°C for 10 h to obtain a suspension, and the suspension was centrifuged for 30 min at 4000 r·min-1to separate the supernatant and the solid.The supernatant was decanted to obtain a fresh,carbonate-free goethite or hematite solid placed in an airtight conical flask.50 mL sodium salicylate solution in pH 13 with certain concentration was added to the conical flask with 0.25 g of carbonate-free goethite or hematite solid,and the molar ratio for carboxylate groups of sodium salicylate to ferric ion of goethite or hematite was 10:1.After the mixture was sonicated at 60°C for 10 h and equilibrated for 24 h, the mixture was centrifuged at 4000 r·min-1to obtain a solid,and the solid was washed with de-ionized water for one time and dried in a vacuum oven at 60°C for 24 h.The samples of goethite or hematite after the treatment of sodium salicylate(SSa-treated goethite and hematite)were obtained.Goethite or hematite before the treatment of sodium salicylate(untreated goethite or hematite) was prepared in the same manner except that sodium salicylate was not added to the carbonate-free goethite or hematite suspension.

    The infrared spectra of the samples were measured by a Nicolet-6700 FT-IR spectrometer(Thermo Scientific Co.,USA).The samples were analyzed on X-ray photoelectron spectrometer (ESCALAB 250XI,Thermo Scientific Co.,USA)utilizing a monochromatic Al KαX-ray at 1486.6 eV.All measurements were carried out at the pressure below 10-8Pa and with a flood gun for charge neutralization.All spectra were charge-referenced so that the unfunctionalized aliphatic C 1s component occurred at 284.8 eV.Curve fittings of Fe 2p spectra were performed using the Avantage software.The reduced chi-squared(χ2)value incorporated in the Avantage was used as a potentially useful guide to assess the fitting quality.

    2.2Computational details

    Fig.2 Optimized structure of sodium salicylate

    The structure of sodium salicylate is shown in Fig.2.Periodic slab model of the goethite surface was created by cleaving thesurface(101)23from the experimental crystal structure of bulk goethite(space group Pnma24,25),which is modeled in a supercell geometry with a vacuum space of 1 nm and extended to(1×3)15. The thickness of the goethite(101)slab amounted to eight Fe layers.The periodic slab model of hematite surface was created by cleaving the surface(001)from the structure of bulk hematite (space group R3c26).The surface(001)of hematite was extended to(1×2)and modeled using a periodic slab consisting of six O layers and twelve Fe layers on which the terminal Featoms contain triply-coordinated oxygen atoms in the subsurface layer,with an excess of 1.5 nm of vacuum separating the periodic images in the direction along the surface normal17.Initial magnetic moments of Fe atoms were assigned so as to obtain an antiferromagnetic goethite and hematite slab in each case.The goethite(101)or hematite(001)surfaces was passivated by water dissociation products to surface dangling Fe and O atoms(as shown in Fig.3).

    Fig.3 Truncated side views of the models of the surface slab

    According to the previous literature12,carboxylate groups may be adsorbed on inorganic(oxide)surfaces as a monodentate mononuclear(I)structure,a bidentate mononuclear(II)structure or a bidentate binuclear(III)structure,and salicylate groups may be adsorbed on inorganic(oxide)surfaces as a bidentate mononuclear(IV)structure or a bidentate binuclear(V)structure(as shown in Fig.4)

    In this study,the free sodium salicylate was added to the goethite(101)surface in a bidentate binuclear(V)structure or a bidentate mononuclear(IV)structure(as shown in Fig.5(a,b)).And the free sodium salicylate was added to the hematite(001)surface in a bidentate mononuclear(IV)structure(as shown in Fig.5(c)).

    DFT calculations were carried out with the CASTEP code27,28in Materials Studio 6.0 using density functional theory.Plane wave basis sets were used to solve the Kohn-Sham equations.The generalized gradient approximation(GGA)electron exchange and correlation effects were described using the Perdew Burke Ernzerhof(PBE)29.The on-site Coulomb interaction of 3d electrons,the GGA+U method was applied to the Fe atoms to improve the description of the electronic properties,the suggested values of the Hubbard U were correspondingly 5 eV for goethite19and 2.5 eV for hematite30.For the electronic integration in reciprocal space,the Brillouin zone was sampled according to theMonkhorst-Pack scheme31.The k point was set to gamma for free sodium salacylate and fine for surface structures with or without sodium salicylate.

    Fig.4 Mode of complex structures of metal-salicylate compounds

    Fig.5 Illustration of the optimized interfacial structures on goethite and hematite

    For free sodium salicylate,the ionic cores were described by the norm conserving pseudopotentials32.The wave functions were expanded with an energy cutoff of 750 eV for geometry optimization and vibrational analysis.All positions were relaxed and fully optimized up to a force convergence of 0.3 eV·nm-1.The absence of imaginary frequencies verified that all structures were true minima33.The final structure of the geometry optimization was subjected to a single-point energy calculation with the ultrasoft pseudopotentials34and an energy cutoff of 340 eV for the plane-wave basis set to achieve an accuracy of total energy differences of 2×10-5eV·atom-1.

    As to the models of surface slabs,SSa-goethite systems and SSa-hematite system,the optimized parameter was set as the same as that used in the single-point energy calculation for free sodium salicylate.The structures of the adsorbate and the four outer Fe layers of goethite(101)surface or the adsorbate and the two outer Fe layers of hematite(001)surface were relaxed and fully optimized up to a force convergence of 0.5 eV·nm-1,while the inner layers kept fixed at their bulk positions to reproduce the properties of bulk goethite or hematite.

    The adsorption energy,Eads,of the adsorbate at goethite or hematite surfaces in(eV)was described as Eq.(1):

    where Esurfaceand Eadsorbate-surface(in eV)were the total energies of goethite or hematite slabs before and after the adsorption of the adsorbate.Eadsorbate(eV)was the total energy of a free adsorbate molecule.

    For the calculation of CLS of Fe 2p,geometry-optimized SSagoethite systems and SSa-hematite system were used as models of the interfacial structures.We modeled CLS of Fe 2p as total energy differences between the system with a core hole on the excited Fe atom and the unperturbed system.The on-the-fly pseudopotential provided in the Materials Studio software was adopted to describe the excited Fe atom which included a corehole in the 2p level.In a pseudopotential formulation,absolute binding energies were not accessible.However,CLS could be accurately achieved with respect to a given reference.In this work, the reference was taken to be the surface iron atoms located at the same position on goethite(101)or hematite(001)surface.Within these calculations,we arrived at Eq.(2)for the CLS of a single atom in the interfacial structures:

    where ECLS(eV)was the core level shift of a certain system.Eionand Egsrepresented the ground state energies of the system with and without a core hole,respectively.

    The CLS of Fe 2p and charge transfer of the adsorbed surface iron site calculated by DFT with periodic interfacial structures were confronted to the X-ray photoemission experiments,and accurate interfacial structures were verified on the basis of the consistence between the calculated and experimental results.

    3 Results and discussion

    3.1FT-IR spectroscopy analysis

    The FT-IR spectra of free SSa,untreated goethite,and SSatreated goethite are depicted in Fig.6.The FT-IR spectra of free SSa,untreated hematite,and SSa-treated hematite are depicted in Fig.7.

    Fig.6 FT-IR spectra of samples

    Fig.7 FT-IR spectra of samples

    Several studies11,22have demonstrated that the expected frequency shifts occurred when carboxylic acids or their salts were adsorbed as carboxylates on inorganic(oxide)surfaces.When the carboxyl group of carboxylic acids or their salts is directly involved in the adsorption,it is possible to identify the structures on the basis of the carboxylate asymmetric(νasym)and symmetric(νsym) stretches,and their separation(Δν=νasym-νsym).Δν(adsorbed)and Δν(salt)are correspondingly the separation of the symmetric and asymmetric stretches of the carboxylate group of the adsorbed carboxylate salt and the unadsorbed carboxylate salt.They can beused to identify the adsorbed structures(as shown in Fig.4):when the value of Δν(adsorbed)is smaller than that of Δν(salt),a bidentate mononuclear(II)structure is observed(two oxygen atoms of the carboxylate group form two bonds with one metal atom on the solid surface).However,when the value of Δν(adsorbed)is greater than that of Δν(salt),a monodentate mononuclear(I) structure is seen(only one oxygen atom of the carboxylate group binds with one metal atom on the solid surface).In bidentate binuclear(III)structure(two oxygen atoms of the carboxylate group bind with two metal atoms on the solid surface),Δν(adsorbed) almost equals to Δν(salt).

    In addition,sodium salicylate may be adsorbed on inorganic (oxide)surfaces with a bidentate mononuclear(IV)structure or a bidentate binuclear(V)structure(as shown in Fig.4).In the bidentate mononuclear(IV)structure,both the oxygen atom of phenolic group and one oxygen atom of the carboxylate group bind with one surface iron atom.Whereas,when the oxygen atom of phenolic group and one oxygen atom of the carboxylate group bind with two adjacent surface atoms of inorganic(oxide),a bidentate binuclear(V)structure may be formed.

    In the FT-IR spectrum of free sodium salicylate(Fig.6(a)),the asymmetric and symmetric stretches of the carboxylate group can be identified as the bands at 1587 and 1378 cm-1.The bands at 1623,1486,and 1469 cm-1are correspondingly assigned to the 8a, 16b,and 16a C―C ring stretching modes of benzene based on the work of Varsányi35.The band at 1295 cm-1is attributed to the bending mode of the phenolic(Ph―O―H)group.The phenolic Ph―O stretching vibration is represented by the band at 1250 cm-1in sodium salicylate.The band frequencies between 1200 and 1000 cm-1are the C―H inner plane bending vibration.

    As shown in Fig.6(b),the bands at 1639 and 1381 cm-1are assigned to OH bending vibration bands of adsorbed water and constitutional water of the untreated goethite.As shown in Fig.7 (b),the bands at 1627 and 1384 cm-1are assigned to the vibrations of adsorbed water and constitutional water of the untreated hematite.

    In the FT-IR spectra of SSa-treated goethite(Fig.6(c)),the asymmetric(νasym)and symmetric(νsym)stretching vibrations of carboxylate group of adsorbed sodium salicylate are correspondingly at 1572 and 1381 cm-1.In the FT-IR spectra of SSatreated hematite(Fig.7(c)),the asymmetric and symmetric stretches frequencies of the carboxylate group of adsorbed sodium salicylate are at 1571 and 1385 cm-1,respectively.The value of Δν(salt)for unadsorbed sodium salicylate is 208 cm-1,Δν(adsorbed)values for sodium salicylate adsorbed on the goethite or hematite surface are correspondingly 191 and 187 cm-1.

    However,according to Yost et al.′s work11,a distinction among the types of Fe-carboxylate complexes cannot be identified readily from their FT-IR spectra based solely on the simple rule of comparing Δν(adsorbed)value with Δν(salt)value when salicylate coordinates with Fe(III).As shown in Fig.7(c),the absence of the bending frequency of the Ph―O―H in adsorbed sodium salicylate on the goethite or hematite surface indicates the deprotonation and coordination of phenolic group with the surface iron atom of goethite or hematite.Furthermore,the bending vibration of phenolic group shifts to 1000-1100 cm-1.Therefore,we assumed that sodium salicylate may be adsorbed on the goethite and hematite surfaces as a bidentate mononuclear(IV)or a bidentate binuclear(V)structure.

    3.2X-ray photoelectron spectroscopy analysis

    For the analysis of Fe 2p XPS spectra,a Shirley background is used for the Fe 2p1/2and Fe 2p3/2envelopes.The Fe 2p1/2and Fe 2p3/2envelopes are fitted using peaks corresponding to the Gupta and Sen(GS)multiplets,surface structures,and shake-up satellites36.The peak ascribed to surface structures is added with a higher binding energy and a larger full width at half-maximum (FWHM)than the GS multiplets.Asingle large peak representing the satellites due to shake-up is also added.Asingle low intensity peak on the low-binding-energy side of the envelope is added to account for the information of Fe ions with a lower oxidation state than normal oxidation state by the production of defects in neighboring sites,and this peak is referred to as the‘pre-peak'. The fitting of each compound follows the GS predictions well. The Fe 2p spectra and fitting curves for goethite or hematite before and after treatment of sodium salicylate are depicted in Fig.8. Table 2 lists the fitting peaks of the Fe 2p envelopes for goethite or hematite before and after the treatment of sodium salicylate.

    As presented in Fig.8 and Table 2,it is observed that all fitting peaks of Fe 2p for goethite or hematite after the treatment of sodium salicylate were correspondingly downshifted relative to untreated goethite or hematite.The peak 2 and surface peaks in the Fe 2p3/2envelope for SSa-treated goethite are correspondingly downshifted to 711.3 and 714.5 eV relative to those(711.8 and 715.0 eV)in the Fe 2p3/2envelope for untreated goethite.That is to say,the peaks in the Fe 2p spectrum for SSa-treated goethite are correspondingly downshifted by 0.5 eV compared with untreated goethite.The peak 2 and surface peaks in the Fe 2p3/2envelope for SSa-treated hematite are correspondingly downshifted to 711.1 and 714.2 eV relative to those(711.9 and 715.0 eV)in the Fe 2p3/2envelope for untreated hematite.That is to say,the peaks in the Fe 2p spectrum for SSa-treated hematite are both downshifted by 0.8 eV compared with untreated hematite.

    In this work,the downshift of binding energies of Fe 2p spectra for SSa-treated goethite or hematite will be explained by the atomic potential model37.The atomic potential model assumes that the atomic core potential varies linearly with the electron density of atoms,and the oxidation of one atom results in the increase of the atomic binding energy of the inner electron,whereas the reduction of one atom results in the decrease of the atomic binding energy of the inner electron.After sodium salicylate was adsorbed on the goethite or hematite surface,the binding energies of Fe 2p spectra were correspondingly decreased with respect to untreated goethite or hematite.According to the atomic potential model,the ion atoms may be partially reduced to a lower valence state.The coordination between oxygen atoms of carboxylate or phenolic group from sodium salicylate and surface iron atoms of goethiteor hematite may explain the partial reduction of iron atoms on the surfaces,because these iron atoms accepted electron clouds from oxygen atoms of carboxylate or phenolic group of sodium salicylate.However,the core level shift of the peaks of Fe 2p spectra for SSa-treated hematite was larger than that for SSa-treated goethite,which may be due to the differences of the interfacial structures between SSa-treated goethite and SSa-treated hematite.

    Fig.8 Fe 2p XPS spectra and the fitting curves of samples

    Table 2 Fitting peaks of Fe 2p spectra for goethite or hematite before and after the treatment of SSa

    In the bidentate mononuclear(IV)structure,the oxygen atom of phenolic group and one oxygen atom of the carboxylate group attach and donate electrons to one surface iron atom.Whereas,in a bidentate binuclear(V)structure,the oxygen atom of phenolic group and one oxygen atom of the carboxylate group correspondingly attach and donate electrons to two adjacent surface iron atoms.Thus,the electronic charge densities of the adsorbed iron atoms with a bidentate mononuclear(IV)structure could be higher than those with a bidentate binuclear(V)structure.According to the above mentioned relationship between the change of the binding energies and electronic charge densities of adsorbed atoms on solid surfaces,we can assume that the binding energy of Fe 2p spectrum for adsorbed iron atoms with a bidentate mononuclear(IV)structure could be lower than that with a bidentate binuclear(V)structure.Thus,the decrease of binding energy of adsorbed iron atoms relative to unadsorbed iron atoms would be larger in a bidentate mononuclear(IV)structure than that in a bidentate binuclear(V)structure.

    As listed in Table 2,the binding energies of Fe 2p3/2and Fe 2p1/2for SSa-treated goethite were decreased by 0.5 eV relative to the untreated goethite,and the binding energy of Fe 2p3/2and Fe 2p1/2for SSa-treated hematite was decreased by 0.8 eV relative to the untreated hematite,which indicates that the adsorbed soidium salicylate may be correspondingly adsorbed on the goethite and hematite surface as a bidentate binuclear(V)structure and a bidentate mononuclear(IV)structure.

    3.3Quantum chemical calculations

    In this section,we present the optimized interfacial structure, energetics,electronic structures and the CLS of Fe 2p of the in-terfacial structures of sodium salicylate adsorbed on goethite or hematite surfaces after a quantum chemical calculation of sodium salicylate adsorbed on the periodic surface slab of goethite or hematite was carried out.

    Table 3 Interatomic distances and the lattice parameters for optimized bulk goethite or hematite in this work and in references

    Table 4 Calculated interatomic distances(d)and bond angles for the interfacial structures of SSa adsorbed on goethite(101)or hematite(001)surface

    3.3.1Interfacial structures

    The OH―OHdistance(0.2925 nm)at iron site of goethite(101) surface matches well the O―OHdistance(0.2702 nm)of the free sodium salicylate,which allows sodium salicylate to form a bidentate binuclear(V)structure(Fig.6(a))on the goethite(101) surface.Moreover,a bidentate mononuclear(IV)structure(Fig.6 (b))on the goethite(101)surface was also modeled in order to further identify the possible structure.While the OH―OHdistances (0.2925 nm)at the iron site of goethite(101)surface are slightly greater than the distance(0.2251 nm)between two oxygen atoms of carboxylate of the free sodium salicylate.Thus,the structure that the two oxygen atoms of the―COO-group are adsorbed with a bidentate mononuclear(II)structure or bidentate binuclear(III) on the goethite(101)surface may not be favorable.

    On the hematite(001)surface,the Fe―Fe distance is 0.5035 nm,and the OH―OHdistance at one surface dangling iron atom of the hematite(001)surface passivated by the dissociative water functional groups is 0.2622 nm,which also matches well with the O―OHdistance(0.2702 nm)of the free sodium salicylate,and thus allow sodium salicylate adsorbed as a bidentate mononuclear (IV)structure(Fig.6(c)).However,because the Fe―Fe and the OH―OHdistance at two dangling iron atoms on the hematite(001) surface is 0.5035 nm,which is significantly larger than the O―OHdistance(0.2702 nm)of the free sodium salicylate,the oxygen atom of phenolic group and one oxygen atom of the carboxylate group of sodium salicylate cannot attach to two adjacent surface iron atoms of hematite(001)with a reasonable interatomic distance in the range of chemical bond,which excludes the formation of a bidentate binuclear(V)structure for the adsorbed sodium salicylate on the hematite(001)surface.Moreover,the OH―OHdistances(0.2622 nm)at the iron site of the hematite(001)surface are slightly greater than the distance(0.2251 nm)between two oxygen atoms of carboxylate of the free sodium salicylate.And the structure that the two oxygen atoms of the carboxylate group are adsorbed with a bidentate mononuclear(II)structure or bidentate binuclear(III)on the hematite(001)surface may not be favorable.

    Therefore,the bidentate binuclear(V)and bidentate mononuclear(IV)structures on the goethite surface and a bidentate mononuclear(IV)structure on the hematite surface as the starting interfacial structure was verified in detail.Later we will report the significant changes upon structural relaxation.

    The interatomic distances and the lattice parameters for bulk goethite or hematite are listed in Table 3.The Fe―O distances in optimized bulk goethite are in the range from 0.1864 to 0.2008 nm,which owns a difference within 0.0128 nm relative to the previously calculated data in the range from 0.1901 to 0.2136 nm for bulk goethite38.The Fe―O distances in optimized bulk hematite are 0.2000 and 0.2024 nm,which are in agreement with the observed data of 0.19511 and 0.21028 nm from the single crystal of hematite39.The results indicate that the calculation method used in this work is reasonable.

    The interatomic distances and bond angles for the interfacial structures of sodium salicylate on goethite(101)and hematite (001)surfaces are listed in Table 4.As listed in Table 4,the interatomic distances of Fe18―O2and Fe2―O3are correspondingly 0.2016 and 0.2042 nm in the bidentate binuclear(V)structure of SSa adsorbed on goethite(101)surface,while the interatomic distances of Fe14―O2and Fe14―O3are correspondingly 0.1896 and 0.1861 nm in bidentate mononuclear(IV)structure of SSa ad-sorbed on goethite(101)surface.And the interatomic distances of Fe23―O2and Fe23―O3are correspondingly 0.1944 and 0.1947 nm in the interfacial structures of SSa adsorbed on hematite(001) surface.

    Table 5 Calculated adsorption energies(ΔEads)of the sodium salicylate adsorbed on goethite(101)and hematite(001)surfaces

    Table 6 Calculated Mulliken charges,charge transfer,and photoemmission CLS of atoms for different structures

    3.3.2Adsorption energies of the optimized interfacial

    structures

    In order to further verify the preferable interfacial structures, we also discuss the adsorption energy of the sodium salicylate on the goethite or hematie surface(Table 5).As listed in Table 5,the bidentate binuclear(V)structure of the sodium salicylate on the goethite(101)surface is favorable with adsorption energy of-5.46 eV,while no adsorption of sodium salicylate on the goethite(101)surface as a bidentate mononuclear(IV)structure occurred with a positive adsorption energy of 3.80 eV.And on the hematite(001)surface,the bidentate mononuclear(IV)structure has the adsorption energy of-4.07 eV,which is a further evidence for the formation of the bidentate mononuclear(IV)structure of the adsorbed sodium salicylate on the hematite(001)surface.

    3.3.3Electronic properties and core level shift

    The electronic structures and core level shifts of the possible interfacial structures of sodium salicylate adsorbed on goethite (101)and hematite(001)surfaces were calculated,respectively. The calculated Mulliken charges,charge transfer,and CLS values of atoms are listed in Table 6.

    First,the calculated Mulliken charge values of free sodium salicylate and the surface complexes are listed in Table 6.Table 6 indicates that the negative charges of free sodium salicylate were mainly clustered on O1and O2atoms of carboxylate group and O3of the ortho phenol group.Hence both oxygen atoms in free sodium salicylate were electron-donating centers and the chemically reactive centers.

    After the adsorption of sodium salicylate occurred on the goethite or hematite surface,our calculation results indicate that the charges of oxygen atoms of both the carboxylate group and the ortho phenol group of adsorbed sodium salicylate increased,especially for O1of carboxylate group and O3of the ortho phenol group,and the charges of the surface Fe atom on the adsorbed site decreased.This means that negative charges are transferred from oxygen atoms of sodium salicylate to the surface Fe atom,which results in a lower binding energy of the Fe 2p peaks of the adsorbed surface iron sites than that of unadsorbed surface iron atoms.

    On the other hand,we compare the calculated charge transfers and CLS with the experimentally observed core-level shifts of Fe 2p from XPS measurements.We consider that the consistence between the calculated CLS and the experimentally observed CLS is a good indicator of the pertinence of our model.According to the calculated results(listed in Table 6),the calculated CLS of Fe 2p(-0.68 eV)for the adsorbed iron site on goethite(101)surface is consistent with the experimentally observed CLS of Fe 2p(-0.5 eV)for SSa-treated goethite(listed in Table 2).Thus,the goethite (101)surfaces can be predicted to be capable of adsorbing sodium salicylate as a bidentate binuclear(V)structure.On the other hand, our calculated CLS of Fe 2p(-0.80 eV)for the adsorbed iron site on hematite(001)surface is in good agreement with the experimentally observed CLS of Fe 2p(-0.8 eV)for SSa-treated hematite(listed in Table 2).This consistency suggests that our optimized interfacial structure with a bidentate mononuclear(IV) complex for sodium formate-hematite(001)system can be regarded as a reasonable and realistic structure.

    4 Conclusions

    The adsorption of sodium salicylate on goethite or hematite surface was investigated by FT-IR,XPS,and DFT calculations, respectively.The goemetry optimization by DFT indicates that the sodium salicylate adsorbed on goethite(101)forms a bidentate binuclear(V)structure rather than a bidentate mononuclear(IV) structure.Whereas,the formation of a bidentate mononuclear(IV) structure occurs among one oxygen atom of carboxylate group, one oxygen atom of phenolic group and one iron atom on hematite (001)surface.

    The calculated CLS of Fe 2p for the interfacial structure on goethite(101)surface is coincide with the experimental observed CLS of Fe 2p,and the calculated CLS of Fe 2p for the interfacial structure on the hematite(001)surface is in good agreement with the experimentally observed CLS of Fe 2p.Thus,the goethite (101)surface and hematite(001)surface may be predicted to be capable of adsorbing sodium salicylate as bidentate binuclear(V) and bidentate mononuclear(IV)structures,respectively.

    References

    (1)Swinkels,D.A.;Chouzadjian,K.;Removal of Organics from Bayer Process Streams.US Patent 4836990,1989-6-6.

    (2)Power,G.;Loh,J.Hydrometallurgy 2010,105(1-2),1. doi:10.1016/j.hydromet.2010.07.006

    (3)Wang,M.;Hu,H.P.;Liu,J.W.;Chen,Q.Y.Journal of Central South University 2016,23,1.[王夢,胡慧萍,劉錦偉,陳啟元.中南大學(xué)學(xué)報,2016,23,1.]

    (4)Wang,M.;Hu,H.P.;Liu,J.W.;Chen,Q.Y.Transactions of Nonferrous Metals Society of China 2016,Accepted.[王夢,胡慧萍,劉錦偉,陳啟元.有色金屬學(xué)報,2016,已接受.]

    (5)Wang,M.;Hu,H.P.;Chen,Q.Y.;Ji,G.F.FT-IR,XPS and Density Functional Theory Study ofAdsorption Mechanism of Sodium Formate onto Goethite or Hematite.InAlumina& Bauxite;Proceedings of the Minerals,Metals&Materials SocietyAnnual Meeting&Exhibition,Nashville,Tennessee, February 14-18,2016;McGlade,P.T.Ed.;Warrendale,PA 15086 USA,2016.

    (6)Tipping,E.Chem.Geol.1981,33(1-4),81.doi:10.1016/0009-2541(81)90086-3

    (7)Tipping,E.Geochim.Cosmochim.Ac.1981,45(2),191. doi:10.1016/0016-7037(81)90162-9

    (8)Smith,R.E.Geoderma 1993,58(1-2),128.doi:10.1016/0016-7061(93)90091-X

    (9)Evanko,C.R.;Dzombak,D.A.Environ.Sci.Technol.1998,32 (19),2846.doi:10.1021/es980256t

    (10)Boily,J.F.;Persson,P.;Sjoberg,S.J.Colloid Interface Sci. 2000,227(1),132.doi:10.1006/jcis.2000.6886

    (11)Yost,E.C.;Tejedor-Tejedor,M.I.;Anderson,M.A.Environ. Sci.Technol.1990,24(6),822.doi:10.1021/es00076a005

    (12)Biber,M.V.;Stumm,W.Environ.Sci.Technol.1994,28(5), 763.doi:10.1021/es00054a004

    (13)Zhao,C.Investigation of the Magnetic Properties of NonthiolatedAu Nano-structures Grown by LaserAblation.Ph.D. Dissertation,Virginia Polytechnic Institute and State University, Blacksburg,Virginia,2014.

    (14)Zeng,Z.;Ma,X.;Ding,W.;Li,W.Science China Chemistry 2010,53(2),402.doi:10.1007/s11426-010-0086-z

    (15)Kubicki,J.D.;Paul,K.W.;Kabalan,L.;Zhu,Q.;Mrozik,M. K.;Aryanpour,M.;Pierre-Louis,A.M.;Strongin,D.R. Langmuir 2012,28(41),14573.doi:10.1021/la303111a

    (16)Miceli,G.;Pasquarello,A.Appl.Phys.Lett.2013,102(20), 201607/1.doi:10.1063/1.4807730

    (17)Goffinet,C.J.;Mason,S.E.J.Environ.Monitor.2012,14(7), 1860.doi:10.1039/c2em30355h

    (18)Yang,Y.;Duan,J.;Jing,C.J.Phys.Chem.C 2013,117(20), 10597.doi:10.1021/jp4027578

    (19)Otte,K.;Schmahl,W.W.;Pentcheva,R.J.Phys.Chem.C 2013, 117(30),15571.doi:10.1021/jp400649m

    (20)Luckas,N.;Gotterbarm,K.;Streber,R.;Lorenz,M.P.A.; Hoefert,O.;Vines,F.;Papp,C.;Goerling,A.;Steinrueck,H.P. Phys.Chem.Chem.Phys.2011,13(36),16227.doi:10.1039/ c1cp21694e

    (21)Schwertmann,U.;Cornell,R.M.Iron Oxides in the Laboratory:Preparation and Characterization;Wiley-VCH: Weinheim,Germany,1991;p 137.

    (22)Jones,F.;Farrow,J.B.;van Bronswijk,W.Langmuir 1998,14 (22),6512.doi:10.1021/la971126l

    (23)Villalobos,M.;Cheney,M.A.;Alcaraz-Cienfuegos,J.J.Colloid Interface Sci.2009,336(2),412.doi:10.1016/j.jcis.2009.04.052

    (24)Paul,K.W.;Kubicki,J.D.;Sparks,D.L.Eur.J.Soil Sci.2007, 58(4),978.doi:10.1111/j.1365-2389.2007.00936.x

    (25)Manceau,A.;Nagy,K.L.;Spadini,L.;Ragnarsdottir,K.V. J.Colloid Interface Sci.2000,228(2),306.doi:10.1006/ jcis.2000.6922

    (26)Rohrbach,A.;Hafner,J.;Kresse,G.Phys.Rev.B 2004,70(12), 125426.doi:10.1103/PhysRevB.70.125426

    (27)Li,Y.;Gao,Y.;Xiao,B.;Min,T.;Fan,Z.;Ma,S.;Xu,L. J.Alloy.Compd.2010,502(1),28.doi:10.1016/j. jallcom.2010.04.184

    (28)Refson,K.;Tulip,P.R.;Clark,S.J.Phys.Rev.B 2006,73(15), 155114.doi:10.1103/PhysRevB.73.155114

    (29)Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77 (18),3865.doi:10.1103/PhysRevLett.77.3865

    (30)Guo,H.;Barnard,A.S.Phys.Rev.B 2011,83(9),094112. doi:10.1103/PhysRevB.83.094112

    (31)Monkhorst,H.J.;Pack,J.D.Phys.Rev.B 1976,13(12),5188. doi:10.1103/PhysRevB.13.5188

    (32)Hamann,D.R.;Schlüter,M.;Chiang,C.Phys.Rev.Lett.1979, 43(20),1494.doi:10.1103/PhysRevLett.43.1494

    (33)Tavakol,H.J.Mol.Struc.-Theochem 2009,916(1-3),172. doi:10.1016/j.theochem.2009.09.032

    (34)Laasonen,K.;Car,R.;Lee,C.;Vanderbilt,D.Phys.Rev.B 1991,43(8),6796.doi:10.1103/PhysRevB.43.6796

    (35)Varsányi,G.Normal Vibrations of Benzene and Its Derivatives, In Vibrational Spectra of Benzene Derivatives;Academic Press: New York,1969;pp 141-393.doi:10.1016/B978-0-12-714950-9.50007-7

    (36)Grosvenor,A.P.;Kobe,B.A.;Biesinger,M.C.;McIntyre,N.S. Surf.Interface Anal.2004,36(12),1564.doi:10.1002/sia.1984

    (37)Cole,R.J.;Gregory,D.A.C.;Weightman,P.Phys.Rev.B 1994, 49(8),5657.doi:10.1103/PhysRevB.49.5657

    (38)Blanchard,M.;Balan,E.;Giura,P.;Béneut,K.;Yi,H.;Morin, G.;Pinilla,C.;Lazzeri,M.;Floris,A.Phys.Chem.Miner.2013, 41(4),289.doi:10.1007/s00269-013-0648-7

    (39)Sadykov,V.A.;Isupova,L.A.;Tsybulya,S.V.;Cherepanova,S. V.;Litvak,G.S.;Burgina,E.B.;Kustova,G.N.;Kolomiichuk, V.N.;Ivanov,V.P.;Paukshtis,E.A.;Golovin,A.V.; Avvakumov,E.G.J.Solid State Chem.1996,123,191. doi:10.1006/jssc.1996.0168

    FT-IR,XPS and DFT Study of the Adsorption Mechanism of Sodium Salicylate onto Goethite or Hematite

    HU Hui-Ping1WANG Meng1,*DING Zhi-Ying1,*JI Guang-Fu2
    (1College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,P.R.China;2Institute of Fluid Physics,Chinese Academy of Engineering Physics,Mianyang 621900,Sichuan Province,P.R.China)

    The adsorption of sodium salicylate on goethite or hematite surfaces was investigated by Fourier transform infrared(FT-IR)spectroscopy,X-ray photoemission spectroscopy(XPS),and periodic plane-wave density functional theory(DFT)calculations.The core level shift(CLS)and charge transfer of the adsorbed surface iron sites calculated by DFT with periodic interfacial structures were compared with the X-ray photoemission experiments.The FT-IR results reveal that the interfacial structure of sodium salicylate adsorbed on goethite or hematite surfaces can be classified as bidentate binuclear(V)or bidentate mononuclear(IV), respectively.The DFT calculated results indicate that the bidentate binuclear(V)structure of sodium salicylate is favorable on the goethite(101)surface,with an adsorption energy of-5.46 eV,while the adsorption of sodium salicylate on the goethite(101)surface as a bidentate mononuclear(IV)structure is not predicted,as it has a positive adsorption energy of 3.80 eV.Conversely,on the hematite(001)surface,the bidentate mononuclear (IV)structure of the adsorbed sodium salicylate has anadsorption energy of-4.07 eV,confirming its favorability. Moreover,the calculated CLS of Fe 2p(-0.68 eV)for the adsorbed iron site on the goethite(101)surface isconsistent with the experimentally observed CLS of Fe 2p(-0.5 eV)for SSa-treated goethite(goethite after the treatment of sodium salicylate).Our calculated CLS of Fe 2p(-0.80 eV)for the adsorbed iron site on the hematite(001)surface is likewise in good agreement with the experimentally observed CLS of Fe 2p(-0.8 eV) for SSa-treated hematite(hematite after the treatment of sodium salicylate).Thus,goethite is predicted to adsorb sodium salicylate as a bidentate binuclear(V)structure via the bonding of one carboxylate oxygen atom and the phenolic oxygen atom of sodium salicylate to two surface iron atoms of goethite(101).Meanwhile,on the hematite surface,the bidentate mononuclear(IV)complex formed via the bonding of one carboxylate oxygen atom and the phenolic oxygen atom of sodium salicylate to one surface iron atom of hematite(001)can be regarded as plausible.

    Goethite;Hematite;Sodium salicylate adsorption;FT-IR;XPS;DFT calculation

    January 28,2016;Revised:April 22,2016;Published on Web:April 22,2016.

    O647

    10.3866/PKU.WHXB201604225

    *Corresponding authors.WANG Meng,Email:mengwchem@163.com.DING Zhi-Ying,Email:huierding@126.com;Tel:+86-731-88879616. The project was supported by the National Natural Science Foundation of China(51134007,51174231).

    國家自然科學(xué)基金(51134007,51174231)資助項目

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    猜你喜歡
    水楊酸鈉王夢氧原子
    臭氧層為何在大氣層上空
    你聽
    椰城(2021年12期)2021-12-10 06:08:52
    HPLC 法測定水楊酸鈉注射液中水楊酸鈉的含量
    在愛和自由里成長——《狼王夢》讀后感
    小讀者(2021年4期)2021-06-11 05:42:26
    萬千閱讀“相”,你中了哪一項
    NiTi(110)表面氧原子吸附的第一性原理研究?
    《狼王夢》讀后感
    氧原子輻射作用下PVDF/POSS納米復(fù)合材料的腐蝕損傷模擬
    腐蝕與防護(2016年7期)2016-09-14 09:30:56
    藥物水楊酸鈉與5%碳酸氫鈉耳靜脈注射治療豬風(fēng)濕性后肢癱瘓
    13%井岡霉素·水楊酸鈉水劑中水楊酸鈉的紫外分光光度法測定
    江西化工(2015年6期)2015-03-20 12:52:20
    av在线观看视频网站免费| 男女国产视频网站| av天堂久久9| 精品久久久噜噜| 三上悠亚av全集在线观看| 嘟嘟电影网在线观看| 亚洲av不卡在线观看| 天堂俺去俺来也www色官网| 欧美3d第一页| 久久精品久久久久久久性| 亚洲精品456在线播放app| 久久久久久久大尺度免费视频| 十八禁高潮呻吟视频| 成人综合一区亚洲| 亚洲国产精品999| 成人免费观看视频高清| 成人亚洲精品一区在线观看| av在线app专区| 国产av精品麻豆| 80岁老熟妇乱子伦牲交| 亚洲av不卡在线观看| 激情五月婷婷亚洲| 永久网站在线| 国语对白做爰xxxⅹ性视频网站| 少妇精品久久久久久久| 好男人视频免费观看在线| 99精国产麻豆久久婷婷| 国产高清有码在线观看视频| 成人国产av品久久久| 国产黄色视频一区二区在线观看| av黄色大香蕉| 97超碰精品成人国产| 97在线人人人人妻| 久久99热6这里只有精品| 欧美 亚洲 国产 日韩一| 亚洲av.av天堂| 我要看黄色一级片免费的| 国产片内射在线| 色网站视频免费| 大码成人一级视频| 亚洲欧美精品自产自拍| 午夜福利在线观看免费完整高清在| 成人免费观看视频高清| 欧美激情国产日韩精品一区| 亚洲av在线观看美女高潮| 美女福利国产在线| 啦啦啦视频在线资源免费观看| 日本av手机在线免费观看| 综合色丁香网| a级毛片黄视频| 中文字幕制服av| 午夜免费观看性视频| 人人妻人人爽人人添夜夜欢视频| 欧美三级亚洲精品| 欧美人与性动交α欧美精品济南到 | 夜夜爽夜夜爽视频| 3wmmmm亚洲av在线观看| 日本色播在线视频| 精品久久久久久电影网| 国产亚洲最大av| av国产久精品久网站免费入址| 最近的中文字幕免费完整| 秋霞在线观看毛片| 欧美成人午夜免费资源| 在线观看人妻少妇| 欧美老熟妇乱子伦牲交| 精品少妇黑人巨大在线播放| 国产高清不卡午夜福利| 高清黄色对白视频在线免费看| 亚洲精品,欧美精品| 街头女战士在线观看网站| 亚洲av男天堂| 国产视频首页在线观看| 国产综合精华液| 国产高清有码在线观看视频| av卡一久久| 好男人视频免费观看在线| 亚洲国产最新在线播放| 亚洲国产色片| 啦啦啦啦在线视频资源| 欧美 日韩 精品 国产| 晚上一个人看的免费电影| 国产日韩欧美视频二区| 国产伦理片在线播放av一区| 香蕉精品网在线| 人妻人人澡人人爽人人| 一区二区三区四区激情视频| 热re99久久国产66热| 少妇猛男粗大的猛烈进出视频| 日韩欧美精品免费久久| 九色亚洲精品在线播放| 久久久精品区二区三区| 性色av一级| 亚洲精品国产av蜜桃| 中文乱码字字幕精品一区二区三区| 免费人成在线观看视频色| 特大巨黑吊av在线直播| 91精品国产九色| 91成人精品电影| 免费看不卡的av| 一个人免费看片子| 精品99又大又爽又粗少妇毛片| 亚洲精品国产av蜜桃| 男人添女人高潮全过程视频| 成年人免费黄色播放视频| 亚洲国产精品一区二区三区在线| 国产熟女午夜一区二区三区 | 五月玫瑰六月丁香| 国产视频首页在线观看| 国产av国产精品国产| 黄色视频在线播放观看不卡| 国产成人a∨麻豆精品| 男女边吃奶边做爰视频| 美女xxoo啪啪120秒动态图| 亚洲,一卡二卡三卡| 丝袜脚勾引网站| 大片免费播放器 马上看| 毛片一级片免费看久久久久| 国产黄色视频一区二区在线观看| 亚洲第一av免费看| 欧美老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 久久久久人妻精品一区果冻| 黄色毛片三级朝国网站| 一区二区三区乱码不卡18| 久久久精品区二区三区| 精品久久久噜噜| 国产成人精品福利久久| 免费高清在线观看视频在线观看| 国产成人免费观看mmmm| 一区二区三区四区激情视频| 精品少妇内射三级| 99热6这里只有精品| 伊人久久国产一区二区| 日韩欧美一区视频在线观看| 国产伦理片在线播放av一区| 国产精品99久久久久久久久| 国产av码专区亚洲av| 一级毛片aaaaaa免费看小| 免费黄频网站在线观看国产| 久久久久久久亚洲中文字幕| 人妻一区二区av| 黑丝袜美女国产一区| 亚洲欧美一区二区三区黑人 | 2021少妇久久久久久久久久久| 九色亚洲精品在线播放| 成年人午夜在线观看视频| 韩国高清视频一区二区三区| 日本91视频免费播放| 在线观看一区二区三区激情| 国产成人一区二区在线| 欧美日韩一区二区视频在线观看视频在线| 国产精品无大码| 精品一区在线观看国产| 亚洲色图综合在线观看| 欧美 亚洲 国产 日韩一| av国产精品久久久久影院| 十八禁网站网址无遮挡| 国产成人精品一,二区| 精品亚洲乱码少妇综合久久| 97在线人人人人妻| 国产免费又黄又爽又色| 两个人免费观看高清视频| 亚洲国产日韩一区二区| 久久人妻熟女aⅴ| 男的添女的下面高潮视频| 成人国产麻豆网| 国产视频首页在线观看| 亚洲欧美清纯卡通| 国产精品久久久久久精品古装| 国产日韩欧美在线精品| 岛国毛片在线播放| 日韩一本色道免费dvd| 国产极品粉嫩免费观看在线 | 高清不卡的av网站| 青春草国产在线视频| 夜夜爽夜夜爽视频| 少妇高潮的动态图| 高清午夜精品一区二区三区| 久久久国产一区二区| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 少妇人妻 视频| 亚洲精品国产av成人精品| 中文字幕久久专区| 男人操女人黄网站| 一本久久精品| 少妇被粗大的猛进出69影院 | 日本wwww免费看| 我要看黄色一级片免费的| 国产av一区二区精品久久| 如日韩欧美国产精品一区二区三区 | 亚洲欧美一区二区三区国产| 国产在线免费精品| 97超视频在线观看视频| 日本黄色片子视频| 国产免费福利视频在线观看| 美女xxoo啪啪120秒动态图| 内地一区二区视频在线| 国产成人精品无人区| 国国产精品蜜臀av免费| 亚洲国产欧美日韩在线播放| 久久人妻熟女aⅴ| 欧美国产精品一级二级三级| 国产老妇伦熟女老妇高清| 一个人免费看片子| av在线观看视频网站免费| 少妇猛男粗大的猛烈进出视频| 国产精品国产三级国产专区5o| 欧美97在线视频| 欧美xxⅹ黑人| 亚洲av.av天堂| av女优亚洲男人天堂| 99国产精品免费福利视频| 精品国产一区二区久久| 亚洲五月色婷婷综合| 国产欧美亚洲国产| 日本猛色少妇xxxxx猛交久久| 免费看av在线观看网站| 国产成人精品在线电影| 青春草亚洲视频在线观看| 中文字幕免费在线视频6| 免费观看av网站的网址| 黑人猛操日本美女一级片| 少妇熟女欧美另类| 国产成人精品在线电影| 超色免费av| 国产国语露脸激情在线看| 国产国拍精品亚洲av在线观看| 久久久久久久精品精品| 国产精品久久久久久久久免| 黄色一级大片看看| 搡女人真爽免费视频火全软件| 制服人妻中文乱码| 狂野欧美白嫩少妇大欣赏| 黑人巨大精品欧美一区二区蜜桃 | 欧美成人午夜免费资源| 少妇精品久久久久久久| 大陆偷拍与自拍| 日韩精品有码人妻一区| 久久99热这里只频精品6学生| 日本欧美国产在线视频| 日本欧美视频一区| 精品一区二区三卡| 亚洲av福利一区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品乱码久久久久久按摩| 最近最新中文字幕免费大全7| 丰满迷人的少妇在线观看| 天堂俺去俺来也www色官网| 人妻 亚洲 视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产精品专区欧美| 久久久精品94久久精品| 欧美亚洲日本最大视频资源| 熟女av电影| 美女大奶头黄色视频| 亚洲一级一片aⅴ在线观看| 女性被躁到高潮视频| 久久99热6这里只有精品| 日韩精品免费视频一区二区三区 | 性色avwww在线观看| 日本黄色日本黄色录像| 91成人精品电影| 欧美激情 高清一区二区三区| 久久久午夜欧美精品| 搡老乐熟女国产| 亚洲国产色片| h视频一区二区三区| 亚洲av日韩在线播放| 2018国产大陆天天弄谢| 国产在视频线精品| av线在线观看网站| 日韩熟女老妇一区二区性免费视频| 91国产中文字幕| 黄片播放在线免费| 美女视频免费永久观看网站| 亚洲,欧美,日韩| 亚洲色图 男人天堂 中文字幕 | 精品少妇黑人巨大在线播放| 欧美亚洲 丝袜 人妻 在线| 中文精品一卡2卡3卡4更新| 在现免费观看毛片| 日韩电影二区| 91精品三级在线观看| 插逼视频在线观看| 国产精品无大码| 亚洲情色 制服丝袜| 国精品久久久久久国模美| 人成视频在线观看免费观看| 午夜日本视频在线| 老司机影院毛片| 日本与韩国留学比较| 日韩av免费高清视频| 插阴视频在线观看视频| 亚洲av成人精品一区久久| 性高湖久久久久久久久免费观看| 少妇被粗大猛烈的视频| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦视频在线资源免费观看| 一级黄片播放器| 在线观看免费视频网站a站| 人人妻人人澡人人爽人人夜夜| www.色视频.com| 免费观看性生交大片5| 久久韩国三级中文字幕| 狠狠精品人妻久久久久久综合| 大香蕉久久网| 欧美精品一区二区免费开放| 伊人亚洲综合成人网| 满18在线观看网站| 制服丝袜香蕉在线| 久久精品夜色国产| 国产欧美日韩一区二区三区在线 | 国产精品 国内视频| 成人影院久久| 久久精品夜色国产| 美女中出高潮动态图| 日本与韩国留学比较| 久久97久久精品| 999精品在线视频| 又黄又爽又刺激的免费视频.| www.av在线官网国产| 99热国产这里只有精品6| 啦啦啦视频在线资源免费观看| 97在线人人人人妻| 日本黄大片高清| 五月玫瑰六月丁香| 午夜激情福利司机影院| 中国美白少妇内射xxxbb| 国产欧美日韩综合在线一区二区| 亚洲精品av麻豆狂野| 日日摸夜夜添夜夜爱| 国产精品无大码| 成人影院久久| 91精品国产国语对白视频| 九九爱精品视频在线观看| 亚州av有码| 亚洲欧洲精品一区二区精品久久久 | 国产精品99久久久久久久久| 少妇丰满av| 大香蕉97超碰在线| 日本欧美视频一区| 国产精品国产三级专区第一集| 啦啦啦中文免费视频观看日本| 亚洲精品一区蜜桃| 三级国产精品欧美在线观看| 久久热精品热| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| 亚洲高清免费不卡视频| 国产精品蜜桃在线观看| 人体艺术视频欧美日本| 精品一区二区免费观看| 啦啦啦中文免费视频观看日本| 在线观看www视频免费| 性高湖久久久久久久久免费观看| 久久久久视频综合| 欧美精品亚洲一区二区| 伊人久久精品亚洲午夜| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 免费高清在线观看视频在线观看| 久久精品久久精品一区二区三区| 国产深夜福利视频在线观看| 久久99一区二区三区| 国产高清国产精品国产三级| 欧美成人精品欧美一级黄| 我的老师免费观看完整版| 欧美国产精品一级二级三级| 欧美成人精品欧美一级黄| 免费大片黄手机在线观看| 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| 一区二区日韩欧美中文字幕 | av网站免费在线观看视频| 最近手机中文字幕大全| 老司机影院毛片| 久久韩国三级中文字幕| 大陆偷拍与自拍| 亚洲成人手机| 免费av不卡在线播放| 亚洲色图综合在线观看| 欧美日本中文国产一区发布| 国产高清有码在线观看视频| 久久久久久久久久久免费av| 少妇猛男粗大的猛烈进出视频| 亚洲国产日韩一区二区| 亚洲精品av麻豆狂野| 国产精品一区二区三区四区免费观看| av在线播放精品| 成人午夜精彩视频在线观看| 国产 一区精品| 制服人妻中文乱码| 亚洲欧洲国产日韩| 五月玫瑰六月丁香| 一级黄片播放器| 在线天堂最新版资源| 久久久精品94久久精品| 亚洲图色成人| 国产精品成人在线| 精品久久久精品久久久| 国产毛片在线视频| 国产熟女午夜一区二区三区 | 日韩电影二区| 只有这里有精品99| 99久久精品国产国产毛片| 欧美老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 免费黄色在线免费观看| 午夜激情福利司机影院| 最近2019中文字幕mv第一页| 婷婷成人精品国产| 99精国产麻豆久久婷婷| 亚洲av成人精品一二三区| 国产成人av激情在线播放 | 午夜免费男女啪啪视频观看| 日本wwww免费看| 黄色视频在线播放观看不卡| 亚洲在久久综合| 亚洲欧美成人综合另类久久久| 精品人妻熟女av久视频| 色94色欧美一区二区| 丰满乱子伦码专区| 乱人伦中国视频| 亚洲精品日韩在线中文字幕| 99久国产av精品国产电影| 久久久国产精品麻豆| 一级二级三级毛片免费看| 精品一品国产午夜福利视频| 我的女老师完整版在线观看| 婷婷色综合大香蕉| 黑人猛操日本美女一级片| 国产视频内射| 夫妻性生交免费视频一级片| 日韩成人av中文字幕在线观看| 国产一区有黄有色的免费视频| 欧美精品人与动牲交sv欧美| 日本爱情动作片www.在线观看| 国产在线一区二区三区精| 免费人妻精品一区二区三区视频| 成人无遮挡网站| 久久久精品免费免费高清| 九九久久精品国产亚洲av麻豆| 视频中文字幕在线观看| 久久久久久人妻| 日韩av不卡免费在线播放| videossex国产| 日韩一区二区视频免费看| 日韩伦理黄色片| 精品人妻熟女av久视频| 亚洲人成77777在线视频| 国产精品.久久久| 香蕉精品网在线| 男的添女的下面高潮视频| 日韩欧美精品免费久久| 少妇高潮的动态图| 亚洲国产精品一区三区| h视频一区二区三区| 国产精品国产三级国产av玫瑰| 久久久久久人妻| 亚洲色图 男人天堂 中文字幕 | 免费观看的影片在线观看| 王馨瑶露胸无遮挡在线观看| 国产免费一区二区三区四区乱码| 成人综合一区亚洲| 欧美日韩视频精品一区| 女性被躁到高潮视频| 国产精品一区二区在线观看99| 亚洲欧洲精品一区二区精品久久久 | av网站免费在线观看视频| 国产高清有码在线观看视频| av视频免费观看在线观看| 卡戴珊不雅视频在线播放| 亚洲欧美成人精品一区二区| 五月玫瑰六月丁香| 日韩一区二区视频免费看| 久久久久人妻精品一区果冻| 欧美激情极品国产一区二区三区 | 精品久久国产蜜桃| 男女啪啪激烈高潮av片| av国产久精品久网站免费入址| 欧美日本中文国产一区发布| 在线观看国产h片| 久久精品熟女亚洲av麻豆精品| 久久99蜜桃精品久久| 成人国产av品久久久| 国产成人freesex在线| 欧美bdsm另类| 51国产日韩欧美| 国产av精品麻豆| 亚洲色图综合在线观看| 日韩在线高清观看一区二区三区| 久久久国产一区二区| 热99国产精品久久久久久7| 高清毛片免费看| 18在线观看网站| 日韩亚洲欧美综合| 国产成人精品在线电影| 91在线精品国自产拍蜜月| 99re6热这里在线精品视频| 亚洲av福利一区| 欧美成人午夜免费资源| 国产一区二区三区av在线| 国产视频内射| 亚洲av中文av极速乱| 男人爽女人下面视频在线观看| 大陆偷拍与自拍| 国产片内射在线| a级片在线免费高清观看视频| 日韩强制内射视频| 免费看不卡的av| 黄色怎么调成土黄色| 亚洲,欧美,日韩| 久久ye,这里只有精品| 少妇被粗大的猛进出69影院 | 大香蕉久久网| 天堂8中文在线网| 国产成人午夜福利电影在线观看| 日韩av免费高清视频| 久久久久久久亚洲中文字幕| 少妇人妻久久综合中文| 三上悠亚av全集在线观看| av免费观看日本| 国产精品久久久久久精品古装| 亚洲av中文av极速乱| 亚洲国产成人一精品久久久| 2018国产大陆天天弄谢| 亚洲,欧美,日韩| 最后的刺客免费高清国语| 国产免费一级a男人的天堂| 日本黄色片子视频| 久久久久久久久大av| 精品一品国产午夜福利视频| 日日爽夜夜爽网站| 满18在线观看网站| 欧美 日韩 精品 国产| 免费不卡的大黄色大毛片视频在线观看| 少妇的逼水好多| 中文字幕av电影在线播放| 国产免费福利视频在线观看| 热re99久久精品国产66热6| 国产伦精品一区二区三区视频9| 亚洲欧美色中文字幕在线| 久久ye,这里只有精品| 少妇高潮的动态图| 九色亚洲精品在线播放| 视频区图区小说| 一级毛片aaaaaa免费看小| 91在线精品国自产拍蜜月| 欧美日韩综合久久久久久| 在线免费观看不下载黄p国产| 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看| 亚洲色图综合在线观看| 满18在线观看网站| 晚上一个人看的免费电影| 国产欧美日韩综合在线一区二区| 久久狼人影院| 亚洲欧美日韩卡通动漫| 午夜福利网站1000一区二区三区| 日韩强制内射视频| 久久鲁丝午夜福利片| 日韩亚洲欧美综合| 少妇丰满av| 亚洲丝袜综合中文字幕| 久久精品久久精品一区二区三区| 寂寞人妻少妇视频99o| 国产精品一二三区在线看| 国产精品秋霞免费鲁丝片| 午夜视频国产福利| 少妇猛男粗大的猛烈进出视频| 亚洲av欧美aⅴ国产| 国产爽快片一区二区三区| 色哟哟·www| 国产白丝娇喘喷水9色精品| 午夜激情av网站| 成人国产麻豆网| 新久久久久国产一级毛片| 国产欧美另类精品又又久久亚洲欧美| 久久久a久久爽久久v久久| 老司机影院毛片| 欧美bdsm另类| 亚洲国产成人一精品久久久| 欧美日韩在线观看h| 蜜桃国产av成人99| 亚洲欧洲国产日韩| 国产日韩欧美亚洲二区| 女人精品久久久久毛片| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| 久久狼人影院| 国产精品免费大片| 色5月婷婷丁香| 久久97久久精品| 母亲3免费完整高清在线观看 | 亚洲精品乱久久久久久| 亚洲久久久国产精品| 大香蕉97超碰在线| 中文欧美无线码| 精品久久久噜噜| 校园人妻丝袜中文字幕| 最近中文字幕2019免费版| 免费黄色在线免费观看| 国产成人免费观看mmmm| 熟女av电影| 日本欧美国产在线视频| 男女免费视频国产| 欧美xxxx性猛交bbbb| 永久网站在线| 久久99蜜桃精品久久| 日韩一区二区三区影片| 天堂中文最新版在线下载| 日本欧美国产在线视频| 永久免费av网站大全|