• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    制備條件對PEI功能化石墨烯量子點熒光性能的影響

    2016-09-06 01:32:21王曉敏
    物理化學學報 2016年5期
    關鍵詞:功能化亞胺理工大學

    王 菡 王曉敏

    (太原理工大學材料科學與工程學院,太原030024)

    制備條件對PEI功能化石墨烯量子點熒光性能的影響

    王菡王曉敏*

    (太原理工大學材料科學與工程學院,太原030024)

    石墨烯量子點憑借其良好的水溶性、低生物毒性等特點,被不斷嘗試應用于生物成像領域,但其有限的熒光性能限制了其進一步應用。為改善石墨烯量子點的熒光性能以及進一步揭示石墨烯量子點的制備機理,本文對聚乙烯亞胺(PEI)功能化石墨烯量子點的制備條件進行了探索,討論了不同反應時間、制備溫度以及混懸液pH值對其熒光性能的影響。測試結果顯示,當混懸液pH值為12時,在反應釜中經過200°C高溫反應20 h,所制備的功能化石墨烯量子點能取得良好的紫外吸收峰和熒光性能,同時達到較高的量子產量。

    石墨烯量子點;聚乙烯亞胺;制備條件;熒光性能;量子產量

    1 Introduction

    Optical imaging with quantum dots has been widely used in the research of disease diagnosing,effective therapeutics and response monitoring,with the advantage of high sensitivity,multicolor imaging and easy-activation1,2.However,for most of the semiconductor quantum dots,low biocompatibility is the major handicap in further biological application3,4.

    Graphene quantum dots(GQDs)inherit the excellent properties of both graphene and quantum dots,such as large surface area, high specific strength,ultra-small size,excellent fluorescent property and low toxicity,which hold promising applications in cellular imaging,in vivo labeling and long-term cellular studies thus inspiring intensive research efforts in its own right5,6.In 2008, Dai et al.7first reported the intrinsic luminescence of nano-graphene oxide(NGO),single-layer graphene oxide sheets down to a few nanometers in lateral width and also explored the biologicalapplications.Since then,many synthesis methods have been proposed sequentially,the“top-down”methods such as hydrothermal approach8,solvothermal method with N,N-dimethyl formamide(DMF)or ethylene glycol as solvent etc.9,some physical cutting methods10,11and bottom-up methods12,13which focusing on the initial synthesis of GQDs were developed as well.As a core parameter of quantum dots,the fluorescent property of GQDs has been investigated by researchers,and both excitation-dependent and pH-dependent property has been explored like most luminescent carbon nanoparticles14,15.The high quantum yield(QY)for both GQDs and functionalized GQDs has been reported as well16,17. However,there still is a long way to go before a satisfying investigation of the preparation mechanism and fluorescent property of GQDs to alter photoluminescence(PL),biocompatibility and enhance optical properties and quantum yield18,19.

    Fig.1 (a)TEM image of GO sheets;(b)TEM image of the GQDs-BPEI after 1 h solvothermal treatment(inset:HRTEM image of an individual GQD-BPEI);(c)TEM image of the GQDs-BPEI after 10 h solvothermal treatment(inset:HRTEM image of the individual GQD-BPEI);(d)TEM image of the GQDs-BPEI after 20 h solvothermal treatment

    Since their initial use as gene delivery system,polyethylenimine (PEI)polymers have been extensively tested in vitro and in vivo and have been found to be one of the most efficacious non-viral agents20,21.Herein,we proposed a facile solvothermal method with ethanol as solvent,to produce GQDs functionalized with branched polyethylenimine(BPEI)in our previous work,which successfully improved the PL property of GQDs and also achieved a low cell toxicity and excellent nucleus labeling ability in vitro experiments22.To further investigate the preparation mechanism and improve the optical property of GQDs-BPEI,a wide time range from 1 to 24 h,reaction temperature from 100 to 200°C and pH value of the solution from 7 to 12 were explored respectively,and most of the fluorescent parameters such as maximum excitation wavelength,maximum emission wavelength,UV-Vis absorption and PL emission spectra have been compared and discussed,the quantum yield is calculated and discussed as well.

    2 Experimental

    Branched polyethylenimine(BPEI,average molecular weight: 10 kDa)and quinine sulfate fluorescence standard substance were purchased from Aladdin Industrial Inc.,Shanghai(China).Ultrapure water(18 MΩ?cm)was used in entire experimental procedures.

    GO sheets was prepared from graphite powder by a modified Hummers method23.The sample GO sheets(50 mg)were dispersed in 40 mL ethanol solution.BPEI 10000(200 mg)was added into the solution with sufficient stirring and the pH value was turned to 7,9,and 12 with NH3?H2O(or acetic acid).The mixture solution was then transferred into a 100 mL Teflon-lined stainless-steel autoclave and heated at 200°C(other temperature 100,140,and 180°C were also discussed)for 1,10,20,and 24 h, respectively.After cooling to room temperature,the resulting solution was further filtered through a 0.22 μm microporous membrane and the GQDs-BPEI ethanol solution with strong blue fluorescence was obtained.The GQDs-BPEI was then purified and separated via column chromatography24on neutral aluminum oxide,with ethanol as the eluent.

    JEOL JEM 2010 microscope(JEOL,Japan)with acceleration voltage of 200 kVwas used for the high-resolutionTEM(HRTEM) images.The UV-Vis spectra of the samples dispersed in ethanol were collected with a Hitachi U-3900 UV-Vis spectrophotometer. Photoluminescence(PL)spectra were obtained with Horiba Jobin Yvon Fluromax-4 spectrofluorometer(Japan).All spectra were recorded with quartz cells of 10 mm path length.

    3 Results and discussion

    GQDs-BPEI was prepared by a facile one-step solvothermal reduction of GO sheets and branched PEI(MW=10000)in ethanol solution.Fig.1a shows the TEM image of the pristine GO sheets.Fig.1b shows the TEM image of the as-prepared GQDs-BPEI after 1 h solvothermal treatment(sample 1).It clearly reveals that the layer structure of GO have been destroyed,from which original GQDs-BPEI of different sizes could be obtained. The HRTEM image of individual GQDs-BPEI(Fig.1b inset)indicates the high crystallinity of the structure.Moreover,clearly Zigzag edges have been seen from the individual GQDs-BPEI by which may reveal the preparation mechanism proposed by Pan et al.8.Fig.1c shows the TEM and HRTEM image of GQDs-BPEI after 10 h solvothermal treatment,individually(sample 2).From which the GQDs-BPEI with discernible lattice structures are clearly demonstrated with a lattice parameter of 0.21 nm,the(100) lattice fringes of graphene.Fig.1d shows theTEMimage of GQDs-BPEI after 20 h solvothermal treatment(sample 3).Compared with the former groups,the collected GQDs-BPEI after 20 h solvothermal treatment is nearly monodispersed and with a rel-atively narrow size distribution between 1 and 3 nm.

    Table 1 Fluorescent parameters of GQDs-BPEI under different preparation time

    Fig.2 (a)UV-Vis absorption spectra of the GQDs-BPEI under different reaction time(inset:photographs of the GQDs-BPEI); (b)photoluminescent excitation and emission spectrum of GQDs-BPEI under different reaction time;(c)PLE spectra(at 365 nm excitation)for the GQDs-BPEI under different reaction time(inset:the corresponding normalized PLspectra); (d)photographs of the GQDs-BPEI under 365 nm UV light(color online)

    To further explore the synthesis mechanism and optical properties of as-synthesized GQDs-BPEI,experiments with different reaction time ranging from 1 to 24 h,preparation temperature from 100 to 200°C and pH value of the mixture solution from 7 to 12 were developed,respectively.Fluorescent parameters such as maximum excitation wavelength,maximum emission wavelength, UV-Vis absorption and PL excitation and emission spectra have been compared and discussed,and the quantum yields is calculated and discussed as well.

    3.1Reaction time

    The influence of the reaction time was studied by applying reaction time from 1 to 24 h,whereas all the other reaction parameters were held constant(as shown in Table 1).Fluorescence parameters like maximum excitation wavelength,maximum emission wavelength,and quantum yield(QY)were measured and calculated respectively.

    Fig.2a shows the UV-Vis absorption spectra of the GQDs-BPEI, from which the absorption peak of GQDs-BPEI can be clearly seen between 330 and 365 nm with long absorption edge,and the absorption peak at ca.330 nm keeps enhancing gradually as the reaction time ascending from 1 to 20 h,then turns into little decrease starting from 20 till 24 h.The photoluminescent excitation and emission spectra of GQDs-BPEI under different reaction time are shown in Fig.2b.It is clearly demonstrated that GQDs-BPEI can be successfully obtained within a wide reaction time ranging from 1 to 24 h.When reaction time increased to 20 h,the PL spectrum indicates that the strongest peak is at 458 nm with a Stoke shift of 97 nm(Fig.1b).To further investigate the optical properties of the as-prepared GQDs-BPEI,the PLE spectra at 365nm excitation were recorded,as shown in Fig.2c.When the preparation time increases from 1 to 10 h,the PL peak of the GQDs-BPEI red shifts to longer wavelengths with a large Stoke shift,enables fluorescent signals to easily be distinguished from scattered excited light4.From 10 to 24 h,the location of the PLE spectra peak roughly remains unchanged.

    According to the classical optical reference method25,the PL quantum yield(QY)of GQDs-BPEI under different reaction time were measured and calculated using quinine sulfate as a reference, by the following formula:

    where φ stands for the quantum yield,A is the integral area of fluorescence emission peak intensity of PL spectrum,Abs is the corresponding absorbance of the sample,η is the refractive index of the solvent,subscripts st and x refer to the standard(which is quinine sulfate in this paper)and the unknown,respectively.

    As shown in Table 1(the detailed calculation steps are attached in Table S1(Supporting Information)),along with the preparation time ascends from 1 to 24 h,the PLquantum yield(QY)of GQDs-BPEI increases correspondingly from 3.83%to 21.02%.Considering the further reasonable optimization of the experimental conditions,the change of QY value verse reaction time was intuitively conducted in Fig.S1(Supporting Information).It is clearly shown that from 1 to 20 h the QY value of GQDs-BPEI is rapidly added,whereas the growth rate is reduced from 20 to 24 h.In the solvothermal process,the presence of ethanol may deoxidized the abundant oxygen-containing functional groups that exist in and on the surface of graphene oxide sheets where the epoxy groups are linearly arranged,ethanol can play an unzipping role26.Similar to the traditional hydrothermal method in synthesizing GQDs,the process of our solvothermal method is also a “top-down”mechanism,and with the reaction time increases the GO sheets were further cut to small pieces,which also confirmed by the TEM results(see Fig.1).The result shows that the quantum yield will be higher when the reaction time is getting longer and the particles becomes smaller,however,based on an overall consideration of factors such as time and cost,the optimal reaction time is finally set to 20 h.

    Fig.3 (a)UV-Vis absorption spectra of the GQDs-BPEI under different preparation temperatures(inset:photographs of the GQDs-BPEI); (b)photoluminescent excitation and emission spectrum of GQDs-BPEI under different preparation temperatures;(c)PLE spectra(at 365 nm excitation)for the GQDs-BPEI under different preparation temperatures(inset:the corresponding normalized PLspectra); (d)photographs of the GQDs-BPEI with different preparation temperatures under 365 nm UV light(color online)

    3.2Preparation temperature

    The influence of preparation temperature was investigated by setting preparation temperature from 100 to 200°C,whereas all the other reaction parameters were held constant(as shown in Table 2).When the preparation temperature is below 100°C, fluorescence from GQDs-BPEI can be hardly observed,meanwhile,limited by the autoclave the highest safe temperature is set to 200°C.

    Fig.3a shows the UV-Vis absorption spectra of the GQDs-BPEI, from which the absorption peak of GQDs-BPEI can be clearly located around 330 nm with long absorption edge,and the peak keeps enhancing gradually as the preparation temperature risen from100 to 200°C.The photoluminescent excitationandemission spectra of GQDs-BPEI under different preparation temperature are shown in Fig.3b.The bright GQDs-BPEI quantum dots can be easily obtained under 100 to 200°Csolvothermal preparation,and the PLintensity of which was rapidly enhanced via the preparation temperature risen.Fig.3c shows the PLEspectra of GQDs-BPEI at 365 nmexcitation,fromwhich it is clearly observed that when the preparation temperature was changed from 100 to 200°C,the PL peaks red shift from 434 to 459 nm with larger Stokes shift.It is commonly known that,higher absorbency,PLintensity and largerStokes shift make quantumdots easy to visualize without imposing stringentrequirementsontheopticalsystem4.

    Table 2 Fluorescent parameters of GQDs-BPEI under different preparation temperatures

    Table 3 Fluorescent parameters of GQDs-BPEI under different pH values

    Fig.4 (a)UV-Vis absorption spectra of the GQDs-BPEI under different pH values(inset:photographs of the GQDs-BPEI); (b)photoluminescent excitation and emission spectrum of GQDs-BPEI under different pH values; (c)PLE spectra(at 365 nm excitation)for the GQDs-BPEI under different pH values(inset:the corresponding normalized PLspectra); (d)photographs of the GQDs-BPEI with different pH values under 365 nm UV light(color online)

    The QY values of GQDs-BPEI under different preparation temperatures are shown in Table 2.As the preparation temperature increased from 100 to 200°C,the QY value rises correspondingly from 4.56%to 19.34%,and the growth rate raises rapidly as the temperature increases from 150 to 200°C(as shown in Fig.S2 (Supporting Information)).The results suggested that under high temperature especially above 180°C the reducibility of ethanol was further enhanced,more oxygen-containing functional groups of GO sheets were deoxidized,and the GO sheets were cut into smaller pieces with better fluorescent property and higher QY value.However,considering the temperature limit of the Teflon material(inner container of the stainless-steel autoclave),we choose 200°C as the highest safe temperature.

    3.3pH value

    Since the branched PEI will agglomerate under acidic conditions,the influence of the pH value of the solution was investigated within the range from 7 to 12,whereas all the other reaction parameters were held constant(as shown in Table 3).

    Fig.4a shows the UV-Vis absorption spectra of the GQDs-BPEI, from which the absorption peaks of GQDs-BPEI can be clearly observed around 330 nm with long absorption edge.The photoluminescent excitation and emission spectra of GQDs-BPEI under different pH value are shown in Fig.4b.It clearly demonstrates that,compare to reaction time and preparation temperature,the pH value of the solvent has limited effect on the UV absorbency and PL intensity of the as-prepared GQDs-BPEI.It seems that under alkaline environment the GQDs-BPEI always have higher absorbency and better PL properties.Fig.4c further confirmed that under the same excitation light(365 nm)as the pH value of the solvent added,the PL peaks red shift with larger Stokes shift and smaller half peak width(PWH).Usually,for quantum dots smaller PWH means the size distribution of the particle is more uniform and concentrated.

    The QY values of GQDs-BPEI under different pH values are calculated and demonstrated in Table 3.When the pH value increases from 7 to 12,the QY value increases slowly from 16.53% to 19.34%(as shown in Fig.S3(Supporting Information)).This may because GO sheets can be better dispersed in ethanol solvent under alkaline conditions and further deoxidized.Usually,by adding branched PEI the pH value of the mixture solution is ca 10.2.Therefore,a small amount of ammonia was added to ensure the consistency and repeatability of the experiment,at the same time to obtain better fluorescence properties of the outcome.

    4 Conclusions

    In conclusion,to obtain a better fluorescent property of the GQDs for further application in biological labeling,small graphene quantum dots functionalized with branched PEI(GQDs-BPEI)were synthesized,and the preparation conditions,reaction time,temperature,and pH value were explored,the optical properties have been further compared and discussed.Compared with the normal hydrothermal method,the solvothermal method with ethanol as solvent successfully contributes the broken-up process of GO sheets,meanwhile,the existence of PEI also passivated the surface of the as-prepared GQDs which further improved the PL property.In consideration of factors such as time and cost,when the pH value of the mixture solution set to 12,the preparation temperature ascend to 200°C,and after 20 h reaction in autoclave the as-prepared GQDs-BPEI can achieved a higher UVabsorbency and better PLproperties with a high quantum yield of 19.34%.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1)Resch-Genger,U.;Grabolle,M.;Cavaliere-Jaricot,S.; Nitschke,R.;Nann,T.Nature Methods 2008,5,763.doi: 10.1038/nmeth.1248

    (2)Lu,L.P.;Li,J.;Wu,J.;Kang,T.F.;Cheng,S.Y.Acta Phys.-Chim.Sin.2015,31(3),483.[魯理平,李嬌,武靜,康天放,程水源.物理化學學報,2015,31(3),483.] doi:10.3866/PKU.WHXB201501151

    (3)Lee,D.E.;Koo,H.;Sun,I.C.;Ryu,J.H.;Kim,K.;Kwon,I. C.Chemical Society Reviews 2012,41,2656.doi:10.1039/ C2CS15261D

    (4)Nida,D.L.;Rahman,M.S.;Carlson,K.D.;Richards-Kortum, R.;Follen,M.Gynecologic Oncology 2005,99,S89. doi:10.1016/j.ygyno.2005.07.050

    (5)Shen,J.;Zhu,Y.;Yang,X.;Li,C.Chemical Communications 2012,48,3686.doi:10.1039/c2cc00110a

    (6)Nurunnabi,M.;Khatun,Z.;Nafiujjaman,M.;Lee,D.G.;Lee, Y.K.ACS Applied Materials&Interfaces 2013,5,8246. doi:10.1021/am4023863

    (7)Sun,X.;Liu,Z.;Welsher,K.;Robinson,J.T.;Goodwin,A.; Zaric,S.;Dai,H.Nano Research 2008,1,203.doi:10.1007/ s12274-008-8021-8

    (8)Pan,D.;Zhang,J.;Li,Z.;Wu,M.Advanced Materials 2010, 22,734.doi:10.1002/adma.v22:6

    (9)Zhu,S.;Zhang,J.;Qiao,C.;Tang,S.;Li,Y.;Yuan,W.;Li,B.; Tian,L.;Liu,F.;Hu,R.;Gao,H.;Wei,H.;Zhang H.Chemical Communications 2011,47,6858.doi:10.1039/c1cc11122a

    (10)Ponomarenko,L.;Schedin,F.;Katsnelson,M.;Yang,R.;Hill, E.;Novoselov,K.;Geim,A.Science 2008,320,356.doi: 10.1126/science.1154663

    (11)Tang,L.;Ji,R.;Cao,X.;Lin,J.;Jiang,H.;Li,X.;Teng,K.S.; Luk,C.M.;Zeng,S.;Hao,J.ACS Nano 2012,6,5102.doi: 10.1021/nn300760g

    (12)Lu,J.;Yeo,P.S.E.;Gan,C.K.;Wu,P.;Loh,K.P.Nature Nanotechnology 2011,6,247.doi:10.1038/nnano.2011.30

    (13)Yan,X.;Cui,X.;Li,L.S.Journal of the American Chemical Society 2010,132,5944.doi:10.1021/ja1009376

    (14)Baker,S.N.;Baker,G.A.Angewandte Chemie International Edition 2010,49,6726.doi:10.1002/anie.200906623

    (15)Feng,C.;Deng,X.Y.;Ni,X.X.;Li,W.B.Acta Phys.-Chim. Sin.2015,31(12),2349.[馮昌,鄧曉燕,倪曉曉,李衛(wèi)兵.物理化學學報,2015,31(12),2349.]doi:10.3866/PKU. WHXB201510281

    (16)Shen,J.;Zhu,Y.;Yang,X.;Zong,J.;Zhang,J.;Li,C.New Journal of Chemistry 2012,36,97.doi:10.1039/C1NJ20658C (17)Hu,C.;Liu,Y.;Yang,Y.;Cui,J.;Huang,Z.;Wang,Y.;Yang, L.;Wang,H.;Xiao,Y.;Rong,J.Journal of Materials Chemistry B 2013,1,39.doi:10.1039/C2TB00189F

    (18)Wang,Z.;Qu,Y.;Gao,X.;Mu,C.;Bai,J.;Pu,Q.Materials Letters 2014,129,122.doi:10.1016/j.matlet.2014.05.016

    (19)Fan,Z.;Li,Y.;Li,X.;Fan,L.;Zhou,S.;Fang,D.;Yang,S. Carbon 2014,70,149.doi:10.1016/j.carbon.2013.12.085

    (20)Boussif,O.;Lezouale′H,F.;Zanta,M.A.;Mergny,M.D.;Scherman,D.;Demeneix,B.;Behr,J.P.Proceedings of the National Academy of Sciences of the United States of Amercia 1995,92,7297.doi:10.1073/pnas.92.16.7297

    (21)Brownlie,A.;Uchegbu,I.;Sch?tzlein,A.International Journal of Pharmaceutics 2004,274,41.doi:10.1016/j. ijpharm.2003.12.029

    (22)Wang,H.;Wang,X.RSC Adv.2015,5,75380.doi:10.1039/ C5RA13509E

    (23)Li,D.;Muller,M.B.;Gilje,S.;Kaner,R.B.;Wallace,G.G. Nat.Nanotechnol 2008,3,101.doi:10.1038/nnano.2007.451

    (24)Li,H.;He,X.;Kang,Z.;Huang,H.;Liu,Y.;Liu,J.;Lian,S.; Tsang,C.H.A.;Yang,X.;Lee,S.T.Angewandte Chemie International Edition 2010,49,4430.doi:10.1002/ anie.200906154

    (25)Crosby,G.A.;Demas,J.N.The Journal of Physical Chemistry 1971,75,991.doi:10.1021/j100678a001

    (26)Kosynkin,D.V.;Higginbotham,A.L.;Sinitskii,A.;Lomeda, J.R.;Dimiev,A.;Price,B.K.;Tour,J.M.Nature 2009,458, 872.doi:10.1038/nature07872

    Effect of Preparation Conditions on the Optical Properties of PEI-Functionalized Graphene Quantum Dots

    WANG HanWANG Xiao-Min*
    (College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)

    Because of their low toxicity and excellent water-solubility,graphene quantum dots have been highly anticipated for use in cellular imaging.However,their limited optical properties are hampering this use.To address this issue,graphene quantum dots surface passivated by branched polyethylenimine(GQDs-BPEI) were proposed in this paper.We discussed optical properties when prepared under different conditions including reaction time,temperature,and pH value.The results indicate that GQDs-BPEI prepared at pH 12,at a temperature of 200°C,and with a 20 h reaction in an autoclave can achieve a higher UV absorbency and better PL properties with a high quantum yield.

    Graphene quantum dot;Polyethylenimine;Preparation condition;Optical property; Quantum yield

    December 7,2015;Revised:February 29,2016;Published on Web:March 1,2016.

    O644

    10.3866/PKU.WHXB201603014

    *Corresponding author.Email:wangxiaomin@tyut.edu.cn;Tel:+86-351-6018639.

    The project was supported by the National Natural Science Foundation of China(51372160,51572184).國家自然科學基金(51372160,51572184)資助項目

    猜你喜歡
    功能化亞胺理工大學
    昆明理工大學
    昆明理工大學
    昆明理工大學
    浙江理工大學
    石墨烯及其功能化復合材料制備研究
    環(huán)氧樹脂/有機硅改性雙馬來酞亞胺的性能研究
    中國塑料(2015年6期)2015-11-13 03:02:55
    亞胺培南西司他丁鈉在危重癥感染降階梯治療中的效果觀察
    基于β-二亞胺配體的鋁氧硼六元環(huán)化合物和其中間體的合成、表征及其反應性研究
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    石墨烯的制備、功能化及在化學中的應用
    河南科技(2014年11期)2014-02-27 14:09:49
    午夜免费激情av| 久久久久久九九精品二区国产 | 免费看十八禁软件| 中出人妻视频一区二区| 日本熟妇午夜| 国产不卡一卡二| 视频区欧美日本亚洲| 精品欧美国产一区二区三| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 欧美+亚洲+日韩+国产| 国产成年人精品一区二区| 欧美黑人巨大hd| 亚洲第一欧美日韩一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 婷婷精品国产亚洲av在线| 亚洲精品美女久久av网站| a在线观看视频网站| 日韩欧美在线二视频| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜亚洲福利在线播放| 女人被狂操c到高潮| 国产亚洲精品av在线| 国产爱豆传媒在线观看 | 亚洲av片天天在线观看| 人人妻,人人澡人人爽秒播| 麻豆国产97在线/欧美 | 亚洲一区二区三区色噜噜| 国产精品久久久人人做人人爽| 99国产精品一区二区蜜桃av| www.精华液| 久久久久国产精品人妻aⅴ院| 欧美日本亚洲视频在线播放| 国产伦人伦偷精品视频| 亚洲精品国产一区二区精华液| 又黄又粗又硬又大视频| avwww免费| 亚洲av熟女| 狂野欧美激情性xxxx| 国产亚洲精品一区二区www| 人人妻,人人澡人人爽秒播| 久久久国产精品麻豆| 一进一出抽搐动态| 国产成+人综合+亚洲专区| 午夜福利在线在线| 亚洲精品中文字幕一二三四区| 欧美3d第一页| 无限看片的www在线观看| 国产三级在线视频| 91av网站免费观看| 国产97色在线日韩免费| 久久久久国产精品人妻aⅴ院| www日本黄色视频网| 日本免费a在线| 国产69精品久久久久777片 | 午夜a级毛片| 免费人成视频x8x8入口观看| 国产高清videossex| 黄色成人免费大全| 在线永久观看黄色视频| 真人一进一出gif抽搐免费| 久久久久久久久免费视频了| 999久久久国产精品视频| 久久久水蜜桃国产精品网| 欧美色视频一区免费| 久久久精品大字幕| 欧美又色又爽又黄视频| 18禁美女被吸乳视频| 免费看日本二区| 天天一区二区日本电影三级| 免费av毛片视频| 欧美成人一区二区免费高清观看 | 一级黄色大片毛片| 18禁国产床啪视频网站| 国产麻豆成人av免费视频| 国产成人精品久久二区二区免费| 成人三级黄色视频| 午夜福利在线观看吧| 国产片内射在线| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩一区二区三| www.www免费av| 两个人看的免费小视频| 大型黄色视频在线免费观看| 男女之事视频高清在线观看| 亚洲第一电影网av| 久久婷婷成人综合色麻豆| 国产av不卡久久| 亚洲人成电影免费在线| 91九色精品人成在线观看| 2021天堂中文幕一二区在线观| 午夜亚洲福利在线播放| 黄色丝袜av网址大全| 国产精品一区二区三区四区免费观看 | 亚洲欧美日韩东京热| av国产免费在线观看| 久久亚洲真实| 一级毛片女人18水好多| 国产爱豆传媒在线观看 | 欧美高清成人免费视频www| 午夜福利在线在线| 夜夜爽天天搞| 啦啦啦观看免费观看视频高清| 少妇粗大呻吟视频| 叶爱在线成人免费视频播放| 国产精品 欧美亚洲| 又紧又爽又黄一区二区| 久久精品国产清高在天天线| 一级作爱视频免费观看| 中文字幕高清在线视频| 少妇人妻一区二区三区视频| 久久久久九九精品影院| 中文字幕高清在线视频| 亚洲片人在线观看| 男插女下体视频免费在线播放| 国产精品一区二区免费欧美| 亚洲专区中文字幕在线| 91av网站免费观看| 日韩欧美国产在线观看| 成人国产一区最新在线观看| 18禁美女被吸乳视频| svipshipincom国产片| 午夜两性在线视频| videosex国产| 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| av有码第一页| 成人三级做爰电影| 亚洲一区二区三区色噜噜| 久久久久久大精品| 国产久久久一区二区三区| 欧美成人午夜精品| 国产一区二区三区在线臀色熟女| 欧洲精品卡2卡3卡4卡5卡区| 午夜视频精品福利| 精品国产乱码久久久久久男人| 99久久综合精品五月天人人| 国产精品亚洲一级av第二区| 琪琪午夜伦伦电影理论片6080| 国产精品亚洲av一区麻豆| 老熟妇乱子伦视频在线观看| 岛国视频午夜一区免费看| 狂野欧美白嫩少妇大欣赏| 又黄又粗又硬又大视频| 国产成年人精品一区二区| 午夜激情福利司机影院| 亚洲国产精品合色在线| 久久久水蜜桃国产精品网| 国产69精品久久久久777片 | 久久精品影院6| 国产视频内射| 熟女电影av网| 19禁男女啪啪无遮挡网站| 99久久精品国产亚洲精品| 国产伦一二天堂av在线观看| 人人妻,人人澡人人爽秒播| 免费av毛片视频| 人人妻,人人澡人人爽秒播| 日本精品一区二区三区蜜桃| 夜夜爽天天搞| 欧美日韩乱码在线| 亚洲avbb在线观看| 婷婷精品国产亚洲av| 久久99热这里只有精品18| 久久天躁狠狠躁夜夜2o2o| 午夜福利成人在线免费观看| 精品一区二区三区av网在线观看| 亚洲欧美精品综合一区二区三区| 美女午夜性视频免费| а√天堂www在线а√下载| 久久久久性生活片| 高潮久久久久久久久久久不卡| 婷婷亚洲欧美| 搡老岳熟女国产| 亚洲欧美一区二区三区黑人| 亚洲免费av在线视频| 国产精品电影一区二区三区| 亚洲一区二区三区色噜噜| 88av欧美| 国产亚洲av嫩草精品影院| 亚洲天堂国产精品一区在线| 婷婷精品国产亚洲av| 亚洲精品久久成人aⅴ小说| 日日干狠狠操夜夜爽| 久久久久性生活片| 亚洲av成人一区二区三| 亚洲专区中文字幕在线| 波多野结衣高清作品| www.www免费av| 久久午夜综合久久蜜桃| 亚洲欧美精品综合一区二区三区| 免费看a级黄色片| 欧美日韩中文字幕国产精品一区二区三区| 精品欧美国产一区二区三| 欧美大码av| 久热爱精品视频在线9| 男人舔女人下体高潮全视频| 免费看美女性在线毛片视频| 亚洲人与动物交配视频| 精品国内亚洲2022精品成人| 国产精品久久久久久久电影 | www国产在线视频色| 欧美日本视频| 亚洲av成人不卡在线观看播放网| 老汉色av国产亚洲站长工具| 在线观看免费日韩欧美大片| 日韩大尺度精品在线看网址| 亚洲av成人不卡在线观看播放网| 露出奶头的视频| 亚洲成人久久爱视频| 国产在线精品亚洲第一网站| 老熟妇乱子伦视频在线观看| 男人舔女人下体高潮全视频| 亚洲av熟女| 精品欧美一区二区三区在线| 波多野结衣巨乳人妻| 老熟妇仑乱视频hdxx| 99热只有精品国产| 丝袜人妻中文字幕| 久久精品国产99精品国产亚洲性色| 99国产精品99久久久久| 亚洲电影在线观看av| 午夜免费观看网址| 俺也久久电影网| 国产精品美女特级片免费视频播放器 | 99在线视频只有这里精品首页| 高清在线国产一区| 中文字幕av在线有码专区| 日本黄大片高清| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 婷婷丁香在线五月| 无限看片的www在线观看| 国产男靠女视频免费网站| 亚洲av电影在线进入| 国产精品美女特级片免费视频播放器 | 午夜精品久久久久久毛片777| 亚洲av成人精品一区久久| 亚洲中文字幕日韩| 男女做爰动态图高潮gif福利片| 黄频高清免费视频| 精品欧美一区二区三区在线| 亚洲一区二区三区不卡视频| 亚洲成人精品中文字幕电影| 国产精品精品国产色婷婷| 国产成人一区二区三区免费视频网站| 精品国产乱子伦一区二区三区| 三级国产精品欧美在线观看 | 最近视频中文字幕2019在线8| 女警被强在线播放| 国产成人av激情在线播放| 亚洲 欧美 日韩 在线 免费| 一进一出好大好爽视频| 中亚洲国语对白在线视频| av片东京热男人的天堂| 在线观看舔阴道视频| 欧美又色又爽又黄视频| 一个人免费在线观看的高清视频| 中文字幕精品亚洲无线码一区| 精品久久久久久久人妻蜜臀av| 午夜视频精品福利| 亚洲精品美女久久久久99蜜臀| 一本一本综合久久| 看黄色毛片网站| 国产三级在线视频| 日日干狠狠操夜夜爽| 中文字幕最新亚洲高清| 色哟哟哟哟哟哟| 黄色视频不卡| 欧美丝袜亚洲另类 | 性欧美人与动物交配| 岛国在线观看网站| 香蕉av资源在线| 欧美日韩福利视频一区二区| 久久 成人 亚洲| 免费看a级黄色片| 欧美在线一区亚洲| 国产人伦9x9x在线观看| 少妇粗大呻吟视频| 欧美性猛交╳xxx乱大交人| 国产成人av教育| 国产熟女xx| 99re在线观看精品视频| 麻豆av在线久日| 黄色a级毛片大全视频| 日本免费一区二区三区高清不卡| 天天添夜夜摸| 国产区一区二久久| 国产成+人综合+亚洲专区| 五月伊人婷婷丁香| 99久久无色码亚洲精品果冻| 法律面前人人平等表现在哪些方面| 国产精品亚洲一级av第二区| 免费高清视频大片| 18禁裸乳无遮挡免费网站照片| 国产片内射在线| 每晚都被弄得嗷嗷叫到高潮| 久久久久久大精品| 午夜激情福利司机影院| 无限看片的www在线观看| 人妻夜夜爽99麻豆av| 久久精品综合一区二区三区| 国产成人一区二区三区免费视频网站| 特级一级黄色大片| 国产av一区二区精品久久| 欧美乱妇无乱码| 9191精品国产免费久久| 欧美日本亚洲视频在线播放| 搡老妇女老女人老熟妇| www.精华液| 久久久久久免费高清国产稀缺| 国产精品日韩av在线免费观看| 精品一区二区三区四区五区乱码| 成人高潮视频无遮挡免费网站| 国产免费av片在线观看野外av| 国产精华一区二区三区| 国产1区2区3区精品| www日本黄色视频网| www.www免费av| 真人做人爱边吃奶动态| 老汉色∧v一级毛片| 国产精品自产拍在线观看55亚洲| 女人被狂操c到高潮| 国产精品一区二区精品视频观看| 免费高清视频大片| 精品熟女少妇八av免费久了| 国产亚洲精品综合一区在线观看 | 国产日本99.免费观看| 婷婷精品国产亚洲av| 久久久水蜜桃国产精品网| 精品久久蜜臀av无| 女同久久另类99精品国产91| 五月玫瑰六月丁香| 国产成人av教育| 激情在线观看视频在线高清| 亚洲精品美女久久av网站| 久久久久久亚洲精品国产蜜桃av| 久久久久国产精品人妻aⅴ院| 精品乱码久久久久久99久播| 免费在线观看成人毛片| 精品少妇一区二区三区视频日本电影| av有码第一页| √禁漫天堂资源中文www| 亚洲国产高清在线一区二区三| 极品教师在线免费播放| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| 嫩草影视91久久| 日本 欧美在线| 人妻丰满熟妇av一区二区三区| 老司机在亚洲福利影院| 一区二区三区高清视频在线| 天堂√8在线中文| 欧美中文日本在线观看视频| 777久久人妻少妇嫩草av网站| 老汉色av国产亚洲站长工具| 欧美黄色淫秽网站| 日韩中文字幕欧美一区二区| 亚洲无线在线观看| 国产久久久一区二区三区| 三级国产精品欧美在线观看 | 精品国产乱码久久久久久男人| 级片在线观看| 婷婷精品国产亚洲av在线| 一个人观看的视频www高清免费观看 | 国产伦人伦偷精品视频| 50天的宝宝边吃奶边哭怎么回事| 男女午夜视频在线观看| 国模一区二区三区四区视频 | 欧美日本视频| 久久99热这里只有精品18| 三级毛片av免费| 老熟妇乱子伦视频在线观看| 亚洲精品国产精品久久久不卡| 法律面前人人平等表现在哪些方面| 嫩草影视91久久| 黄片大片在线免费观看| 国产免费男女视频| 日本精品一区二区三区蜜桃| 精品久久蜜臀av无| 一进一出抽搐gif免费好疼| 国产黄色小视频在线观看| 一本精品99久久精品77| 久久久国产欧美日韩av| 欧美乱妇无乱码| 欧美性长视频在线观看| 国产成年人精品一区二区| 少妇的丰满在线观看| 久久久久久免费高清国产稀缺| 露出奶头的视频| 欧美久久黑人一区二区| 欧美又色又爽又黄视频| 在线观看免费日韩欧美大片| 好看av亚洲va欧美ⅴa在| 99热只有精品国产| 最近在线观看免费完整版| 欧美一级a爱片免费观看看 | 给我免费播放毛片高清在线观看| 国产在线精品亚洲第一网站| 97人妻精品一区二区三区麻豆| 真人一进一出gif抽搐免费| 老司机深夜福利视频在线观看| 亚洲男人天堂网一区| 老司机福利观看| 99国产极品粉嫩在线观看| 香蕉国产在线看| 老熟妇乱子伦视频在线观看| 久久久久久大精品| 日本一本二区三区精品| 美女午夜性视频免费| 免费在线观看黄色视频的| 中文亚洲av片在线观看爽| 日本a在线网址| 精品高清国产在线一区| 日韩欧美一区二区三区在线观看| 99久久精品国产亚洲精品| 精品少妇一区二区三区视频日本电影| 国产精品爽爽va在线观看网站| 夜夜躁狠狠躁天天躁| 久久这里只有精品中国| 国产av又大| 免费在线观看视频国产中文字幕亚洲| 老汉色av国产亚洲站长工具| www.精华液| 日韩成人在线观看一区二区三区| 99精品久久久久人妻精品| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 亚洲av片天天在线观看| 老汉色av国产亚洲站长工具| 级片在线观看| 听说在线观看完整版免费高清| 日本免费a在线| 欧美最黄视频在线播放免费| 国产精品av视频在线免费观看| 欧美丝袜亚洲另类 | 黄色a级毛片大全视频| 色噜噜av男人的天堂激情| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 日韩欧美在线乱码| 亚洲18禁久久av| 午夜福利成人在线免费观看| 午夜福利在线在线| 欧美乱妇无乱码| 国产精品1区2区在线观看.| 国产亚洲精品久久久久5区| 国产av麻豆久久久久久久| 深夜精品福利| 亚洲国产精品久久男人天堂| 在线视频色国产色| 国产精品美女特级片免费视频播放器 | 制服人妻中文乱码| 国产精品香港三级国产av潘金莲| 成年免费大片在线观看| 亚洲 欧美 日韩 在线 免费| 男女视频在线观看网站免费 | 黄色视频,在线免费观看| 免费在线观看日本一区| 18禁国产床啪视频网站| 老司机福利观看| 亚洲乱码一区二区免费版| 可以在线观看的亚洲视频| 夜夜看夜夜爽夜夜摸| 老鸭窝网址在线观看| 国产午夜精品论理片| 色综合站精品国产| 淫妇啪啪啪对白视频| 婷婷六月久久综合丁香| 国产视频内射| 精品电影一区二区在线| 久久性视频一级片| 免费无遮挡裸体视频| 91成年电影在线观看| 久久久久久久久免费视频了| 久久这里只有精品中国| 校园春色视频在线观看| 亚洲国产精品999在线| 热99re8久久精品国产| 12—13女人毛片做爰片一| 高清毛片免费观看视频网站| 国产黄片美女视频| 国产高清有码在线观看视频 | 久久亚洲精品不卡| 十八禁网站免费在线| 99精品欧美一区二区三区四区| 成人国语在线视频| 两个人的视频大全免费| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美| 亚洲国产精品sss在线观看| 99riav亚洲国产免费| 欧美性长视频在线观看| 亚洲国产欧洲综合997久久,| 国产单亲对白刺激| 悠悠久久av| 母亲3免费完整高清在线观看| 色综合婷婷激情| 久久精品影院6| 国产人伦9x9x在线观看| 一a级毛片在线观看| 精品熟女少妇八av免费久了| 亚洲欧美精品综合一区二区三区| 舔av片在线| 国产精品野战在线观看| 国产91精品成人一区二区三区| 欧美极品一区二区三区四区| 人人妻,人人澡人人爽秒播| 香蕉国产在线看| 久久久久国产精品人妻aⅴ院| 亚洲人成77777在线视频| xxx96com| 久久天堂一区二区三区四区| 欧美成人免费av一区二区三区| 亚洲精品在线观看二区| 最近在线观看免费完整版| 国产精品免费视频内射| 亚洲av熟女| 国产免费男女视频| 欧美一区二区国产精品久久精品 | 亚洲中文字幕一区二区三区有码在线看 | 色在线成人网| 亚洲成人久久爱视频| 不卡一级毛片| 男插女下体视频免费在线播放| 国内精品一区二区在线观看| 制服丝袜大香蕉在线| 国产伦一二天堂av在线观看| 久久中文字幕一级| 亚洲自偷自拍图片 自拍| 性色av乱码一区二区三区2| 天天一区二区日本电影三级| 亚洲精品中文字幕一二三四区| 无限看片的www在线观看| 日本a在线网址| 亚洲国产精品合色在线| 人成视频在线观看免费观看| 亚洲av五月六月丁香网| 欧美在线一区亚洲| 一二三四在线观看免费中文在| 国产精华一区二区三区| 亚洲一区二区三区色噜噜| 99精品久久久久人妻精品| 18禁观看日本| 非洲黑人性xxxx精品又粗又长| 神马国产精品三级电影在线观看 | 人人妻,人人澡人人爽秒播| 免费在线观看亚洲国产| 日韩成人在线观看一区二区三区| 特大巨黑吊av在线直播| avwww免费| 高清在线国产一区| 岛国视频午夜一区免费看| 国产99久久九九免费精品| 免费高清视频大片| 成人精品一区二区免费| 国产精品精品国产色婷婷| 两性午夜刺激爽爽歪歪视频在线观看 | 国产日本99.免费观看| 国产野战对白在线观看| 成年女人毛片免费观看观看9| 精华霜和精华液先用哪个| 亚洲国产中文字幕在线视频| 免费av毛片视频| 久久热在线av| 99在线人妻在线中文字幕| 久久久久久久久中文| 91av网站免费观看| 曰老女人黄片| 久久精品91无色码中文字幕| 黑人巨大精品欧美一区二区mp4| 国产精华一区二区三区| 久久久久久九九精品二区国产 | 久久欧美精品欧美久久欧美| xxxwww97欧美| 欧美av亚洲av综合av国产av| 最新在线观看一区二区三区| 精华霜和精华液先用哪个| 伦理电影免费视频| 国产午夜精品久久久久久| 欧美乱码精品一区二区三区| 日本a在线网址| 麻豆成人av在线观看| 亚洲成av人片免费观看| 大型黄色视频在线免费观看| 老司机午夜福利在线观看视频| 日本 av在线| 级片在线观看| 99在线人妻在线中文字幕| 在线观看舔阴道视频| cao死你这个sao货| 午夜两性在线视频| 在线观看免费午夜福利视频| 婷婷精品国产亚洲av在线| 亚洲欧美精品综合久久99| 免费av毛片视频| 脱女人内裤的视频| 少妇裸体淫交视频免费看高清 | av国产免费在线观看| 日本在线视频免费播放| 国产高清视频在线观看网站| 国产亚洲精品综合一区在线观看 | 国产免费男女视频| 亚洲五月天丁香| 老司机靠b影院| 两人在一起打扑克的视频| www日本黄色视频网| 久久国产精品人妻蜜桃| 亚洲中文av在线| 成人高潮视频无遮挡免费网站| 午夜免费激情av| 18禁观看日本|