• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    堿基對(duì)在DNA雙螺旋鏈上分離的自由能計(jì)算

    2016-09-06 01:32:23伍紹貴
    物理化學(xué)學(xué)報(bào) 2016年5期
    關(guān)鍵詞:理論物理雙螺旋物理化學(xué)

    伍紹貴 馮 丹

    (1四川師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,成都610068;2中國(guó)科學(xué)院理論物理研究所,理論物理國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100190)

    堿基對(duì)在DNA雙螺旋鏈上分離的自由能計(jì)算

    伍紹貴1,2,*馮丹1

    (1四川師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,成都610068;2中國(guó)科學(xué)院理論物理研究所,理論物理國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100190)

    DNA是大部分生物包括病毒的基因載體。DNA雙螺旋鏈通過A=T和G≡C兩種堿基對(duì)編碼實(shí)現(xiàn)對(duì)遺傳信息的存儲(chǔ)。堿基對(duì)中的相互作用對(duì)DNA雙螺旋鏈的穩(wěn)定性起到重要作用,直接關(guān)系到基因的復(fù)制和轉(zhuǎn)錄。當(dāng)前研究中,我們構(gòu)建了四組不同結(jié)構(gòu)的DNA雙螺旋鏈,進(jìn)行了總共4.3 μs的分子動(dòng)力學(xué)模擬。通過傘形取樣技術(shù)計(jì)算了DNA雙螺旋鏈中堿基對(duì)分離的自由能曲線,并從分子尺度細(xì)節(jié)和相互作用能對(duì)自由能曲線進(jìn)行解析。在堿基對(duì)G≡C的自由能曲線(PMF-PGC)上觀察到三個(gè)峰,通過監(jiān)測(cè)氫鍵數(shù)目的變化發(fā)現(xiàn)分別對(duì)應(yīng)于G≡C三個(gè)氫鍵的斷裂;而在A=T的自由能曲線(PMF-PAT)上只出現(xiàn)一個(gè)峰,說明A=T的兩個(gè)氫鍵在分離過程中幾乎同時(shí)斷裂。PMF-PGC的總能壘比PMF-PAT高,主要是因?yàn)镚≡C比A=T多一個(gè)氫鍵,更穩(wěn)定。兩條曲線的后段自由能仍然升高,而此時(shí)堿基對(duì)的氫鍵已斷裂,這是DNA鏈骨架剛性所導(dǎo)致。我們還研究了堿基對(duì)穩(wěn)定性受相鄰堿基對(duì)的影響,發(fā)現(xiàn)鄰近G≡C堿基對(duì)會(huì)增強(qiáng)A=T的穩(wěn)定性,C≡G會(huì)削弱A=T的穩(wěn)定性,T=A對(duì)A=T的影響較小。

    平均力勢(shì);氫鍵;分子動(dòng)力學(xué)模擬;傘形取樣

    1 Introduction

    DNA duplexes are double-stranded DNA(dsDNA),in which two complementary nucleic acid strands are combined into one helix.DNA is the primary genetic material for biological objects. The studies on its structures and functions are the basis of exposing biological heredity secrets.Since it was first isolated by the Swiss physician Miescher in 1869,DNA has been extensively studied both experimentally and theoretically1,2.The Nobel Prize in Chemistry 2015 was awarded to three scientists Lindahl, Modrich,and Sancar for their mechanistic studies of DNA repair which provides chemical stability for life.DNA duplexes are coded with two basic components:AT and GC base pairs.AT base pair contains two hydrogen bonds(N6―H62…O4 and N3―H3…O1)as shown in Fig.1(A),so it is referred to asA=T.AGC base pair is more stable than an AT one for one more hydrogen bond (N4―H42…O6,N1―H1…N3,N2―H21…O2),denoted as G≡C here.The interactions between two bases in a base-pair contribute to the stability of DNA duplex,further related to gene replication and transcription.Santalucia has proposed a method to predict the binding free energy for DNA duplex3,which is treated as a string of interactions.However,it cannot intuitively exhibit the details of base pair dissociation and the energetics of this process remains largely unknown.Additionally,it is known to all that G≡C base pair is more stable than A=T base pair. However,when these two base pairs are located in a detailed DNA duplex,due to the rigidity of DNA duplex backbone and the stacking interactions from neighboring base pairs,the free energy difference to separate them is of particular interest.

    Fig.1 Molecular structure diagrams for base-pairsA=T(A)and G≡C(B)and four groups of DNAduplexes with different structures (C,D,E,F)studied in this workIn GROUP 1,DNAduplexes consisting of pureA=T base pairs but with different lengths(trimer,pentamer and heptamer)were employed to investigate the influence of DNAchain length on base pair stability.In GROUP 2,DNAheptamers with pureA=T or G≡C base pairs were used to determine the PMFs forA=T and G≡C base pair dissociation.GROUP 3 and GROUP 4 are DNAheptamers with different sequences,which were used to investigate the impact of neighboring base pairs on the stability of A=T or G≡C base pair.These DNAduplexes with different sequences are labeled as PAT,PGC,MAT,MGC,GAG,TAT,and CAC,respectively.

    Molecular dynamics(MD)simulation is a powerful auxiliary tool for conventional experiment methods.By using physical force field,MD simulations can mimic detailed interactions among proteins4,5,nucleic acids6,7,lipids8,9,and many small molecules10,11and provide dynamic information to explain many biological phenomena at atomic-level resolution.In this work,we use allatom MD simulations to study the free energy profile and molecular details of base-pair dissociation.The potential of mean force(PMF)profiles for dissociating A=T and G≡C base pairs have been determined.Non-bonded interactions and hydrogen bond number(Nhb)changes during base pair dissociation have been measured to explain these PMF profiles.DNAduplexes with different sequences have been investigated to explore the influential factors on base pair stability.

    2 Methods

    2.1Model construction

    Four groups of DNA duplexes with different compositions and chain lengths were constructed for MD simulations,as shown in Fig.1(C,D,E,F).In GROUP 1,three DNAduplexes with three,five,and seven base pairs consisting of pureA=T base pairs,referred to as trimer,pentamer,and heptamer,respectively,were employed to investigate the influence of chain length on DNA duplex stability.In the second group,two heptamers composed of pureA=TandG≡Csequences,whicharereferredasPATandPGC as shown in Fig.1(D),were employed to elucidate the free energy to dissociate anA=T or a G≡C base pair in DNAduplex.In the third group,the middle base pairs of PATand PGCwere exchanged to yield two mutated heptamers,termed as MGC and MAT respectively,as shown in Fig.1(E).These two mutated heptamers were created to investigate the influence of neighboring base pairs on base pair′s stability.In other words,we calculated the PMFs for anA=T base pair dissociation in a G≡C duplex,and a G≡C base pair dissociation in anA=T duplex.The heptamers in GROUP 4 are all alternating copolymers with middle A=T base pairs,as shown in Fig.1(F),which were employed to verify the influence of neighboring base pairs on base pair′s stability in further.

    2.2Simulation details

    All simulations were performed using GROMACS software, which is one of the fastest MD simulation packages available12-14. AMBER99SB force field with ParmBSC0 nucleic acid parameters15was used to describe nucleotides in DNAduplex.The DNA duplexes with different sequences in this work were generated using the make-na server(http://structure.usc.edu/make-na/server. html).To create a system of DNAduplex surrounded by explicit water,DNAduplex was initially placed in the center of a cubic box of 5.4 nm×5.4 nm×5.4 nm.The distances from box surfaces to the closest atoms of DNAduplex are at least~1.0 nm,which is safe to prevent DNAduplex from contacting with its periodic images. Next~5000 three-point transferable intermolecular potential (TIP3P)water molecules16were filled to solvate the DNAduplex. Sodium and chloride ions were added to make the solvated system electrically neutral at a concentration of~0.15 mol?L-1 17,which is close to the physiological ionic concentration.The final system contains~15000 atoms.Atypical 1.0 nm cutoff distance was used for both van der Waals and short-range electrostatic interactions. Long-range electrostatic interactions were treated using the particle-mesh Ewald(PME)summation method18,19.Berendsen barostat20and velocity rescaling thermostat21were applied to control pressure and temperature at 105Pa and 310 K,respectively. Periodic boundary condition was applied in the three dimensions of the simulation box.Motion equations were solved numerically with a time step of 2 fs and the neighbor list was updated every 10 steps.The constructed DNAduplex system was firstly subjected to a thorough energy minimization using steepest descent minimization22followed by a 200 ps MD simulation with position restrains on the heavy atoms of DNA duplex.Thereafter,an equilibrium simulation run was performed at a constant temperature of 310 K and a constant pressure of 105Pa for 1 ns.To generate a representative ensemble of structures,each production simulation was performed for 50 ns and trajectories were saved at 2 ps intervals.The detailed conformation analysis and interaction calculations were conducted using the built-in tools of GROMACS.

    2.3Umbrella sampling(US)

    US method was used to elucidate the free energy for base-pair dissociation.To carry out US simulation,a series of seed configurations along reaction coordinate should be prepared as initial configurations.The middle base-pairs of these DNA heptamers were chosen for free energy calculation.First each DNAheptamer was solvated and ionized in a water box.After an equilibrium simulation for 1 ns,the resulted structure was used for steered molecular dynamics(SMD)23simulation to create initial seed configurations for US simulations.Here,we chose one base of the middle base pair as the reference point,and the other was applied a pulling force with a force constant k=1000 kJ?mol-1?nm-2at a speed of 0.1 nm?ns-1by SMD simulation.The distance(ζ) between two bases was set as the reaction coordinates for PMF. The SMD simulation produces a set of configurations in the range of ζ≈0.6 to 1.0 nm.To obtain accurate PMF results,40 umbrella windows were used at a spacing of 0.01 nm for each DNA heptamer system.Each umbrella window was simulated for 10 ns under a force constant k=1000 kJ?mol-1?nm-2.The first 2 ns simulation trajectory was discarded and the later 8 ns trajectory was sampled at a frequency of every 2 ps for US calculation.The built-in Gromacs tool g_wham24was used to build PMFs along the reaction coordinate ζ.Due to the stacking interactions from neighboring base-pairs and the rigidity of duplex backbone,the obtained PMFs represent free energy profiles for base pair dissociation under the condition close to real environment.

    3 Results and discussion

    3.1Impact of duplex length on DNA duplex stability

    DNA length has significant influence on its stability especially for short DNAchains.To obtain accurate free energy results,largescale simulations should be launched so as to sample conformation space sufficiently.This means that particle systems for US simulations should be as small as possible to save computational resource.Therefore,in current study,it is necessary to choose DNAduplexes with short length,however,which should be stable enough to endure long time simulation without being disintegrated.Thus we firstly investigate the influence of duplex length on its robustness.

    For simplicity,DNA duplexes composed of pure A=T basepairs were considered.Three DNAduplexes with 3,5,and 7 basepairs,termed as trimer,pentamer and heptamer,respectively,were generated from make-na server.We performed 10-independent parallel simulations with each DNA duplex and each simulation runs for 50 ns.Hydrogen bond occupancy was used to elucidate the effect of duplex length on the robustness of DNA duplex25. DNA duplexes consisting of pure A=T base-pairs own only two types of hydrogen bonds:N6―H62…O4 and N3―H3…N1.We determined occupancy values for both hydrogen bonds of each base pair for three DNA duplexes,as shown in Fig.2.For hydrogen bond N6―H62…O4,trimer has the weakest stability and pentamer is better,which means that trimer and pentamer cannot endure the thermal disturbance from long time MD simulations.For heptamer,from the 1st base pair to the 3rd one,occupancy value is increasing;the occupancy values for the 4th,5th,and 6th base-pairs are all larger than 0.9,which denotes that these basepairs have established very robust hydrogen bond interactions.For the 7th base-pair(3′terminal),the occupancy decreases to 0.42 sharply.The case for another hydrogen bond,N3―H3…N1,is very similar to that of N6―H62…O:Trimer has the poorest stability;pentamer is better while heptamer has the highest occupancy value in each position as compared to trimer and pentamer.Specially,hydrogen bond N3―H3…N1 has higher occupancy values than N6―H62…O4 in most of the positions except the 3′terminal one.Furthermore,a detailed check of Fig.2 shows that both hydrogen bonds have the highest occupancy values(~0.94 for N6―H62…O4 and~0.99 for N3―H3…N1)in the 4th base-pair of heptamer.Therefore,the middle base pair in heptamer is an idea position for PMF calculation.

    Fig.2 Effect of DNAduplex length on base pair stabilityHydrogen bond occupancy is used to characterize the robustness of DNAduplex. Hydrogen bond is assumed to be present when donor-acceptor distance is less than 0.35 nm and hydrogen-donor-acceptor angle is less than 30 degree. Hydrogen bond occupancy is defined as the ratio of times where the hydrogen bond is present with relative to the total time length of simulation trajectory. Here,three DNAduplexes(Trimer,Pentamer,and Heptamer)were employed to study the influences of duplex length on DNAduplex stability.They are all comprised ofA=T base-pairs.We performed 10-independent 50 ns simulations for each DNAduplex and conformations were sampled at every 2 ps. Atotal number of 250000 conformations were taken from 10 trajectories for the hydrogen bond occupancy calculation for each DNAduplex.

    Fig.3 Schematic diagrams of US implementation(A)ADNAheptamer(colored in yellow)is cut out from a long DNAduplex(colored in white).The base pair(colored in blue)in the middle position of the heptamer is chosen for US simulations.The harmonic spring for US is applied on the center of masses of two aromatic rings of the chosen base pair.(B)and(C)Definition of reaction coordinates for base pairsA=T and G≡C.The centers of mass of the aromatic rings forA,T,G,and C are highlighted as magenta points. The distances between them are chosen as the reaction coordinates(ζ)for PMF,such as ζATand ζGCfor base-pairsA=T and G≡C,respectively. (D)distance distributions for ζATand ζGCfrom unbiased MD simulations.color online

    Subsequently we determined the equilibrium lengths between two aromatic groups inA=T and G≡C base-pairs.For clarity,the centers of mass of the aromatic rings for A,T,G,and C are referred to as COMA,COMT,COMGand COMC.The distances(ζ) between them are chosen as the reaction coordinates for PMF.The distance between COMAand COMTin the 4th base-pair of anA=T heptamer is denoted as ζATas shown in Fig.3(A,B)while the distance between COMGand COMCin the same position of a G≡C heptamer is denoted as ζGCas shown in Fig.3(C).We conducted two unbiased MD simulations with A=T and G≡C heptamers respectively with each one runs for 50 ns.The distance distributions for ζATand ζGCare calculated as shown in Fig.3(D).It is apparent two base pairs have close equilibrium lengths with their values~0.63 nm forA=T and~0.65 nm for G≡C.Since hydrogen bond is considered to be broken at a distance larger than 0.35 nm, the range of reaction coordinate ζ is set as 0.6-1.0 nm in US simulations for bothA=T and G≡C.

    3.2Potential of mean force profiles for base-pair

    dissociation in DNA duplexes

    Firstly we determined the dissociation PMFs forA=T and G≡C in their pure heptamers(PAT and PGC,Fig.1(D)).For clarity, the two profiles are referred to PMF-PAT and PMF-PGC,re-spectively(similarly hereinafter).For each one,at least 400 ns of US simulations were performed.Fig.4(A)displays the obtained free energy profiles.Along the reactive coordinate ζ,two PMFs are increasing and their energy free energy minima are both located at near ζ≈0.64 nm.However,their PMFs are very different in shape.PMF-PGC is significantly higher than PMF-PAT in most of the range.This is because that G≡C base pair has one more hydrogen bond,it is significantly more stable and more energy is needed to separate it.PMF-PAT is relatively simple with only one peak at near ζ≈0.74 nm.The PMF changes are also qualitatively reflected in the evolution of hydrogen bond number(Nhb).As shown in Fig.4(B),Nhb-PAT has a sharp decrease from 2 to 0 in the narrow range ζ≈0.70-0.75 nm,which denotes that two hydrogen bonds of A=T base pair were almost broken within a short time. As a result,only one disruption peak is observed for PMF-PAT. After hydrogen bonds disruption(ζ>0.90 nm),PMFs are still increasing along the reaction coordinate,which is mainly contributed by the rigidity of DNA duplex backbone.On the other hand,PMF-PGC has three disruption peaks(circled by dash lines), located at near ζ≈0.72,0.79,and 0.90 nm,respectively.Fig.4(B) clearly exhibits that the three moments the G≡C base pair loses its three hydrogen bonds.As shown in Fig.4(A),the energy barriers for three peaks are~23,~11,and~5 kJ?mol-1,respectively. The first peak(near 0.72 nm)is the sharpest because all three hydrogen bonds of the G≡C base pair contribute to it though only one is broken here.In the same way,the remained two hydrogen bonds contribute to the second peak(near 0.79 nm),where only one hydrogen bond is broken as well.The third peak is the weakest for only one base pair contributes it.From above analysis, it is clear that these peaks in PMF profiles correspond to the rupture moments of hydrogen bonds in G≡C base pairs.Therefore,these peaks are termed as hydrogen bond rupture peaks below.

    Fig.4 Potential of mean force profiles,number of hydrogen bonds,and non-bonded interaction energies changes during base-pair dissociation(A)comparison of PMF-PAT and PMF-PGC.(B)the number of hydrogen bonds(Nhb)changes in US simulations.The three dash-line circles in both diagrams corresponding to the moments of hydrogen bonds break.The energies to break three hydrogen bonds are~23,~11,and~5 kJ?mol-1respectively.(C),(D),and(E)are the total non-bonded interaction energy Etotal,the electric interaction energy Eelec,and the vdW interaction energy EvdWbetween two pulling bases changes during US simulation. All calculations were performed using these trajectories from US simulations and subsequently binned to yield the average value at a given ζ.

    The difference between PMF-PAT and PMF-PGC can be partly explained by non-bonded interaction energies between two bases during base pair dissociation.Fig.4(C-E)show the non-bonded energies obtained from US trajectories.It is clear that the electric interaction energy Eelecis larger than the vdW interaction energy EvdWin one order of magnitude.As a result,the total non-bonded energy Etotalas shown in Fig.4(C)is more close to Eelecin Fig.4(D) in shape,which suggests that electric interaction plays more dominated roles than vdWinteraction in maintaining DNAduplex′s stability.On the other hand,the Etotalof G≡C base pair is larger than that for A=T base pair in absolute value,which is consistent with their PMF difference.This result is in agreement with the fact that G≡C base pair has better stability than A=T base pair. However,during the base pair dissociation in the distance rangeζ≈0.64-1.00 nm,the Etotalhas a total of~100 kJ?mol-1decrease in absolute value for G≡C base pair and~50 kJ?mol-1decrease for A=T base pair,which are significantly different from their PMF variations.It suggests that besides non-bonded interactions, other components have participated in maintaining the stability of DNA duplex,such as the stacking interactions from neighboring base pairs,the backbone rigidity of DNA duplex,etc.Unfortunately,these contributions cannot be evaluated by using current methods.All these components prevent base pair from dissociation and contribute to the stability of DNAduplex together.

    Furthermore,it is of interest whether neighboring base pairshave influences on the stability of the chosen one.Therefore,we prepared two mutated DNA duplexes:one is substituting the middle base pair in a PGC heptamer to an A=T one,denoted as MAT;the other is the substitution of the middle base pair in a PAT heptamer to a G≡C one,denoting as MGC.Both mutated heptamers are shown in Fig.1(E).Then we performed US simulations to determine their corresponding PMFs,PMF-MAT,and PMFMGC,as shown in Fig.5(A).For comparison,PMF-PAT and PMFPGC are also plotted.For A=T base pair,PMF-MAT almost overlaps with PMF-PATin the section ζ=0.60-0.73 nmand PMFMAT is higher than PMF-PAT in the section ζ>0.75 nm.Especially,the hydrogen bond rupture peak near ζ≈0.74 nm in PMFMAT is obviously higher than that in PMF-PAT,which suggests that neighboring G≡C base pairs have increased the free energy barrier for base pair dissociation and improved the stability ofA=T base pair.On the other hand,PMF-MGC is lower than PMFPGC in the section ζ=0.70-0.90 nm,which indicates neighboring A=T base pairs decrease the stability of G≡C base pair.The above results suggest that neighboring base pairs have different influences on the stability of the chosen base pair,positively or negatively.

    Another important issue is whether alternating sequences are favorable for increasing DNA duplex′s stability.Therefore,we prepared another group of heptamers with alternating sequences. For comparison,their middle base pairs are all set as A=T base pairs,as shown in Fig.1(F).These heptamers are referred to as GAG,TAT,and CAC and their corresponding PMFs are labeled as PMF-GAG,PMF-TAT,and PMF-CAC respectively.Fig.5(B) displays PMF-MAT and PMF-GAG.For comparison,PMF-PAT is also plotted.For heptamers MAT and GAG,the neighboring base pairs of the middle A=T base pairs are all G≡C base pairs while GAG is a heptamer with alternating sequence.As shown in Fig.5(B),their PMF curves almost overlap with each other,indicating that alternating sequence has little impact on DNAduplex stability.In order to further clarify the impact of neighboring base pairs on the stability of middle base pair,Fig.5(C)shows the PMFs for heptamers PAT,GAG,TAT,and CAC.These heptamers have middle A=T base pairs neighboring with different base pairs.It is significant that PMF-PAT is higher than PMF-CAC while lower than PMF-GAG in most of the range,which suggests that neighboring G≡C base pairs enhance A=T base pair′s stability while neighboring C≡G base pairs reduce the stability of A=T base pair.PMF-TAT is very close to PMF-PAT before ζ≈0.82 nm while higher than PMF-PAT at the section ζ>0.82 nm.Since base pair A=T has lost its two hydrogen bonds when the separating distance is larger than ζ≈0.82 nm,the energy difference between PMF-TAT and PMF-PAT is deduced to be attributed by the backbone rigidity of DNAduplex.It means that neighboring T=A base pairs cause little influences on the stability of A=T base pair.On the other hand,these PMFs are still very similar in shape, for instance,only one peak and one valley appearing in the rangeζ≈0.70-0.80 nm.Therefore,we can draw a conclusion that neighboring base pairs do have influences on the stability of middle base pair,but these influences are different,positively or negatively.

    4 Conclusions

    In this work,we used all-atom MD simulations combined with US method to determine the free energy profiles for base pair dissociation in DNA duplex.Four groups of DNA duplex models have been constructed:the first group is used to examine the effect of chain length on DNAduplex′s stability;the other three groups, which are all heptamers with different sequences,are used for PMF calculations in different DNA duplex sequences.We have launched a total of 4.3 μs MD simulations,in which 2.8 μs were US simulations to obtain accurate PMF profiles for base pair dissociation.The results show that the free energy to split a G≡C base pair is higher than that for an A=T base pair,which is resulted from the fact that G≡C base pair has one more hydrogen bond and it is more stable than A=T base pair.PMF-PGC hasthree peaks,representing the three moments the G≡C base pair loses its three hydrogen bonds,respectively.Differently,PMF-PAT has only one peak,indicating that two hydrogen bonds of theA=T base pair were broken within a very short time.Both PMF-PAT and PMF-PGC are still increasing after their hydrogen bonds were fully broken,which are mainly attributed to the backbone rigidity of DNA duplex.Additionally,non-bonded interaction analysis suggests that electric interaction plays more important roles than vdW interaction in maintaining DNA duplex′s stability.Additionally,we have found that neighboring base pairs do have influences on the stability of the selected base pair.Neighboring G≡C base pairs improveA=T base pair′s stability while neighboring C≡G base pairs reduce the stability of A=T base pair;Neighboring T=A base pairs cause little influences on the stability of A=T base pair.Moreover,alternating sequence has little impact on DNAduplex stability.

    The above calculated PMF results may be different from Santalucia′s binding free energy for DNA base pairs.Our PMF curves were calculated from model systems of DNA duplexes in explicit water and the dynamics of particles has been considered. For base pair A=T or G≡C in a detailed environment,the free energy to dissociate them is contributed by not only hydrogen bonds,but also other components,such as the π-π stacking interactions from neighboring base pairs,the rigidity of DNAduplex backbone,and so on.As a result,these free energy results reveal more molecular details and are more meaningful.

    Acknowledgments:Thank Prof.WANG Yi in Chinese University of Hong Kong,Prof.SHI Hua-Lin in Institute of Theoretical Physics,Chinese Academy of Sciences,and Prof.JI Qing in Hebei University of Technology for helpful advices.

    References

    (1)Cressey,D.Nature 2015,526(7573),307.doi:10.1038/ nature.2015.18515

    (2)Peyrard,M.;Bishop,A.R.Phys.Rev.Lett.1989,62(23), 2755.doi:10.1103/PhysRevLett.62.2755

    (3)Santalucia,J.Proc.Natl.Acad.Sci.U.S.A.1998,95(4), 1460.doi:10.1073/pnas.95.4.1460

    (4)Wu,S.G.;Gao,X.T.;Li,Q.;Liao,J.;Xu,C.G.Acta Phys.-Chim.Sin.2015,31(9),1803.[伍紹貴,高曉彤,李權(quán),廖杰,徐成剛.物理化學(xué)學(xué)報(bào),2015,31(9),1803]. doi:10.3866/PKU.WHXB201508062

    (5)Meng,X.M.;Zhang,S.L.;Zhang,Q.G.Acta Phys.-Chim. Sin.2016,32(2),436.[孟現(xiàn)美,張少龍,張慶剛.物理化學(xué)學(xué)報(bào),2016,32(2),436].doi:10.3866/PKU.WHXB201511302

    (6)Silva,D.A.;Weiss,D.R.;Avila,F.P.;Da,L.T.;Levitt,M.; Wang,D.;Huang,X.Proc.Natl.Acad.Sci.U.S.A.2014,111 (21),7665.doi:10.1073/pnas.1315751111

    (7)Mackerell,A.D.;Banavali,N.K.J.Comput.Chem.2000,21 (2),105.doi:10.1002/(SICI)1096-987X(20000130)21:2<105:: AID-JCC3>3.0.CO;2-P

    (8)Ge,Z.;Li,Q.;Wang,Y.J.Chem.Theory Comput.2014,10 (7),2751.doi:10.1021/ct500194s

    (9)Delemotte,L.;Tarek,M.J.Membr.Biol.2012,245(9),531. doi:10.1007/s00232-012-9434-6

    (10)Da,L.;Avila,F.P.;Wang,D.;Huang,X.PLoS Comput.Biol. 2013,9(4),e1003020.doi:10.1371/journal.pcbi.1003020

    (11)Yang,L.J.;Gao,Y.Q.Acta Phys.-Chim.Sin.2016,32(1), 313.[楊立江,高毅勤.物理化學(xué)學(xué)報(bào),2016,32(1),313.]

    doi:10.3866/PKU.WHXB201512161

    (12)Kutzner,C.;Van Der Spoel,D.;Fechner,M.;Lindahl,E.; Schmitt,U.W.;De Groot,B.L.;Grubmüller,H.J.Comput. Chem.2007,28(12),2075.doi:10.1002/jcc.20703

    (13)Pronk,S.;Páll,S.;Schulz,R.;Larsson,P.;Bjelkmar,P.; Apostolov,R.;Shirts,M.R.;Smith,J.C.;Kasson,P.M.;van der Spoel,D.Bioinformatics 2013,29(7),845.doi:10.1093/ bioinformatics/btt055

    (14)Hess,B.;Kutzner,C.;Van Der Spoel,D.;Lindahl,E.J.Chem. Theory Comput.2008,4(3),435.doi:10.1021/ct700301q

    (15)Perez,A.;Marchan,I.;Svozil,D.;Sponer,J.;Cheatham,T.E., III;Laughton,C.A.;Orozco,M.Biophys.J.2007,92(11), 3817.doi:10.1529/biophysj.106.097782

    (16)Miyamoto,S.;Kollman,P.A.J.Comput.Chem.1992,13(8), 952.doi:10.1002/jcc.540130805

    (17)Ito,H.O.;Soutome,S.M.J.Microbiol.Methods 2003,55(1), 29.doi:10.1016/S0167-7012(03)00111-8

    (18)Essmann,U.;Perera,L.;Berkowitz,M.L.;Darden,T.;Lee, H.;Pedersen,L.G.J.Chem.Phys.1995,103(19),8577.

    doi:10.1063/1.470117

    (19)Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98 (12),10089.doi:10.1063/1.464397

    (20)Berendsen,H.J.;Postma,J.P.M.;van Gunsteren,W.F.; DiNola,A.;Haak,J.J.Chem.Phys.1984,81(8),3684.

    doi:10.1063/1.448118

    (21)Bussi,G.;Donadio,D.;Parrinello,M.J.Chem.Phys.2007, 126(1),014101.doi:10.1063/1.2408420

    (22)Zimmermann,K.J.Comput.Chem.1991,12(3),310.

    doi:10.1002/jcc.540120305

    (23)Isralewitz,B.;Gao,M.;Schulten,K.Curr.Opin.Struc.Biol. 2001,11,224.doi:10.1016/S0959-440X(00)00194-9

    (24)Hub,J.S.;De Groot,B.L.;Van Der Spoel,D.J.Chem. Theory Comput.2010,6(12),3713.doi:10.1021/ct100494z

    (25)Huang,X.;Wang,D.;Weiss,D.R.;Bushnell,D.A.;Kornberg, R.D.;Levitt,M.Proc.Natl.Acad.Sci.U.S.A.2010,107 (36),15745.doi:10.1073/pnas.1009898107

    Free Energy Calculation for Base Pair Dissociation in a DNA Duplex

    WU Shao-Gui1,2,*FENG Dan1
    (1College of Chemistry and Material Science,Sichuan Normal University,Chengdu 610068,P.R.China; (2State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190,P.R.China)

    DNAis the main genetic material for living organisms including many viruses.DNAduplex,coded with A=T and G≡C base pairs,is well suited for biological information storage.The interactions between two bases in a base pair contribute to the stability of DNA duplex,and are further related to gene replication and transcription.In this study,we use all-atom Molecular dynamics(MD)simulations combined with Umbrella sampling(US)method to determine the free energy profiles and explore the molecular details for base pair dissociations.Four groups of DNAduplexes with different sequences have been constructed and a total of 4.3 μs MD simulations have been carried out.In the potential of mean force(PMF)profile for G≡C base pair dissociation(denoted as PMF-PGC),we observed three peaks,which correspond to the three moments G≡C base pair loses its three hydrogen bonds respectively.Differently,A=T base pair loses its two hydrogen bonds within a very short time.As a result,only one hydrogen bond rupture peak was observed in its PMF curve (denoted as PMF-PAT).Compared with PMF-PAT,the overall free energy barrier in PMF-PGC is higher,which is due to the better stability of G≡C than A=T.In the latter sections of both PMFs,free energies are still increasing,which is mainly resulted from the rigidity of DNA duplex backbone.We have also investigated the impact of neighboring base pairs on the stability of middle one.It is found that neighboring G≡C base pairsincrease the stability ofA=T base pair while neighboring C≡G base pairs reduce the stability ofA=T base pair. Additionally,neighboring T=Abase pairs have little influence on the stability ofA=T base pair.

    December 16,2015;Revised:February 16,2016;Published on Web:February 18,2016.

    Potential of mean force;Hydrogen bond;Molecular dynamics simulation;Umbrella sampling

    O641

    10.3866/PKU.WHXB201602185

    *Corresponding author.Email:wsgchem@foxmail.com.

    The project was supported by the National Natural Science Foundation of China(11405113),Science and Technology Plan of Sichuan Province, China(2010JY0122),and Science Research Fund of Sichuan Normal University,China(10MSL02).

    國(guó)家自然科學(xué)基金(11405113),四川省科技廳項(xiàng)目(2010JY0122)和四川師范大學(xué)科學(xué)研究基金(10MSL02)資助

    猜你喜歡
    理論物理雙螺旋物理化學(xué)
    馬爾斯克雙螺旋瞭望塔
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    小議高中物理教學(xué)中理論的重要性
    Chemical Concepts from Density Functional Theory
    力學(xué)之我見
    蝴蝶魚
    開關(guān)耦合加速諧振子網(wǎng)絡(luò)同步
    軟件(2015年1期)2015-07-03 08:00:04
    理論物理教學(xué)中學(xué)生創(chuàng)新學(xué)習(xí)能力培養(yǎng)的探索與實(shí)踐
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    18禁黄网站禁片免费观看直播| 美女高潮喷水抽搐中文字幕| eeuss影院久久| 久久久久久大精品| 欧美bdsm另类| 国产精品综合久久久久久久免费| 成年女人永久免费观看视频| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜添av毛片 | 麻豆成人午夜福利视频| 婷婷色综合大香蕉| 亚洲 欧美 日韩 在线 免费| 熟女电影av网| 日本与韩国留学比较| 精品人妻偷拍中文字幕| 亚洲,欧美精品.| 精品国产三级普通话版| av中文乱码字幕在线| 亚洲精品日韩av片在线观看| 亚洲精品乱码久久久v下载方式| 亚洲欧美清纯卡通| 校园春色视频在线观看| 精品久久久久久久久久久久久| 老司机午夜福利在线观看视频| 久久久精品大字幕| 国产欧美日韩精品一区二区| 久久香蕉精品热| 亚洲精品乱码久久久v下载方式| 成人高潮视频无遮挡免费网站| 国产在线精品亚洲第一网站| 少妇的逼水好多| 久久久久久久久久成人| 999久久久精品免费观看国产| 色在线成人网| 亚洲精品日韩av片在线观看| 乱人视频在线观看| 亚洲国产色片| 亚洲美女搞黄在线观看 | 国产一区二区亚洲精品在线观看| 十八禁网站免费在线| 精品人妻偷拍中文字幕| 国产熟女xx| 久久草成人影院| 日韩欧美三级三区| 亚洲成人久久性| 精品欧美国产一区二区三| www.999成人在线观看| 国产欧美日韩精品一区二区| 久久久久九九精品影院| 搡女人真爽免费视频火全软件 | 一个人看视频在线观看www免费| 久久午夜福利片| 国产视频一区二区在线看| 国产欧美日韩精品一区二区| 蜜桃亚洲精品一区二区三区| 女人十人毛片免费观看3o分钟| 91久久精品国产一区二区成人| 欧美在线黄色| aaaaa片日本免费| 国产精品三级大全| 精品久久久久久,| 免费av不卡在线播放| 成年免费大片在线观看| 日韩 亚洲 欧美在线| 少妇丰满av| 高潮久久久久久久久久久不卡| 午夜福利视频1000在线观看| 此物有八面人人有两片| 日日夜夜操网爽| 色av中文字幕| 亚洲成人久久爱视频| 色噜噜av男人的天堂激情| 女同久久另类99精品国产91| 亚洲午夜理论影院| 老司机午夜福利在线观看视频| 久久草成人影院| 久久性视频一级片| 嫁个100分男人电影在线观看| 国产精品精品国产色婷婷| 欧美黑人欧美精品刺激| 国产爱豆传媒在线观看| 国产精品综合久久久久久久免费| 一区二区三区激情视频| www.色视频.com| 国产精品精品国产色婷婷| 真人一进一出gif抽搐免费| 人妻久久中文字幕网| 国产精品久久电影中文字幕| 欧美日韩国产亚洲二区| 国产免费一级a男人的天堂| 2021天堂中文幕一二区在线观| or卡值多少钱| 成人性生交大片免费视频hd| 一级黄片播放器| 国产中年淑女户外野战色| 嫁个100分男人电影在线观看| 看片在线看免费视频| 免费在线观看亚洲国产| 99久久精品国产亚洲精品| 毛片女人毛片| 欧美激情在线99| 国产伦人伦偷精品视频| 一a级毛片在线观看| 特级一级黄色大片| 免费无遮挡裸体视频| 看黄色毛片网站| 91久久精品电影网| 国产三级在线视频| 国产成年人精品一区二区| 久久久色成人| 亚洲av成人精品一区久久| 国产精品98久久久久久宅男小说| 男女做爰动态图高潮gif福利片| 欧美一区二区国产精品久久精品| 制服丝袜大香蕉在线| а√天堂www在线а√下载| av在线天堂中文字幕| 啪啪无遮挡十八禁网站| 欧美一区二区亚洲| 狠狠狠狠99中文字幕| 毛片女人毛片| 97超级碰碰碰精品色视频在线观看| 欧美成人免费av一区二区三区| 成人美女网站在线观看视频| 淫妇啪啪啪对白视频| 国产久久久一区二区三区| 校园春色视频在线观看| 亚洲精品乱码久久久v下载方式| 亚洲不卡免费看| 亚洲第一电影网av| 国产黄片美女视频| 国产三级中文精品| 十八禁网站免费在线| 久久久久国内视频| 特大巨黑吊av在线直播| 国产伦在线观看视频一区| 日韩免费av在线播放| 天堂动漫精品| 午夜精品久久久久久毛片777| av在线老鸭窝| 在线天堂最新版资源| 日韩欧美精品v在线| 国产一区二区激情短视频| 国产亚洲欧美在线一区二区| 特大巨黑吊av在线直播| 一个人看的www免费观看视频| 日韩中文字幕欧美一区二区| 99久久99久久久精品蜜桃| 成人av在线播放网站| 日本 欧美在线| 性色av乱码一区二区三区2| 少妇裸体淫交视频免费看高清| 色综合站精品国产| 国产蜜桃级精品一区二区三区| 少妇被粗大猛烈的视频| 亚洲美女黄片视频| 欧美+亚洲+日韩+国产| 久久欧美精品欧美久久欧美| 国产精品av视频在线免费观看| 国产黄a三级三级三级人| 午夜精品在线福利| 看片在线看免费视频| 国产精品综合久久久久久久免费| 久久久久久久午夜电影| 三级毛片av免费| 亚洲国产精品久久男人天堂| 波野结衣二区三区在线| 九九久久精品国产亚洲av麻豆| 性插视频无遮挡在线免费观看| 亚洲一区高清亚洲精品| 91在线观看av| 婷婷色综合大香蕉| 嫩草影院新地址| 日韩亚洲欧美综合| 极品教师在线视频| 国产老妇女一区| 一进一出好大好爽视频| 亚洲av免费高清在线观看| 成年免费大片在线观看| 人妻制服诱惑在线中文字幕| 精品国产三级普通话版| 美女cb高潮喷水在线观看| 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 黄色女人牲交| 久久午夜亚洲精品久久| 午夜精品一区二区三区免费看| 999久久久精品免费观看国产| 国产主播在线观看一区二区| 亚洲精品久久国产高清桃花| 国产久久久一区二区三区| 欧美+日韩+精品| 搡老岳熟女国产| 69av精品久久久久久| 99热这里只有精品一区| 欧美不卡视频在线免费观看| 久久久成人免费电影| 色播亚洲综合网| 精品久久久久久成人av| 亚洲经典国产精华液单 | 一区二区三区四区激情视频 | 免费一级毛片在线播放高清视频| 亚洲 国产 在线| 欧美日韩中文字幕国产精品一区二区三区| 桃色一区二区三区在线观看| 欧美不卡视频在线免费观看| 国产精品久久久久久精品电影| а√天堂www在线а√下载| 成熟少妇高潮喷水视频| 麻豆一二三区av精品| 国产精品综合久久久久久久免费| 一级a爱片免费观看的视频| 中国美女看黄片| 午夜久久久久精精品| 成人特级黄色片久久久久久久| 亚洲片人在线观看| 搡老妇女老女人老熟妇| 91麻豆av在线| 久久久久免费精品人妻一区二区| 日韩成人在线观看一区二区三区| 岛国在线免费视频观看| 欧美日韩福利视频一区二区| 天堂影院成人在线观看| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频| 久久久国产成人免费| 少妇的逼水好多| 村上凉子中文字幕在线| 国产亚洲欧美在线一区二区| 狂野欧美白嫩少妇大欣赏| 18+在线观看网站| 亚洲国产精品sss在线观看| 99久久无色码亚洲精品果冻| 国产大屁股一区二区在线视频| 日韩中文字幕欧美一区二区| 露出奶头的视频| 成年女人毛片免费观看观看9| 成年版毛片免费区| 精品午夜福利在线看| 欧美中文日本在线观看视频| 好男人电影高清在线观看| 久久久久久久精品吃奶| 内射极品少妇av片p| 少妇的逼好多水| 亚洲avbb在线观看| 午夜影院日韩av| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 嫩草影院新地址| 免费在线观看日本一区| 美女黄网站色视频| 精品久久久久久成人av| 日韩成人在线观看一区二区三区| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 99国产综合亚洲精品| 精品久久久久久久久久免费视频| 亚洲成人中文字幕在线播放| 51国产日韩欧美| 在线观看免费视频日本深夜| 日本 欧美在线| 好看av亚洲va欧美ⅴa在| 88av欧美| 国产 一区 欧美 日韩| 亚洲精品成人久久久久久| 日韩有码中文字幕| 人妻制服诱惑在线中文字幕| 久久久久久大精品| 精品午夜福利视频在线观看一区| 我的老师免费观看完整版| 午夜福利免费观看在线| 国产精品久久电影中文字幕| 午夜福利18| 午夜福利在线观看吧| 欧美最黄视频在线播放免费| 成人国产一区最新在线观看| 欧美zozozo另类| 级片在线观看| 亚洲专区中文字幕在线| 久久性视频一级片| 成人永久免费在线观看视频| 国产精品,欧美在线| 国产精品嫩草影院av在线观看 | 国产美女午夜福利| 99久久99久久久精品蜜桃| 精品久久久久久久久亚洲 | 免费看日本二区| 看片在线看免费视频| 动漫黄色视频在线观看| 黄色女人牲交| 性插视频无遮挡在线免费观看| 亚洲欧美激情综合另类| 亚洲人成伊人成综合网2020| 亚洲国产精品久久男人天堂| 国产伦一二天堂av在线观看| 一区二区三区激情视频| 国产午夜福利久久久久久| 久久国产乱子伦精品免费另类| 亚洲18禁久久av| 51午夜福利影视在线观看| 少妇人妻精品综合一区二区 | 免费看a级黄色片| 国产精品,欧美在线| 一区二区三区免费毛片| 精品人妻一区二区三区麻豆 | а√天堂www在线а√下载| 精品人妻一区二区三区麻豆 | 国产精品久久久久久久电影| 床上黄色一级片| 老司机午夜十八禁免费视频| 欧美高清成人免费视频www| 亚洲第一区二区三区不卡| 淫秽高清视频在线观看| 能在线免费观看的黄片| 国产亚洲精品av在线| 99久久精品热视频| 国产成人aa在线观看| 伊人久久精品亚洲午夜| 97超视频在线观看视频| 桃色一区二区三区在线观看| 一区二区三区激情视频| 日本a在线网址| 男女那种视频在线观看| 久久国产乱子免费精品| 嫩草影院新地址| 国产 一区 欧美 日韩| 波多野结衣高清无吗| 亚洲,欧美精品.| 国产人妻一区二区三区在| 国产视频一区二区在线看| 免费搜索国产男女视频| 久久精品国产亚洲av天美| 91九色精品人成在线观看| 亚洲成人精品中文字幕电影| 在线观看美女被高潮喷水网站 | 国产69精品久久久久777片| 天天一区二区日本电影三级| 久久久久久久午夜电影| 国产在视频线在精品| 男人舔奶头视频| 亚洲精品粉嫩美女一区| 中文字幕久久专区| 国产不卡一卡二| 精品一区二区三区视频在线| 亚洲成av人片在线播放无| 香蕉av资源在线| 非洲黑人性xxxx精品又粗又长| 变态另类成人亚洲欧美熟女| 日本免费a在线| 淫妇啪啪啪对白视频| 身体一侧抽搐| 51午夜福利影视在线观看| 级片在线观看| 亚洲自拍偷在线| 桃红色精品国产亚洲av| 国产毛片a区久久久久| 久久人人爽人人爽人人片va | 成人亚洲精品av一区二区| 久久久久久九九精品二区国产| 亚洲国产精品sss在线观看| 一个人观看的视频www高清免费观看| 亚洲在线观看片| 精品人妻视频免费看| 国产亚洲精品久久久com| 欧美绝顶高潮抽搐喷水| 99在线人妻在线中文字幕| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| a在线观看视频网站| 日韩欧美在线二视频| 久久欧美精品欧美久久欧美| 禁无遮挡网站| 永久网站在线| 国产精品久久视频播放| 在线观看舔阴道视频| 精品久久久久久,| 亚洲av成人av| 亚洲精品色激情综合| 国产亚洲欧美98| av在线观看视频网站免费| 欧美色视频一区免费| 一个人看视频在线观看www免费| 哪里可以看免费的av片| 三级毛片av免费| 午夜两性在线视频| 亚洲黑人精品在线| 亚洲国产日韩欧美精品在线观看| 美女大奶头视频| 亚洲国产精品成人综合色| 亚洲人成网站高清观看| 搡老岳熟女国产| 亚洲av免费高清在线观看| 99久久九九国产精品国产免费| 色哟哟·www| av在线老鸭窝| 久久精品久久久久久噜噜老黄 | 精品久久久久久,| 制服丝袜大香蕉在线| 窝窝影院91人妻| 久久久成人免费电影| 18美女黄网站色大片免费观看| 国产伦精品一区二区三区四那| 欧美日本亚洲视频在线播放| 国产美女午夜福利| 亚洲一区二区三区色噜噜| 亚洲aⅴ乱码一区二区在线播放| 可以在线观看毛片的网站| 九九久久精品国产亚洲av麻豆| 亚洲人成伊人成综合网2020| 国产高潮美女av| 午夜老司机福利剧场| 欧美精品啪啪一区二区三区| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 超碰av人人做人人爽久久| 免费在线观看成人毛片| 国产精品一区二区三区四区免费观看 | 高清毛片免费观看视频网站| 99国产综合亚洲精品| 国产麻豆成人av免费视频| 国产男靠女视频免费网站| 国产亚洲欧美98| 婷婷色综合大香蕉| aaaaa片日本免费| 国产午夜福利久久久久久| 国产精品久久久久久人妻精品电影| 久久久久久久久中文| www.999成人在线观看| 黄色丝袜av网址大全| 国产男靠女视频免费网站| 亚洲五月婷婷丁香| 亚洲一区二区三区不卡视频| 在线观看一区二区三区| 成年人黄色毛片网站| 久久久久久久久久成人| 欧美黑人欧美精品刺激| 亚洲第一欧美日韩一区二区三区| 成人毛片a级毛片在线播放| 18美女黄网站色大片免费观看| 国产伦一二天堂av在线观看| 亚洲av美国av| 99热这里只有精品一区| 亚洲成人久久性| 亚洲无线在线观看| www.熟女人妻精品国产| 日本与韩国留学比较| 国产精品美女特级片免费视频播放器| 亚洲国产精品sss在线观看| 无人区码免费观看不卡| 少妇人妻一区二区三区视频| 99久久成人亚洲精品观看| 欧美午夜高清在线| av黄色大香蕉| 久久人人爽人人爽人人片va | 别揉我奶头 嗯啊视频| 日韩欧美一区二区三区在线观看| 高潮久久久久久久久久久不卡| 综合色av麻豆| 亚洲国产精品合色在线| 日韩高清综合在线| 12—13女人毛片做爰片一| 国产亚洲欧美98| 一a级毛片在线观看| 亚洲天堂国产精品一区在线| 成人特级av手机在线观看| 成人永久免费在线观看视频| 成人无遮挡网站| 女同久久另类99精品国产91| 日韩有码中文字幕| 成人三级黄色视频| 九色国产91popny在线| 女生性感内裤真人,穿戴方法视频| 欧美乱色亚洲激情| 嫩草影院新地址| av天堂中文字幕网| 99精品久久久久人妻精品| 国产av在哪里看| 色综合欧美亚洲国产小说| 日韩欧美三级三区| 人人妻人人看人人澡| 欧美日韩乱码在线| 九九在线视频观看精品| 一进一出抽搐动态| 亚洲精品日韩av片在线观看| 国产大屁股一区二区在线视频| 色综合站精品国产| 黄色配什么色好看| 亚洲最大成人手机在线| 欧美+亚洲+日韩+国产| 欧美极品一区二区三区四区| 我的女老师完整版在线观看| 在线播放无遮挡| 丝袜美腿在线中文| 色哟哟哟哟哟哟| 99久久精品国产亚洲精品| avwww免费| 精品国内亚洲2022精品成人| 51午夜福利影视在线观看| 国产视频一区二区在线看| 无人区码免费观看不卡| 男人舔女人下体高潮全视频| 成人一区二区视频在线观看| 女人十人毛片免费观看3o分钟| 一区二区三区激情视频| 最新在线观看一区二区三区| 国产精品免费一区二区三区在线| 在线国产一区二区在线| 一个人观看的视频www高清免费观看| 欧美三级亚洲精品| 色视频www国产| 香蕉av资源在线| 真人做人爱边吃奶动态| 日本a在线网址| 成人特级黄色片久久久久久久| 久久久久性生活片| 欧美午夜高清在线| 在线国产一区二区在线| 18美女黄网站色大片免费观看| 精品一区二区三区人妻视频| 极品教师在线视频| 国产高清视频在线观看网站| 99国产精品一区二区三区| 男插女下体视频免费在线播放| 免费看a级黄色片| 精品人妻一区二区三区麻豆 | 国产日本99.免费观看| 国产三级在线视频| 亚洲人与动物交配视频| 亚洲国产高清在线一区二区三| 禁无遮挡网站| 欧美三级亚洲精品| 1024手机看黄色片| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 好看av亚洲va欧美ⅴa在| 最近视频中文字幕2019在线8| 看片在线看免费视频| 有码 亚洲区| 窝窝影院91人妻| 色综合站精品国产| 91在线观看av| av在线天堂中文字幕| 欧美乱色亚洲激情| 天美传媒精品一区二区| 黄色配什么色好看| 99国产精品一区二区蜜桃av| 国产毛片a区久久久久| 91久久精品国产一区二区成人| 国产探花极品一区二区| 久久6这里有精品| 亚洲av五月六月丁香网| 午夜老司机福利剧场| 白带黄色成豆腐渣| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 亚洲精品影视一区二区三区av| 精品福利观看| 欧美黑人巨大hd| 国产白丝娇喘喷水9色精品| 18美女黄网站色大片免费观看| 国产精品久久久久久久电影| 国产69精品久久久久777片| 亚洲,欧美精品.| 伊人久久精品亚洲午夜| 国产欧美日韩一区二区精品| 在线观看一区二区三区| 色综合婷婷激情| 在线观看午夜福利视频| 久久国产乱子伦精品免费另类| 99热这里只有是精品50| 女人十人毛片免费观看3o分钟| 91字幕亚洲| 亚洲第一电影网av| 听说在线观看完整版免费高清| 精品一区二区三区视频在线观看免费| 99热这里只有是精品在线观看 | 午夜视频国产福利| 一区二区三区免费毛片| 亚洲自拍偷在线| 99热精品在线国产| 99久久无色码亚洲精品果冻| 久久久久亚洲av毛片大全| 精品久久久久久久久久久久久| 美女xxoo啪啪120秒动态图 | 麻豆av噜噜一区二区三区| 亚洲av免费在线观看| 亚洲最大成人中文| 午夜激情欧美在线| 高清日韩中文字幕在线| 国产精品乱码一区二三区的特点| 好男人在线观看高清免费视频| 热99在线观看视频| 精品国内亚洲2022精品成人| 久久久久久久精品吃奶| 91字幕亚洲| 中文字幕人妻熟人妻熟丝袜美| 免费观看人在逋| 熟女电影av网| 色av中文字幕| 久久久久久大精品| 亚洲精品在线美女| 91麻豆av在线| 九色成人免费人妻av| 成年版毛片免费区| 国产淫片久久久久久久久 | 久久草成人影院| 女生性感内裤真人,穿戴方法视频| 在线观看免费视频日本深夜| 久久久国产成人精品二区| 床上黄色一级片| 中文亚洲av片在线观看爽| 欧美色欧美亚洲另类二区|