• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于三萘苯的溶液可加工螺旋形寡聚物的合成及其在藍(lán)光有機(jī)電致發(fā)光器件中的應(yīng)用

    2016-09-06 01:32:22初增澤吳紅偉鄒德春
    物理化學(xué)學(xué)報(bào) 2016年5期
    關(guān)鍵詞:螺旋形電致發(fā)光甲氧基

    初增澤 王 丹 吳紅偉 鄒德春,*

    (1沈陽(yáng)師范大學(xué)化學(xué)化工學(xué)院,沈陽(yáng)110034;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100871)

    基于三萘苯的溶液可加工螺旋形寡聚物的合成及其在藍(lán)光有機(jī)電致發(fā)光器件中的應(yīng)用

    初增澤1王丹2吳紅偉2鄒德春2,*

    (1沈陽(yáng)師范大學(xué)化學(xué)化工學(xué)院,沈陽(yáng)110034;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100871)

    近年來(lái),人們?cè)谟袡C(jī)電致發(fā)光材料和器件結(jié)構(gòu)方面取得了巨大的進(jìn)步。然而由于藍(lán)光材料具帶隙寬的內(nèi)稟屬性,在發(fā)光效率、色純度和穩(wěn)定性上仍然面臨巨大挑戰(zhàn)。本文將螺旋形三萘苯共軛體系引入電致發(fā)光材料領(lǐng)域,它獨(dú)特的螺旋形分子結(jié)構(gòu)和易于化學(xué)修飾的特點(diǎn)有利于抑制聚集體和基激締合物的形成。通過(guò)SiCl4催化的環(huán)三縮合反應(yīng)和Suzuki偶聯(lián)反應(yīng),我們?cè)O(shè)計(jì)合成了以三萘基苯為核心,萘、蒽和三苯胺為取代基團(tuán)的系列螺旋形藍(lán)光寡聚物,并系統(tǒng)地研究了它們的熱學(xué)、光物理和電化學(xué)性質(zhì)。研究發(fā)現(xiàn),萘和三苯胺取代的寡聚物1,3,5-三(3-(1-甲氧基萘-2-基)-4-甲氧基萘-1-基)苯(TNNB)和1,3,5-三(3-(4-(N,N-二苯胺基)苯基)-4-甲氧基萘-1-基)苯(TPANB)具有最好的熱穩(wěn)定性。在溶液中,這兩種材料都具有深藍(lán)發(fā)射,發(fā)射峰分別為382和415 nm;在薄膜中,TNNB的發(fā)射峰僅有1 nm的紅移,而TPANB甚至產(chǎn)生了6 nm的藍(lán)移。以這些寡聚物為發(fā)光材料,通過(guò)旋涂法制備的有機(jī)電致發(fā)光器件結(jié)果表明,基于TNNB的器件獲得了最大亮度達(dá)到5273 cd?m-2,色坐標(biāo)(0.17,0.11)的純藍(lán)光器件。

    三萘苯;環(huán)三縮合反應(yīng);藍(lán)光;螺旋形;有機(jī)電致發(fā)光二極管

    1 Introduction

    In the past decade,tremendous progress has been made in the exploration of the organic light-emitting materials for flat-panel displays and white lighting resources1-3.In particular,for full-color displays,the deep-blue emitter having a Commission Internationale de L′Eclairage(CIE)y coordinate value<0.15 has attracted significant attention because it not only is one of the three primary RGB colors(red,green and blue),but also can produce other colors via energy cascading to lower energy emitting materials4,5.However,blue-emitting materials still remain challenges in the efficiency,color purity and stability due to their intrinsic wide band-gap6-9.These problems have become the main obstacles for the commercial reality of the large-area full-color displays.

    There are two types of blue-emitting materials:fluorescent and phosphorescent materials.From a practical and industrial view,the deep-blue emission and reliability are two main challenges for blue phosphorescent materials4,10,11.Therefore,in recent years,a series of blue fluorescent emitters,host-dopant systems and nondoped compounds,have been developed for efficient blue organic light-emitting diode(OLED)applications.Compared to hostdopant systems,non-doped materials have greater benefits.On the one hand,for host-dopant systems,the phase separation and concentration quenching are two main problems4,which usually lead to inferior device efficiency,low operation stability and/or poor spectra purity;moreover,it is difficult to control the doping concentration of blue-emitting dopant in host via vacuum codeposition or large-area solution deposition processes12.On the other hand,obviously,non-doped emitters have great advantages of fabricating simplification and low cost.Nevertheless,for nondoped systems,excimers and aggregations derived from intermolecular π-π interactions,which often result in poor color purity and low efficiency,have to be resolved urgently13.

    In this study,we employed trinaphthylbenzene(TNB)as the central moiety for the construction of the blue light-emitting materials for non-doped OLED.TNB has features of nonplanar propeller-shaped structures,and its highly twisted skeleton is beneficial for suppressing aggregates and excimers,which can also decreases the effective conjugation length of the π-π systems to enlarge energy band gaps for blue emission.Meanwhile,the naphthalene moiety has multiple reactive sites,which will be good for easy chemical modification14-18.Furthermore,well-defined oligomers have the advantages both of small organic molecules and polymers:uniform molecular structures,excellent chemical purity,and controllable conjugated length19-21.In addition,conjugated oligomers can also be deposited using solution-based techniques such as spin-coating or inject printing for large-area manufacturing.We designed and synthesized a series of welldefined 3D π-conjugated oligomers based on TNB.We systematic investigated the correlation of the thermal,optical and electrochemical properties with their chemical structures,and further explored their applications as blue-emitters in the OLEDs.

    2 Experimental

    2.1Instrument

    1H and13C NMR spectra were recorded on a Mercury Plus 300 MHz(Varian,USA)or a Bruker ARX 400 MHz spectrometer (Bruker,Switzerland).Mass spectra were recorded on a BIFLEX III MALDI-TOF MS spectrometer(Bruker Daltonics Inc.,USA). Elemental analyses were carried out on a Vario EL III elemental analyzer(Elementar Analysensysteme GmbH,Germany).Thermal gravity analyses(TGA)were conducted on a TAInstrument Q600 analyzer(Thermal Analysis,USA)under a rate of 20°C?min-1in nitrogen.Differential scanning calorimetry(DSC)analyses were performed on a TA Instrument Q100 analyzer(Thermal Analysis, USA)with a rate of 10°C?min-1in nitrogen.UV-Vis spectra were measured on a Jasco V-500 spectrophotometer(Jasco,Japan),and photoluminescence(PL)spectra were obtained with a Jasco FP-6200 spectrofluorometer(Jasco,Japan).Cyclic voltammetry(CV) was carried out on a Model 283 potentiostat/galvanostat(Princeton Applied Research,USA)using tetrabutylammonium perchlorate(n-Bu4NClO4)in freshly distilled acetonitrile as a supporting electrolyte.

    2.2Materials and synthetic procedures

    Tetrahydronfuran(THF)was distilled from sodium under argon and acetonitrile was distilled over P2O5.All other commercially available chemicals are analytical reagents(AR)and were used as received unless otherwise stated.

    2.2.12-Bromo-1-methoxynaphthalene(1)

    1-Naphthol(4.33 g,30.0 mmol)was dissolved in 150 mL CS2, and then NBS(5.35 g,30.0 mmol)was added to the solution under vigorously stirring.The mixture was stirred for 1 h at room temperature.The product was filtered and concentrated underreduced pressure,and the residue was purified by column chromatography on silica gel eluted with petroleum/EtOAc(25:1,V/ V)to produce 2-bromo-1-naphthol(4.27 g,19.2 mmol)with a yield of 64%.To a mixture of 2-bromo-1-naphthol(4.07 g,18.0 mmol)and K2CO3(5.05 g,36.5 mmol)in 50 mL DMF was treated with 2.5 mL methyl iodide.After vigorously stirring at room temperature overnight,product was poured into water,extracted with dichloromethane and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel eluted with petroleum/ethyl acetate(10:1,V/V)to afford 1 as yellow oil(4.08 g,17.2 mmol)in 96%yield.1H NMR(300 MHz,CDCl3)δ:8.16-8.13(m,1H),7.86-7.83(m,1H),7.61-7.50(m,4H),4.01(s,3H);13C NMR(75 MHz,CDCl3)δ:153.10, 133.93,130.04,128.97,128.00,126.71,126.50,125.23,122.02, 112.63,61.40.

    2.2.21-(3-Bromo-4-methoxynaphthalen-1-yl) ethanone(2)

    Compound 2 was obtained as a pale yellow solid with a yield of 80%according to the procedure described for 8.1H NMR(300 MHz,CDCl3)δ:8.81-8.77(m,1H),8.21-8.18(m,1H),8.09(s, 1H),7.68-7.58(m,2H),4.05(s,3H),2.73(s,3H);13C NMR(75 MHz,CDCl3)δ:199.55,156.89,133.55,132.77,131.08,129.60, 128.56,127.31,126.63,122.28,110.75,61.65,29.69.

    2.2.31,3,5-Tris(3-bromo-4-methoxynaphthalen-1-yl) benzene(3)

    Compound 3 was obtained as a white solid with a yield of 57% according to a similar procedure described for TNB1.1H NMR (300 MHz,CDCl3)δ:8.25-8.22(m,3H),8.10(d,J=7.8 Hz,3H), 7.73(s,3H),7.69(s,3H),7.62-7.52(m,6H),4.07(s,9H);13C NMR(75 MHz,CDCl3)δ:152.91,139.62,136.97,132.00,131.07, 130.82,129.31,126.91,126.85,126.34,122.53,112.14,61.54. 2.2.4(1-Methoxynaphthalen-2-yl)boronic acid(4)

    Asolution of compound 1(1.43 g,6 mmol)in dry THF(10 mL) was added dropwise to magnesium turnings(0.18 g,7.2 mmol) under Ar.The mixture was heated to 50°C and stirred for 1 h. Next,the mixture was cooled to-78°C and a solution of trimethylborate(1.30 mL,12 mmol)in THF was added.The reaction mixture was slowly warmed to room temperature and stirred overnight.Aqueous 1 mol?L-1HCl solution(30 mL)was added to the mixture at 0°C and extracted with ethyl ether.The organic phase was separated,dried over MgSO4.The solvent was evaporated and the resulting product was wash with hexane to afford 4 as a white solid(0.71 g,3.5 mmol)in 59%yield.1H NMR(300 MHz,CDCl3)δ:8.14-8.10(m,1H),7.91-7.86(m,2H),7.68(d, J=8.4 Hz,1H),7.58-7.54(m,2H),6.44(s,2H),4.05(s,3H);13C NMR(75 MHz,CDCl3)δ:163.51,137.15,130.96,128.27,127.34, 126.74,126.05,124.31,122.24,63.71.

    2.2.54-(Diphenylamino)phenyl bromide(5)

    A mixture of diphenylamine(1.71 g,10 mmol),p-bromoiodobenzene(3.51 g,12.5 mmol),CuI(0.19 g),1,10-phenanthroline(0.20 g),KOH(5.0 g)and 50 mL toluene was rigorously stirred and heated to reflux for 24 h under argon,and the generated water was removed using a Dean-Stark trap.The reaction mixture was cooled down to room temperature and filtered over a pad of silica gel,and the filtrate was concentrated under reduced pressure.The resulting product was purified by column chromatography on silica gel eluted with petroleum to obtain a white solid 2.21 g in 68%yield.1H NMR(300 MHz,CDCl3)δ: 7.33(d,J=8.7 Hz,2H),7.29-7.24(m,4H),7.09-7.01(m,6H), 6.95(d,J=8.7 Hz,2H);13C NMR(75 MHz,CDCl3)δ:147.33, 146.98,132.11,129.34,125.09,124.37,123.19,114.72.

    2.2.64-(Diphenylamino)phenylboronic acid(6)

    Compound 6 was obtained as a white solid with a yield of 40% according to the procedure described for 4.1H NMR(300 MHz, CDCl3)δ:8.02(d,J=8.4 Hz,2H),7.33-7.26(m,4H),7.17(d, J=7.5 Hz,4H),7.12-7.07(m,4H);13C NMR(75 MHz,CDCl3) δ:151.66,147.15,136.70,129.38,125.41,123.78,120.98.

    2.2.79-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl) anthracene(7)

    To a solution of 9-bromoanthracene(2.57 g,10.0 mmol)in dry THF 30 mLat-78°C under argon atmosphere was added n-BuLi (7.4 mL,11.0 mmol,1.6 mol?L-1in hexane).After stirring for 1h at-78°C,trimethylborate(2.2 mL)was added,and the reaction mixture was gradually warmed to room temperature and stirred overnight.Aqueous 2 mol?L-1HCl solution(50 mL)was added to the mixture at 0°C and extracted with CH2Cl2.The organic phase was separated,dried over MgSO4.The solvent was evaporated and the resulting product was washed with hexane/CH2Cl2(15:1,V/V)to afford 9-anthracene boronic acid as a yellow solid (1.23 g,5.5 mmol)in 60%yield.A solution of the resulting 9-anthracene boronic acid and 1.43 g pinacol in 50 mL toluene was rigorously stirred under argon and refluxed for 5 h.After the solvent was removed,the crude product was purified by column chromatography on silica gel eluted with petroleum/ethyl acetate (25:1,V/V)to obtain a yellow solid(1.38 g,4.5 mmol)in 82% yield.1H NMR(300 MHz,CDCl3)δ:8.49-8.44(m,3H),8.01-7.98(m,2H),7.52-7.43(m,4H),1.58(s,12H).

    2.2.81-(4-Methoxynaphthalen-1-yl)ethanone(8)

    To a mixture of compound 1(3.47 g,22.0 mmol),nitrobenzene (1.43 g,11.6 mmol)and aluminum chloride(4.10 g,30.8 mmol) in 100 mL dichloromethane was dropwisely added acetyl chloride (1.64 mL,23.1 mmol)with vigorous stirring at 0-5°C.The reaction mixture was stirred at room temperature overnight,and then poured into ice water and extracted with dichloromethane.The organic layer was washed with an aqueous solution of NaOH (10%)and water,dried over MgSO4and concentrated.The product was purified by column chromatography on silica gel eluted with petroleum/ethyl acetate(10:1,V/V)to afford 2 as yellow oil(4.05 g,20.2 mmol)with a yield of 91%.1H NMR(300 MHz,CDCl3) δ:9.03(d,J=8.4 Hz,1H),8.33(d,J=8.4 Hz,1H),8.04(d,J= 8.4 Hz,1H),7.67-7.61(m,1H),7.56-7.50(m,1H),6.80(d,J= 8.4 Hz,1H),4.07(s,3H),2.72(s,3H);13C NMR(75 MHz,acetone-d6)δ:199.93,159.15,131.90,128.64,127.15,126.16,125.70, 122.00,101.92,55.70,29.24.

    2.2.91,3,5-Tris(4-methoxynaphthalen-1-yl)benzene (TNB1)

    To a solution of compound 2(1.91 g,9.5 mmol)in dry ethanol (130 mL)at 0°C under argon atmosphere,SiCl4(31 mL,270 mmol)was added slowly by syringe.After stirring for 24 h at room temperature,the reaction mixture was poured into ice water and filtered.The crude solid was dissolved in chloroform and washed with water.The organic layer was dried over MgSO4and concentrated under reduced pressure.The crude product was purified by column chromatography on silica gel eluted with petroleum/dichloromethane(2:1,V/V)to afford a yellow solid (0.72 g,1.3 mmol)in 42%yield.1H NMR(300 MHz,CDCl3)δ: 8.88-8.34(m,3H),8.21-8.18(m,3H),7.68(s,3H),7.54-7.48 (m,9H),6.91(d,J=7.8 Hz,3H),4.05(s,9H);13C NMR(100 MHz,CDCl3)δ:154.99,140.70,132.40,132.37,130.61,127.19, 126.64,125.79,125.69,125.15,122.24,103.46,55.56.

    2.2.101,3,5-Tris(3-(1-methoxynaphthalen-2-yl)-4-methoxynaphthalen-1-yl)benzene(TNNB)

    To a solution of tris(2-bromo-1-methoxynaphthalen-4-yl)benzene(0.39 g,0.5 mmol)and methoxynaphthalene-2-boronic acid (0.61 g,3.0 mmol)in 45 ml toluene/ethanol(2:1,V/V)was added a aqueous solution of 2 mol?L-1Na2CO315 mL.After the mixture was purged with argon for 30 min,Pd(PPh3)4(0.13 g)was added. The mixture was heated to 78°C and vigorously stirred for 48 h. The reaction mixture was extracted with chloroform and washed with water.The organic layer was dried over MgSO4and concentrated under reduced pressure.The crude product was purified by column chromatography on silica gel eluted with petroleum/ dichloromethane(12:1,V/V)to afford a white solid 0.42 g in 83% yield.1H NMR(300 MHz,CDCl3)δ:8.39-8.36(m,3H),8.28-8.23(m,6H),7.90-7.87(m,3H),7.81(s,3H),7.76(s,3H),7.70-7.62(m,6H),7.60-7.52(m,12H),3.66(s,9H),3.64(s,9H);13C NMR(75 MHz,CDCl3)δ:153.58,153.21,140.51,135.53,134.53, 132.49,130.87,130.47,129.25,128.68,128.32,127.78,126.62, 126.54,126.33,126.21,126.00,123.51,122.99,122.61,61.47, 61.34;MALDI-TOF MS(m/z):Calcd.for C72H54O6,Exact mass: 1014.39,Mol.Wt.:1015.2;Found:1037.7([M+Na]+),1014.7 (M+);Anal.Calcd.(%)for C72H54O6,C,85.18;H,5.36;Found(%): C,84.54;H,5.44.

    2.2.111,3,5-Tris(3-(4-(N,N-diphenylamino)phenyl)-4-methoxynaphthalen-1-yl)benzene(TPANB)

    TPANB was obtained with yields of 75%according to a similar procedure described for TNNB.1H NMR(300 MHz,CDCl3)δ: 8.34(d,J=8.4 Hz,3H),8.19(d,J=8.4 Hz,3H),7.65(s,3H), 7.62(d,J=8.4 Hz,6H),7.57(td,J=7.8 Hz,1.5Hz,3H),7.49(td, J=7.7,1.5 Hz,3H),7.29-7.24(m,12H),7.16-7.14(m,18H), 7.03(t,J=7.4 Hz,6H),3.72(s,9H);13C NMR(100 MHz,CDCl3) δ:152.67,147.66,146.91,140.59,135.83,132.31,131.95,130.75, 130.12,129.95,129.23,129.14,128.92,128.74,126.36,126.11, 124.40,123.45,122.88,122.80,61.11;MALDI-TOF MS(m/z): Calcd.for C93H69N3O3,Exact mass:1275.53,Mol.Wt.:1276.56; Found:1276.7(M+);Anal.Calcd.(%)for C93H69N3O3,C,87.50;H, 5.45;N,3.29;Found(%):C,87.40;H,5.40;N,3.05.

    2.2.121,3,5-Tris(3-(anthracen-9-yl)-4-methoxynaphthalen-1-yl)benzene(TANB)

    TANB was obtained with yields of 10%according to a similar procedure described for TNNB.1H NMR(300 MHz,CDCl3)δ: 8.51(s,3H),8.36(dd,J=8.1 Hz,0.9Hz,3H),8.28(d,J=7.8 Hz, 3H),8.03(d,J=8.1 Hz,6H),7.80(s,3H),7.73(d,J=8.4 Hz, 6H),7.63-7.53(m,6H),7.47-7.40(m,9H),7.32-7.25(m,6H), 3.29(s,9H);13C NMR(100 MHz,CDCl3)δ:154.12,140.32, 135.46,133.25,132.74,131.69,131.39,130.94,130.33,128.57, 128.44,127.02,126.81,126.75,126.27,126.11,125.77,125.63, 125.10,123.05,61.42;MALDI-TOF MS(m/z):Calcd.for C81H54O3,Exact mass:1074.41,Mol.Wt.:1075.29;Found:1074.6 (M+).Anal.Calcd.(%)for C81H54O3,C,90.47;H,5.06;Found(%): C,90.32;H,5.18.

    2.3Device fabrication and measurement

    The etched ITO(20 Ω?□-1)glass substrateswere rinsed in turn with detergent,deionized water,acetone,and ethanol,and then treated with UV-ozone.Poly(ethlyenedioxythiophene):poly(styrenesulfonicacid)(PEDOT:PSS,Bayer)was spin-coated on the surface ofthe ITO substrate and dried at 120°C for 2 h.Oligomers were spin-coated on the top of the PEDOT:PSS from chloroform solution(10 mg?mL-1).Next,a thin film of TPBI(1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene)(20 nm)was prepared by thermal sublimation under vacuum as the hole-blocking layer. Finally,a LiF layer(1 nm),and an Al layer(80 nm)were deposited successively by vacuum evaporation.The electroluminescence(EL)spectra were recorded by a fiberoptic spectrometer S2000(Ocean Optics,USA).The voltage-current density-luminance curve was measured using a Keithley 238 source measure unit(Keithley,USA)and a power meter 1835-C(Newport,USA) calibrated with a luminance meter LS-110(Minolta,Japan).All measurements were performed under an ambient atmosphere at room temperature.

    3 Results and discussion

    3.1Synthesis

    We prepared these propeller-shaped oligomers by convergent synthetic routes to introduce aryl units into the meta-position of methoxyl group of the trinaphthylbenzene backbone,as illustrated in Schemes 1 and 2.The methoxyl groups at the TNB core will greatly increase the steric hindrance of their meta-substituted aryl moieties,and therefore this molecular design can obtain a more highly twisted non-planar 3D molecule.As shown in Scheme 1, compound 1 was prepared by bromination of the starting material, naphthol,with N-bromosuccinimide and subsequent hydroxylmethylation with methyl iodide.Next,compound 1 was converted to compound 2 through a Friedel-Craft acylation reaction22,23.The key intermediate 3 was synthesized via a SiCl4-catalyzed cyclocondensation reaction of three molecules of compound 2 with a moderate yield of 57%,according to similar literature methods24,25. The boronic or boronate precursors 4,6,and 7 were synthesized via Grignard reaction or lithium-halogen exchange reaction followed by treatment with trimethylborate.

    As comparison,the prototypical molecule,TNB1,was also prepared through a three-step synthetic route similarly as that ofcompound 3,as shown in Scheme 2.The three propeller-shaped oligomers,TNNB,TPANB,and TANB,were synthesized by Pdcatalyzed Suzuki coupling reactions of the key precursor 3 with boronic or boronate compounds 4,6,and 7,respectively.Both TNNB and TPANB have good yields of around 80%.However, TANB was obtained in a very low product yield of 10%,which is attributed to the high steric hindrance of the bulky anthracene moiety;actually,the one-and two-substituted side products were also isolated in the yields of 28%and 34%,respectively.These oligomers were characterized by1H and13C NMR,MALDI-TOF mass spectroscopy,and elemental analysis.

    Scheme 1 Synthetic routes to compound 3 and monomers

    3.2Thermal properties

    We investigated the thermal properties of these propellershaped oligomers by thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC)in a nitrogen atmosphere. As shown in Fig.1,TNNB and TPANB exhibit relatively high decomposition temperatures(Td,5%weight loss)at 373 and 425°C,respectively,whereas the Tdvalue of TANB is only 273°C.The two compounds exhibit high glass transition temperatures(Tg)at 147°C for TNNB and at 157°C for TPANB, indicating their propeller-shaped structure and bulky aryl moieties are both beneficial for the amorphous stability.However,the Tgvalue of TANB was not obtained due to its very low Tdvalue.We presume that the low thermal stability of TANB is probably due to the huge intramolecular strain arising from its highly twisted 3D skeleton.

    3.3Optical properties

    The absorption and PL spectra of the oligomers in a chloroform solution(10-6mol?L-1)and in thin films are illustrated in Fig.2. In dilute solutions,similar to that of TNB1(Fig.2(a)),the UV-Vis spectra of the three TNB-based oligomers show an absorption band from 300 nm to 350 nm(Fig.2(b-d)),which belongs to theπ-π*transitions of the trinaphthyl central moiety.Notably,for TANB,the three peaks located in long wavelength of 340-405 nm can be assigned to the characteristic absorption peaks of anthracene26.Normalized PL spectra of TNB1,TNNB,and TPANB in solution show deep blue emission color with single emission peaks at 376,382,and 415 nm,respectively,whereas TANB exhibits a double-peak emission located at 407 and 425 nm.The remarkably red-shift fromTNB1 to TPANB and TANB can be attributed to the strong electron-donating property of triphenyl amine group in TPANB,and the large π-conjugated system of anthracene moiety in TANB.In the solid state,the shapes of the absorption spectra of the four oligomers are similar to those in solution,and their absorption λmaxshows a red-shift of 2-5 nm.Among them,TPANB exhibits the smallest red-shift of 2 nm,which indicates that in the aggregates the highly twisted conformation of TPANB prevented strong molecular packing in the ground state.These oligomers exhibit wide optical band gap(Eg)of 3.46,3.14,and 3.00 eV for TNNB,TPANB,and TANB,respectively,as estimated from the onset position of the absorption band in film(Table 1).The decrease of the band gaps implies the increasing of conjugation length from TNNB to TANB due to the different aryl-substitution groups.As shown in Fig.2(b,c),in comparison with those in solution,the emission spectrum in film of TNNB shows only a very slight red-shift of 1 nm,whereas TPANB even displays a noticeable blue-shift of 6 nm in solid state.These results demonstrate their special propeller-like 3D geometries resulted in weak intermolecular interaction.Especially for the blue-shift of TPANB,we presume that this observation may be attributed to the non-planar triphenylamine groups combined with its twisted TNB core.Compared with the planar rigid naphthalene moiety,previousexperiment and theoretical calculation show that TPA has a propeller-like structure27-29:the three phenyl rings exhibit a dihedral angle of about 44°with respect to the plane consisting of the center N atom and three adjacent carbon atoms.In solution,the phenyl rings on TPA can intramolecularly rotate more freely due to the solvation effect and less restriction,leading to molecular planarization and thus longer effective conjugation length.But in solid state,the constrained intramolecular rotations intensified the distortion conformation of TPA moiety30,resulting in a shorter effective conjugation length;meanwhile,the combination of the propeller-shape structures of TPA and TNB can provide great steric hindrance to dramatically decrease the intermolecular interactions and π-π stacking effect.The two aspects both contribute to the blue-shift of TPANB in film.As shown in Fig.2(d), TANB film exhibits a very broad PLemission and its two emitting peaks red-shift 8 and 17 nm,relatively.Unlike methoxyl substituted naphthalene or triphenylamine moieties,the anthracene has a larger planar structure and a more extended π-conjugation system,which presumably lead to stronger π-π stacking interactions,resulting in a larger red-shift.

    Scheme 2 Molecular structures and synthetic routes of the propeller-shaped oligomers

    Fig.1 TGAcurvesandDSCscans(inset)measuredfortheoligomers

    3.4Electrochemical properties

    The electrochemical behaviors of the three TNB derivatives are investigated by cyclic voltammetry(CV)in anhydrous acetonitrile solution with 0.1 mol?L-1n-Bu4NClO4as a supporting electrolyte. The potentials were recorded relative to an Ag/AgCl reference electrode using ferrocene(Fc)as the internal standard.Their cyclic voltammograms are shown in Fig.3.The three oligomers exhibit irreversible oxidation processes:the oxidation peak potentials at 1.38 and 1.42 V for TNNB and TPANB,respectively;for TANB, it also has a similar shoulder peak at around 1.36 V.These oxidation potentials can be ascribed to the oxidation of the naphthalene moieties on the core skeleton.In addition,TPANB has another quasi-reversible oxidation at 1.03 V,which are attributed to the oxidation of the triphenylamine group;TANB exhibits an irreversible oxidation at a higher potential of 1.66 V corresponding to the oxidation of the anthracene moiety.The highest occupied molecular orbital(HOMO)energy levels are calculated on the basis of the onset potentialsof oxidation process following the equation of.TNNB and TANB exhibit similarly deep HOMO levels for-5.64 and-5.65 eV,respectively.However,TPANB shows a high-lying HOMO level at-5.11 eV which is higher than that of the hole-injecting material,PEDOT:PSS(-5.20 eV),indicating that the electron-rich triphenylamine moieties can significantly promote TPANB′s HOMO level.The lowest unoccupied molecular orbital(LUMO) energy levels of TNNB,TPANB,and TANB can be further calculated from subtracting the optical bandgap from the HOMO level at 2.18,1.97,and 2.65 eV,respectively.The above data are also summarized in Table 1.

    Table 1 Optical and thermal properties of the oligomers

    Fig.2 Absorption and photoluminescence spectra of the oligomers in CHCl3and film

    3.5Electroluminescence properties

    According to the wide band gaps and the blue-emitting fluorescence properties of these propeller-like oligomers,we investigated their EL properties using the oligomers as emitters.The devices were fabricated with a structure of ITO/PEDOT:PSS(40 nm)/oligomer/TPBI(20 nm)/LiF(1 nm)/Al(80 nm)by spincoating from the solutions of the oligomers.Fig.4 shows the EL spectra of the devices.TNNB and TPANB exhibit deep blue emissions with main peaks at 405 and 429 nm with full widths at half-emission maximum(FWHM)of about 75 nm and 48 nm;their CIE color coordinates exhibit at(0.17,0.11)and(0.17,0.08), respectively.Their low coordinate y values(<0.15)and narrow emission spectra demonstrate that the propeller-shaped 3D skeleton can not only effectively shield the intermolecular closepacking and thus depress the excimer formation,but also efficiently shorten the π-π conjugative length resulting in blue emission.However,the device based on TANB shows very poor EL property and its EL spectrum exhibits a weak and broad skyblue emission with two rough peaks at 440 and 488 nm,respectively.In fact,except for EL spectrum,we did not obtain other device properties for TANB-based device.Its poor device property is probably due to the inferior thermal property of TANB for Tdonly at 273°C,which could lead to the degradation of the active layer during device preparation and/or device operation.

    Fig.3 Cyclic voltammograms of the oligomers at a scanning rate of 50 mV?s-1

    Fig.4 Normalized ELspectra of ITO/PEDOT:PSS/oligomer/ TPBI/LiF/Al devices

    Fig.5 Current density-voltage curves of ITO/PEDOT:PSS/ oligomer/TPBI/LiF/Al devices

    Fig.6 Luminance-voltage curves of ITO/PEDOT:PSS/oligomer/ TPBI/LiF/Al devices

    Fig.7 Current efficiency-current density curves of ITO/PEDOT: PSS/oligomer/TPBI/LiF/Al devices

    Fig.5 and Fig.6 present the current density-voltage and luminance-voltage characteristics for the devices based on TNNB and TPANB.TPANB shows higher current density and luminance than those of TPANB at the same driving bias;the maximum brightness for TNNB can reach 5273 cd?m-2,which is far higher than that for TPANB of 1358 cd?m-2.These differences in their optoelectronic characteristics also clearly reflect on the efficiencies for these two devices:TNNB-based device exhibits greater maximum current efficiency of 0.86 cd?A-1than that of TPANB for 0.29 cd?A-1as shown in Fig.7.We speculate that the inferior EL properties for TPANB may be due to the imbalance injection of holes and electrons:although triphenylamine moieties on TPANB can significantly decrease the hole-injection barrier for high-lying HOMO level(-5.11 eV),its relatively high LUMO level for-1.97 eV increases the electron-injection barrier com-pared to that of TNNB(-2.18 eV),which probably results in inefficient hole-electron combination.

    4 Conclusions

    We have demonstrated a facile approach of the synthesis of a set of propeller-shaped blue-emitting oligomers based on TNB via the combination of acid-promoted cyclotrimerization and Suzuki coupling reactions.Owing to their special propeller-like 3D geometries,their oligomers exhibit blue-emission in solution;TNNB and TPANB also show deep-blue PL emission even in solid state. We fabricated EL devices from the spin-coating films of these oligermers,and the preliminary results demonstrate the device based on TNNB shows a pure blue emission with a brightness and a current efficiency of 5273 cd?m-2and 0.86 cd?A-1with CIE coordinates of(0.17,0.11).Future investigation can be focused on device optimization or electrophosphorescent devices using these compounds as host materials.

    References

    (1)Jou,J.H.;Kumar,S.;Agrawal,A.;Li,T.H.;Sahoo,S.J. Mater.Chem.C 2015,3,2974.doi:10.1039/C4TC02495H

    (2)Yu,T.C.;Liu,L.L.;Xie,Z.Q.;Ma,Y.G.Sci.China Chem. 2015,58,907.doi:10.1007/s11426-015-5409-7

    (3)Chung,Y.H.;Bian,M.Y.;Zhang,M.X.;Chu,S.S.;Chen,Z. J.;Gong,Q.H.;Xiao,L.X.Acta Phys.-Chim.Sin.2015,31, 1597.[鐘耀賢,卞夢(mèng)穎,張明驍,褚賽賽,陳志堅(jiān),龔旗煌,肖立新.物理化學(xué)學(xué)報(bào),2015,31,1597.]doi:10.3866/PKU. WHXB201505291

    (4)Zhu,M.R.;Yang,C.L.Chem.Soc.Rev.2013,42,4963.doi: 10.1039/c3cs35440g

    (5)Yook,K.S.;Lee,J.Y.Adv.Mater.2012,24,3169.doi: 10.1002/adma.v24.24

    (6)Yang,X.L.;Xu,X.B.;Zhou,G.J.J.Mater.Chem.C 2015,3, 913.doi:10.1039/C4TC02474E

    (7)Ouyang,M.;Wu,Q.C.;Yu,Z.W.;Li,H.F.;Zhang,C.Acta Phys.-Chim.Sin.2014,30,1341.[歐陽(yáng)密,吳啟超,余振偉,李洪飛,張誠(chéng).物理化學(xué)學(xué)報(bào),2014,30,1341.]doi:10.3866/ PKU.WHXB201405041

    (8)Dai,S.X.;Chen,H.;Lin,Z.H.;Ling,Q.D.Polym.Bull. 2014,3,46.[代水星,陳歡,林正歡,凌啟淡.高分子通報(bào), 2014,3,46.]

    (9)Chu,Z.Z.;Wang,D.;Zhang,C.;Zou,D.C.Acta Phys.-Chim. Sin.2012,28,2000.[初增澤,王丹,張超,鄒德春.物理化學(xué)學(xué)報(bào),2012,28,2000.]doi:10.3866/PKU. WHXB201206071

    (10)Hu,J.Y.;Pu,Y.J.;Satoh,F.;Kawata,S.;Katagiri,H.;Sasabe, H.;Kido,J.Adv.Funct.Mater.2014,24,2064.doi:10.1002/ adfm.v24.14

    (11)Zhang,Q.S.;Li,B.;Huang,S.P.;Nomura,H.;Tanaka,H.; Adachi,C.Nat.Photonics 2014,8,326.doi:10.1038/ nphoton.2014.12

    (12)Lee,Y.H.;Wu,T.C.;Liaw,C.W.;Wen,T.C.;Feng,S.W.; Lee,J.J.;Wu,Y.T.;Guo,T.F.Org.Electron.2013,14,1064. doi:10.1016/j.orgel.2013.01.021

    (13)Jeong,S.J.;Kim,M.K.;Kim,S.H.;Hong,J.I.Org.Electron. 2013,14,2497.doi:10.1016/j.orgel.2013.06.022

    (14)Magill,J.H.;Plazek,D.J.Nature 1966,209,70.doi:10.1038/ 209070a0

    (15)Whitaker,C.M.;McMahon,R.J.J.Phys.Chem.1996,100, 1081.doi:10.1021/jp9529329

    (16)Grilli,S.;Lunazzi,L.;Mazzanti,A.;Pinamonti,M.J.Org. Chem.2002,67,5733.doi:10.1021/jo0258195

    (17)Grilli,S.;Lunazzi,L.;Mazzanti,A.;Pinamonti,M. Tetrahedron 2004,60,4451.doi:10.1016/j.tet.2004.01.094

    (18)Swallen,S.F.;Kearns,K.L.;Mapes,M.K.;Kim,Y.S.; McMahon,R.J.;Ediger,M.D.;Wu,T.;Yu,L.;Satija,S. Science 2007,315,353.doi:10.1126/science.1135795

    (19)Martin,R.E.;Diederich,F.Angew.Chem.Int.Edit.1999,38, 1350.doi:10.1002/(SICI)1521-3773(19990517)38:10<1350:: AID-ANIE1350>3.0.CO;2-6

    (20)Shirota,Y.;Kageyama,H.Chem.Rev.2007,107,953.doi: 10.1021/cr050143+

    (21)Shirota,Y.J.Mater.Chem.2005,15,75.doi:10.1039/ b413819h

    (22)Carreno,M.C.;Ruano,J.L.G.;Sanz,G.;Toledo,M.A.; Urbano,A.Synlett 1997,1241.doi:10.1055/s-1997-1553

    (23)Giordano,C.;Villa,M.;Annunziata,R.Synthetic Commun. 1990,20,383.doi:10.1080/00397919008052779

    (24)Elmorsy,S.S.;Pelter,A.;Smith,K.;Hursthouse,M.B.;Ando, D.Tetrahedron Lett.1992,33,821.doi:10.1016/S0040-4039 (00)77724-0

    (25)Cao,X.Y.;Liu,X.H.;Zhou,X.H.;Zhang,Y.;Jiang,Y.;Cao, Y.;Cui,Y.X.;Pei,J.J.Org.Chem.2004,69,6050.doi: 10.1021/jo049268p

    (26)Lyu,Y.Y.;Kwak,J.;Kwon,O.;Lee,S.H.;Kim,D.;Lee,C.; Char,K.Adv.Mater.2008,20,2720.doi:10.1002/adma.v20:14 (27)Chen,G.;Li,W.B.;Zhou,T.R.;Peng,Q.;Zhai,D.;Li,H.X.; Yuan,W.Z.;Zhang,Y.M.;Tang,B.Z.Adv.Mater.2015,27, 4496.doi:10.1002/adma.v27.30

    (28)Sobolev,A.N.;Belsky,V.K.;Romm,I.P.;Chernikova,N.Y.; Guryanova,E.N.Acta Crystallogr.Sect.C:Cryst.Struct. Commun.1985,41,967.

    (29)Reva,I.;Lapinski,L.;Chattopadhyayc,N.;Faustoa,R.Phys. Chem.Chem.Phys.2003,5,3844.doi:10.1039/b306489a

    (30)Yuan,W.Z.;Lu,P.;Chen,S.M.;Lam,J.W.Y.;Wang,Z.M.; Liu,Y.;Kwok,H.S.;Ma,Y.G.;Tang,B.Z.Adv.Mater.2010, 22,2159.doi:10.1002/adma.v22:19

    Synthesis of Solution-Processable Propeller-Shaped Oligomers Based on Trinaphthylbenzene and Their Application in Blue Organic Light-Emitting Diodes

    CHU Zeng-Ze1WANG Dan2WU Hong-Wei2ZOU De-Chun2,*
    (1College of Chemistry and Chemical Engineering,Shenyang Normal University,Shenyang 110034,P.R.China;2Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering, Peking University,Beijing 100871,P.R.China)

    Although considerable improvements have been achieved in novel materials and device architectures for organic light-emitting diodes(OLEDs),great challenges remain in efficiency,color purity,and stability for blue emitters because of their intrinsic wide band-gap.In this study,trinaphthylbenzene(TNB),a propeller-shaped conjugated system,is employed as the central moiety for the construction of the organic lightemitting materials.Its nonplanar propeller-shaped structure and easy chemical modification are beneficial for building three-dimensional(3D)π-π conjugated systems to suppress aggregates and excimers.We have demonstrated a facile approach for the synthesis of a set of propeller-shaped blue-emitting oligomers based on the TNB core with peripheral units of naphthalene,anthracene or triphenylamine via the combination of SiCl4-catalyzed cyclotrimerization and Suzuki coupling reactions.The thermal,optical,and electrochemical propertiesof the materials were investigated.The results indicate that the naphthalene and triphenylamine substituted oligomers,1,3,5-tris(3-(1-methoxynaphthalen-2-yl)-4-methoxynaphthalen-1-yl)benzene(TNNB)and 1,3,5-tris (3-(4-(N,N-diphenylamino)phenyl)-4-methoxynaphthalen-1-yl)benzene(TPANB),have the best thermal stability. They exhibit deep blue photoluminescence(PL)emission at 382 and 415 nm in solution,respectively.In comparison with the solution spectra,the emission spectra in films show only a very slight red-shift of 1 nm for TNNB and a blue-shift of 6 nm for TPANB.The electroluminescent device fabricated using TNNB as the emitter has a pure blue emission with a brightness of 5273 cd?m-2and Commission Internationale de L′Eclairage(CIE)coordinates of(0.17,0.11).

    November 12,2015;Revised:February 15,2016;Published on Web:February 19,2016.

    Trinaphthylbenzene;Cyclotrimerization reaction;Blue-emitting;Propeller-shaped; Organic light-emitting diode

    O644;O649

    10.3866/PKU.WHXB201602193

    *Corresponding author.Email:dczou@pku.edu.cn;Tel:+86-10-62759799.

    The project was supported by the National Natural Science Foundation of China(50833001),National Key Basic Research Program of China(973) (2011CB933300),and Research Starting Foundation for Doctoral Program of Shenyang Normal University,China(054-55440109013).

    國(guó)家自然科學(xué)基金(50833001),國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2011CB933300)和沈陽(yáng)師范大學(xué)博士科研項(xiàng)目啟動(dòng)基金(054-55440109013)資助

    猜你喜歡
    螺旋形電致發(fā)光甲氧基
    全噴涂逐層組裝實(shí)現(xiàn)可穿戴電子織物高亮電致發(fā)光
    超臨界LNG在螺旋形微通道中的流動(dòng)傳熱特性
    Gift ideas for the New Year 2021
    2-(2-甲氧基苯氧基)-1-氯-乙烷的合成
    擺成螺旋形
    DAD-HPLC法同時(shí)測(cè)定龍須藤總黃酮中5種多甲氧基黃酮
    中成藥(2017年4期)2017-05-17 06:09:50
    ZnO納米晶摻雜的有機(jī)電致發(fā)光特性
    兩種紅光銥配合物的合成和電致發(fā)光性能研究
    銪配合物共摻雜電致發(fā)光器件效率滾降的延緩
    合成鄰甲氧基肉桂酸的兩步法新工藝
    欧美日韩国产亚洲二区| 秋霞伦理黄片| 内地一区二区视频在线| 三级毛片av免费| 一本久久精品| 国产黄色小视频在线观看| 欧美精品国产亚洲| 热99在线观看视频| 亚洲成人精品中文字幕电影| 日本色播在线视频| 日日啪夜夜撸| 欧美日韩在线观看h| 成人三级黄色视频| 精品久久久久久电影网 | 男人和女人高潮做爰伦理| 成人性生交大片免费视频hd| 1024手机看黄色片| 亚洲婷婷狠狠爱综合网| 日韩成人av中文字幕在线观看| 国产伦精品一区二区三区视频9| 三级国产精品欧美在线观看| 美女脱内裤让男人舔精品视频| 尾随美女入室| 国产又色又爽无遮挡免| 国产精品人妻久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 少妇高潮的动态图| 国产一级毛片七仙女欲春2| 日韩人妻高清精品专区| 美女大奶头视频| 日韩制服骚丝袜av| 高清av免费在线| 少妇裸体淫交视频免费看高清| 中文字幕久久专区| 一级毛片aaaaaa免费看小| 高清视频免费观看一区二区 | 国产精品国产三级专区第一集| 99在线人妻在线中文字幕| 最近手机中文字幕大全| 啦啦啦观看免费观看视频高清| 亚洲国产高清在线一区二区三| 国产伦精品一区二区三区视频9| 亚洲国产精品成人综合色| 一级av片app| 欧美日本视频| 精华霜和精华液先用哪个| 欧美性感艳星| 中文字幕亚洲精品专区| 亚洲国产精品合色在线| 亚洲欧洲国产日韩| 亚洲精品国产av成人精品| 国产乱人偷精品视频| 大香蕉久久网| 国产精品一及| 国产真实乱freesex| 青春草视频在线免费观看| 午夜福利在线观看免费完整高清在| 久久久久久久久大av| av卡一久久| 午夜精品国产一区二区电影 | 嘟嘟电影网在线观看| 欧美人与善性xxx| 国产三级在线视频| 成人午夜高清在线视频| 欧美成人精品欧美一级黄| 欧美+日韩+精品| 日本与韩国留学比较| 国产精品精品国产色婷婷| 麻豆乱淫一区二区| 亚洲欧美日韩东京热| 日本五十路高清| 精品久久久久久久久av| 亚洲欧美一区二区三区国产| 日日摸夜夜添夜夜添av毛片| 成人三级黄色视频| av在线播放精品| 嘟嘟电影网在线观看| 国产成人freesex在线| 97人妻精品一区二区三区麻豆| 免费看美女性在线毛片视频| 亚洲图色成人| 一个人看的www免费观看视频| 只有这里有精品99| 亚洲精品乱久久久久久| 国产视频首页在线观看| 最近最新中文字幕免费大全7| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人综合色| 国产精品嫩草影院av在线观看| 乱系列少妇在线播放| 欧美极品一区二区三区四区| 啦啦啦韩国在线观看视频| 免费无遮挡裸体视频| 汤姆久久久久久久影院中文字幕 | 91aial.com中文字幕在线观看| 在线免费观看的www视频| 日日撸夜夜添| 又粗又硬又长又爽又黄的视频| 久久久成人免费电影| 亚洲欧美成人综合另类久久久 | 亚洲欧美一区二区三区国产| 久久精品国产亚洲网站| 亚洲天堂国产精品一区在线| 国产午夜精品一二区理论片| 国语自产精品视频在线第100页| 欧美不卡视频在线免费观看| 国内精品美女久久久久久| 成人三级黄色视频| 变态另类丝袜制服| 欧美成人a在线观看| 在线免费观看不下载黄p国产| 精品久久久久久久久久久久久| 国产精品人妻久久久久久| 精品不卡国产一区二区三区| 黄片无遮挡物在线观看| 国产av不卡久久| 美女内射精品一级片tv| 久久精品国产99精品国产亚洲性色| 国产精品电影一区二区三区| 国语自产精品视频在线第100页| 欧美日本亚洲视频在线播放| 久久人人爽人人爽人人片va| 国产黄片视频在线免费观看| 日本一二三区视频观看| 精品免费久久久久久久清纯| 一夜夜www| 女人十人毛片免费观看3o分钟| 欧美成人一区二区免费高清观看| 国产精品嫩草影院av在线观看| 成年免费大片在线观看| 午夜久久久久精精品| 欧美+日韩+精品| 22中文网久久字幕| 亚洲国产精品专区欧美| 我要搜黄色片| 国产美女午夜福利| 级片在线观看| 国产毛片a区久久久久| 国产极品天堂在线| 国产精品一区二区三区四区久久| videossex国产| 欧美成人免费av一区二区三区| 成人午夜精彩视频在线观看| 亚洲中文字幕日韩| 日韩中字成人| 激情 狠狠 欧美| 麻豆成人午夜福利视频| 麻豆av噜噜一区二区三区| 熟女人妻精品中文字幕| 精品国产露脸久久av麻豆 | 99久国产av精品国产电影| 欧美成人免费av一区二区三区| 18+在线观看网站| 1000部很黄的大片| 久久久久久伊人网av| 亚洲高清免费不卡视频| 久久草成人影院| 91精品一卡2卡3卡4卡| 国产精品一区二区性色av| 亚洲伊人久久精品综合 | 午夜福利成人在线免费观看| 欧美人与善性xxx| 久久久午夜欧美精品| 色综合站精品国产| 久99久视频精品免费| 丝袜喷水一区| 两性午夜刺激爽爽歪歪视频在线观看| 人体艺术视频欧美日本| 亚洲国产高清在线一区二区三| 我的老师免费观看完整版| 国产 一区精品| 国产精品人妻久久久影院| 我的女老师完整版在线观看| 麻豆成人午夜福利视频| 一个人看视频在线观看www免费| 99热网站在线观看| 国产乱来视频区| 岛国毛片在线播放| 国产一区二区亚洲精品在线观看| 99热这里只有精品一区| 日本-黄色视频高清免费观看| 综合色av麻豆| 国产在视频线在精品| ponron亚洲| 国产黄色小视频在线观看| 18禁动态无遮挡网站| 国产伦一二天堂av在线观看| 亚洲精品亚洲一区二区| 国产午夜福利久久久久久| 午夜a级毛片| 久久综合国产亚洲精品| 亚洲五月天丁香| 麻豆乱淫一区二区| 久热久热在线精品观看| 亚洲人成网站高清观看| 久久久久久久久久成人| ponron亚洲| 亚洲av成人精品一二三区| 综合色av麻豆| 国产精品美女特级片免费视频播放器| 国产高清三级在线| 美女脱内裤让男人舔精品视频| 搡女人真爽免费视频火全软件| 日韩av在线大香蕉| 亚洲av电影不卡..在线观看| 日韩人妻高清精品专区| 最近手机中文字幕大全| 国产精品乱码一区二三区的特点| 麻豆国产97在线/欧美| 欧美成人精品欧美一级黄| 国产精品久久久久久久电影| 国产私拍福利视频在线观看| 国模一区二区三区四区视频| 国产91av在线免费观看| 国产在线男女| av在线亚洲专区| 国产成人精品久久久久久| 亚洲av日韩在线播放| 美女国产视频在线观看| 免费观看人在逋| 男女视频在线观看网站免费| 极品教师在线视频| 国产伦一二天堂av在线观看| 国产一区二区三区av在线| 亚洲欧美日韩卡通动漫| 亚洲av电影不卡..在线观看| 国产精品.久久久| 免费电影在线观看免费观看| 在线免费十八禁| 国产毛片a区久久久久| 又粗又硬又长又爽又黄的视频| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添av毛片| 日本与韩国留学比较| 亚洲国产欧美人成| 久久韩国三级中文字幕| 简卡轻食公司| 午夜福利成人在线免费观看| 啦啦啦韩国在线观看视频| 国内精品美女久久久久久| 久久精品久久久久久噜噜老黄 | 男人狂女人下面高潮的视频| 久久亚洲国产成人精品v| 欧美日本亚洲视频在线播放| 天美传媒精品一区二区| 欧美成人免费av一区二区三区| 亚洲av二区三区四区| 精品一区二区免费观看| 2021少妇久久久久久久久久久| av专区在线播放| 亚洲欧美日韩无卡精品| 嫩草影院入口| 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆| 日韩欧美精品免费久久| 青春草视频在线免费观看| 国产精品国产三级专区第一集| 一夜夜www| 天堂影院成人在线观看| 成人毛片a级毛片在线播放| 国产精品爽爽va在线观看网站| 欧美成人精品欧美一级黄| 欧美区成人在线视频| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器| 高清在线视频一区二区三区 | 男人舔女人下体高潮全视频| 免费观看的影片在线观看| 啦啦啦韩国在线观看视频| videos熟女内射| 婷婷色麻豆天堂久久 | 成人高潮视频无遮挡免费网站| 免费播放大片免费观看视频在线观看 | 免费电影在线观看免费观看| 91久久精品国产一区二区成人| 亚洲久久久久久中文字幕| 欧美最新免费一区二区三区| www日本黄色视频网| 国产高清有码在线观看视频| 精品99又大又爽又粗少妇毛片| 伦理电影大哥的女人| 日本wwww免费看| 18禁在线无遮挡免费观看视频| 欧美成人免费av一区二区三区| 岛国毛片在线播放| av播播在线观看一区| 中文精品一卡2卡3卡4更新| 国模一区二区三区四区视频| 内地一区二区视频在线| 日韩成人伦理影院| 久久欧美精品欧美久久欧美| 国产亚洲最大av| 国产精品国产三级国产专区5o | 国产精品国产三级国产av玫瑰| 99在线视频只有这里精品首页| 午夜免费男女啪啪视频观看| 成人三级黄色视频| videossex国产| 国产精品野战在线观看| 成人三级黄色视频| 国产精品久久视频播放| 亚洲三级黄色毛片| 中文字幕av成人在线电影| 偷拍熟女少妇极品色| 乱系列少妇在线播放| 国产乱人偷精品视频| 三级男女做爰猛烈吃奶摸视频| 九九久久精品国产亚洲av麻豆| 国产精品久久视频播放| 欧美一级a爱片免费观看看| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 国产人妻一区二区三区在| 乱码一卡2卡4卡精品| 亚洲电影在线观看av| 又粗又硬又长又爽又黄的视频| 秋霞在线观看毛片| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 午夜激情福利司机影院| 黄色一级大片看看| 男女国产视频网站| 亚洲图色成人| 国产高潮美女av| 国产高清国产精品国产三级 | 久久精品夜色国产| 久久鲁丝午夜福利片| 热99在线观看视频| 国产精品熟女久久久久浪| 尾随美女入室| 久久久久久久久大av| 国产麻豆成人av免费视频| av在线亚洲专区| 哪个播放器可以免费观看大片| 国产精品精品国产色婷婷| 嫩草影院入口| 少妇人妻精品综合一区二区| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 一级毛片电影观看 | 欧美另类亚洲清纯唯美| 久久久久久久久久久免费av| 丰满人妻一区二区三区视频av| 亚洲欧美中文字幕日韩二区| 国产探花极品一区二区| 亚洲av.av天堂| 国产美女午夜福利| www.av在线官网国产| 一边亲一边摸免费视频| 91精品国产九色| 亚洲av日韩在线播放| 最近手机中文字幕大全| 午夜福利在线观看免费完整高清在| 日韩高清综合在线| 久久精品91蜜桃| 一区二区三区免费毛片| 美女脱内裤让男人舔精品视频| 一区二区三区四区激情视频| 成人一区二区视频在线观看| 国产一区二区在线观看日韩| 国语对白做爰xxxⅹ性视频网站| 一级爰片在线观看| 亚洲av日韩在线播放| 国产三级在线视频| 乱人视频在线观看| 欧美xxxx性猛交bbbb| 日韩国内少妇激情av| 亚洲精品日韩av片在线观看| 亚洲高清免费不卡视频| 亚洲天堂国产精品一区在线| 日韩欧美 国产精品| 观看美女的网站| 丝袜喷水一区| 黄片无遮挡物在线观看| 国产精品嫩草影院av在线观看| 亚洲国产高清在线一区二区三| 一区二区三区乱码不卡18| 精品不卡国产一区二区三区| 日本一二三区视频观看| 国产免费一级a男人的天堂| 老司机影院成人| 全区人妻精品视频| 久久久久网色| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 亚洲精品自拍成人| 麻豆av噜噜一区二区三区| 村上凉子中文字幕在线| 男人狂女人下面高潮的视频| 少妇丰满av| 亚洲国产精品久久男人天堂| 我的女老师完整版在线观看| 夜夜爽夜夜爽视频| 一级毛片电影观看 | 男人舔女人下体高潮全视频| 高清在线视频一区二区三区 | 亚洲av不卡在线观看| av播播在线观看一区| 成人鲁丝片一二三区免费| 国产精品国产三级专区第一集| 建设人人有责人人尽责人人享有的 | 亚洲无线观看免费| 69人妻影院| 九草在线视频观看| 欧美xxxx黑人xx丫x性爽| 一级黄色大片毛片| 身体一侧抽搐| av国产久精品久网站免费入址| 色网站视频免费| 日韩欧美精品免费久久| 国内精品美女久久久久久| av女优亚洲男人天堂| 男女啪啪激烈高潮av片| 久久久国产成人精品二区| av国产免费在线观看| 中文字幕免费在线视频6| 男人舔女人下体高潮全视频| 老师上课跳d突然被开到最大视频| 美女黄网站色视频| 秋霞伦理黄片| 一级毛片久久久久久久久女| 欧美激情久久久久久爽电影| 一区二区三区乱码不卡18| 寂寞人妻少妇视频99o| 亚洲国产精品成人久久小说| av在线观看视频网站免费| 亚洲精品456在线播放app| 男人舔女人下体高潮全视频| 国产亚洲av片在线观看秒播厂 | 舔av片在线| 欧美激情国产日韩精品一区| 嫩草影院入口| 国产精品一区二区性色av| 最近的中文字幕免费完整| 国产精品福利在线免费观看| 99热这里只有精品一区| 亚州av有码| 免费一级毛片在线播放高清视频| 日韩三级伦理在线观看| 观看美女的网站| 久久久a久久爽久久v久久| 欧美日韩在线观看h| 日本一二三区视频观看| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 亚洲久久久久久中文字幕| 婷婷色麻豆天堂久久 | 黄色一级大片看看| 最近视频中文字幕2019在线8| 精品久久久噜噜| 色综合亚洲欧美另类图片| 老司机福利观看| 国产精品福利在线免费观看| 水蜜桃什么品种好| 国内精品美女久久久久久| av国产久精品久网站免费入址| 内射极品少妇av片p| 天堂√8在线中文| 色尼玛亚洲综合影院| 国产三级中文精品| 好男人在线观看高清免费视频| 天天一区二区日本电影三级| 国产亚洲91精品色在线| 精品久久久久久久久久久久久| 亚洲精品成人久久久久久| 久久人人爽人人片av| 国产午夜福利久久久久久| 久久午夜福利片| 伦理电影大哥的女人| 日韩成人av中文字幕在线观看| 97超碰精品成人国产| 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 久久精品国产亚洲av涩爱| 国产成人精品婷婷| 九九爱精品视频在线观看| 免费看a级黄色片| 国产精品一二三区在线看| 久久99精品国语久久久| 最后的刺客免费高清国语| 蜜桃亚洲精品一区二区三区| 日本色播在线视频| 欧美3d第一页| 久久久午夜欧美精品| 啦啦啦啦在线视频资源| 欧美又色又爽又黄视频| 三级毛片av免费| 国产极品天堂在线| 啦啦啦啦在线视频资源| 村上凉子中文字幕在线| 91精品国产九色| 看非洲黑人一级黄片| 超碰97精品在线观看| 亚洲欧美精品专区久久| 又爽又黄无遮挡网站| 精品久久久久久久久亚洲| 亚洲精品456在线播放app| 人人妻人人澡欧美一区二区| 日韩亚洲欧美综合| 久久精品国产鲁丝片午夜精品| 少妇丰满av| videos熟女内射| 色噜噜av男人的天堂激情| 国产av一区在线观看免费| 色吧在线观看| 国产 一区 欧美 日韩| 亚洲av免费在线观看| 天堂影院成人在线观看| 亚洲国产欧洲综合997久久,| 国产日韩欧美在线精品| 国产精品一区二区三区四区久久| 夜夜爽夜夜爽视频| 变态另类丝袜制服| 国产亚洲精品av在线| 嫩草影院新地址| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清| 国产探花极品一区二区| 少妇裸体淫交视频免费看高清| 岛国毛片在线播放| 国产在视频线精品| 22中文网久久字幕| 一区二区三区乱码不卡18| 久久精品91蜜桃| 麻豆成人午夜福利视频| 久久久久久九九精品二区国产| 国产免费视频播放在线视频 | 欧美不卡视频在线免费观看| 日本av手机在线免费观看| 亚洲国产日韩欧美精品在线观看| 国产精品日韩av在线免费观看| 天堂av国产一区二区熟女人妻| 99九九线精品视频在线观看视频| 精品少妇黑人巨大在线播放 | 久久久久免费精品人妻一区二区| 日本与韩国留学比较| 日韩成人av中文字幕在线观看| 免费观看精品视频网站| 国产亚洲午夜精品一区二区久久 | 亚洲欧洲国产日韩| 国产黄色视频一区二区在线观看 | 狠狠狠狠99中文字幕| 国产伦在线观看视频一区| 国产精品精品国产色婷婷| 亚洲国产日韩欧美精品在线观看| 成人漫画全彩无遮挡| 国产成人freesex在线| 成人午夜高清在线视频| 国产毛片a区久久久久| 一区二区三区免费毛片| 在线天堂最新版资源| 最后的刺客免费高清国语| 国产熟女欧美一区二区| 一级毛片我不卡| 成年女人看的毛片在线观看| 午夜免费激情av| 全区人妻精品视频| 国内精品宾馆在线| 国产女主播在线喷水免费视频网站 | 天堂中文最新版在线下载 | 亚洲真实伦在线观看| 1024手机看黄色片| 亚洲av中文字字幕乱码综合| 精品久久国产蜜桃| 免费一级毛片在线播放高清视频| 天堂√8在线中文| 日韩一区二区视频免费看| 国产成年人精品一区二区| 国产精品麻豆人妻色哟哟久久 | 村上凉子中文字幕在线| 国产精品久久久久久久久免| 国内揄拍国产精品人妻在线| 欧美另类亚洲清纯唯美| 免费av毛片视频| 真实男女啪啪啪动态图| 变态另类丝袜制服| 97超碰精品成人国产| 久久99热这里只频精品6学生 | 国产成人91sexporn| kizo精华| 国内精品宾馆在线| 久久精品久久久久久噜噜老黄 | 日韩成人av中文字幕在线观看| 三级国产精品欧美在线观看| 欧美极品一区二区三区四区| 淫秽高清视频在线观看| av.在线天堂| 中文字幕亚洲精品专区| 男女国产视频网站| 亚洲电影在线观看av| 中文字幕制服av| 91久久精品国产一区二区三区| 国产熟女欧美一区二区| 欧美成人精品欧美一级黄| 国产精品日韩av在线免费观看| 欧美区成人在线视频| 91精品国产九色| 色综合站精品国产| 欧美日韩一区二区视频在线观看视频在线 | 国产精品麻豆人妻色哟哟久久 | 免费电影在线观看免费观看| 久久久a久久爽久久v久久| 国产精品一区二区三区四区久久| 欧美一级a爱片免费观看看| 成年女人永久免费观看视频| 在线播放无遮挡| 少妇裸体淫交视频免费看高清| 国产精品国产高清国产av| 性色avwww在线观看| 日本免费在线观看一区| 精品人妻熟女av久视频| 人人妻人人澡欧美一区二区| 男人狂女人下面高潮的视频| 亚洲伊人久久精品综合 | 国内精品美女久久久久久|