• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈉與惰性氣體及烷烴準(zhǔn)分子對(duì)吸收系數(shù)的實(shí)驗(yàn)與理論評(píng)價(jià)

    2016-09-05 13:04:00蓋寶棟曹戰(zhàn)利郭敬為中國(guó)科學(xué)院大連化學(xué)物理研究所化學(xué)激光重點(diǎn)實(shí)驗(yàn)室遼寧大連603四川大學(xué)原子與分子物理研究所成都60064
    物理化學(xué)學(xué)報(bào) 2016年4期
    關(guān)鍵詞:基組結(jié)合能準(zhǔn)分子

    胡 墅 蓋寶棟 曹戰(zhàn)利 郭敬為,* 王 繁(中國(guó)科學(xué)院大連化學(xué)物理研究所化學(xué)激光重點(diǎn)實(shí)驗(yàn)室,遼寧大連603;四川大學(xué)原子與分子物理研究所,成都60064)

    鈉與惰性氣體及烷烴準(zhǔn)分子對(duì)吸收系數(shù)的實(shí)驗(yàn)與理論評(píng)價(jià)

    胡墅1蓋寶棟1曹戰(zhàn)利2郭敬為1,*王繁2
    (1中國(guó)科學(xué)院大連化學(xué)物理研究所化學(xué)激光重點(diǎn)實(shí)驗(yàn)室,遼寧大連116023;2四川大學(xué)原子與分子物理研究所,成都610064)

    準(zhǔn)分子泵浦鈉金屬激光器(XPNaL)在鈉導(dǎo)星中有著極為重要的應(yīng)用。但是,傳統(tǒng)的準(zhǔn)分子對(duì),例如Na-He和Na-Ar等對(duì)相對(duì)于泵浦源的吸收系數(shù)很小。本文對(duì)Na-Ar、Na-Xe、Na-CH4、Na-C2H6四個(gè)體系進(jìn)行了研究,從熒光實(shí)驗(yàn)和結(jié)合能的高精度量化理論計(jì)算兩方面來(lái)探究比較好的準(zhǔn)分子對(duì)。實(shí)驗(yàn)結(jié)果表明:這四個(gè)準(zhǔn)分子對(duì)體系的熒光強(qiáng)度曲線峰面積比為1.0:6.4:4.9:10.4。同時(shí),通過(guò)CCSD(T)手段和基組外推法對(duì)Na-Ar、Na-Xe、Na-CH4和Na-C2H6準(zhǔn)分子對(duì)的結(jié)合能計(jì)算結(jié)果分別為52.8、124.5、117.7和150.0 cm-1。因此,可以推斷量化計(jì)算與實(shí)驗(yàn)結(jié)果能夠較好地符合。隨后,Na-C2H6準(zhǔn)分子對(duì)從實(shí)驗(yàn)和理論兩方面被發(fā)現(xiàn)是效率最高的體系,更有希望被發(fā)展成為高能準(zhǔn)分子寬帶泵浦鈉金屬激光器。本工作還證明了采用大基組對(duì)結(jié)合能的高精度量化計(jì)算,對(duì)用于準(zhǔn)分子寬帶泵浦堿金屬激光器的準(zhǔn)分子對(duì)篩選是很好的評(píng)判標(biāo)準(zhǔn)。

    準(zhǔn)分子對(duì);準(zhǔn)分子寬帶泵浦堿金屬激光器;CCSD(T);基組;熒光;吸收系數(shù)

    [Article]

    www.whxb.pku.edu.cn

    1 Introduction

    Sodium guide star enables the adaptive optics(AO)systems on the ground to observe the target at high altitude with high resolution,and this is crucial for applications such as universe observation,laser telecommunications etc.The key prerequisite to realize sodium guide star is sodium beacon laser,which must be accurately tuned to the wavelength of the sodium D2line(32P3/2→32S1/2)at 589.16 nm(vacuum)in order to obtain resonant backscatter from the sodium layer1,2.All the prevalent sodium beacon lasers are not based on the stimulated emission of sodium atoms, such as sum-frequency generation(SFG)3,4,stimulated Raman scattering(SRS)5,and optical parametric amplifier(OPA)6.Sodium beacon laser requires very accurate wavelength and narrow linewidth(less than 3 GHz)to obtain resonance efficiently.This special requirement complicated all the prevalent sodium beacon laser system,and led to a higher price and liability of system malfunction.Furthermore,sodium beacon lasers based on the mechanism mentioned above have relatively poorer power scalability in comparison with gas lasers.

    Excimer pumped sodium laser(XPNaL)is one kind of excimer pumped alkali lasers(XPAL)7-11,and it could overcome problems of the prevalent sodium beacon lasers.The mechanism of XPNaL is illustrated in Fig.1.Excimer pairs of sodium-rare gas system or sodium-alkane system are firstly formed by collision,and the excess energy are converted to the thermal energy of collision pairs or the third party.Excimer pairs are excited from X2Σ+1/2state to B2Σ+1/2state by the blue satellite pumping11.This blue satellite absorption was also explained as the free-free transitions of transient collision pairs in earlier literature12.Potential curve of thestate is repulsive and excimer pairs quickly dissociate to produce Na of excited state(32P3/2,32P1/2).Lasers of 589.16 and 589.76 nm can thus be observed from the stimulated emissions of 32P3/2→32S1/2(D2)and 32P1/2→32S1/2(D1).An etalon or a Volume Bragg Grating(VBG)could be used to select the output of D1or D2line.Although XPNaL has been fulfilled in Na-He system13,the output power is rather limited.The major reason is,similar to all XPALs,the pumping efficiency is too low.Therefore it is essential to explore Na-M(M=Ar,Xe,CH4,C2H6)excimer pair systems and find the optimal system with a large absorption coefficient.In this work,excimer systems of Na-Ar,Na-Xe,Na-CH4,and Na-C2H6were studied by fluorescence spectroscopy.Under the same pumping condition,the stronger intensity of fluorescence means larger absorption coefficient and higher pumping efficiency. Binding energies for these excimer systems,which are closely related to the absorption coefficients,were also investigated based on quantum chemistry calculations.Both experimental and computational results provided the same ordering among the four excimer pairs studied in terms of absorption coefficient;and showed that Na-C2H6was the optimal system for XPNaL.

    Fig.1 Schematic diagram of XPNaLoperation mechanism The excimer pair is Na-Ar.

    2 Experimental set-up

    The schematic diagram of the experimental set-up is shown in Fig.2.An Nd:YAG(Spectral Physics,6350,USA)pumped dye laser(Radiant Dyes,NarrowScanK,Germany)was utilized to provide the tunable laser with wavelength over the range of 544-572 nm,the pulse duration of dye laser was~6 ns(FWHM:full width at half maximum)and the repetition frequency was 30 Hz. The pumping laser was focused into the center of the sodium vapor cell.The cell was made of glass and was 20 cm long by 2.5 cm in diameter.An oven and a thermal controller were employed to precisely control the temperature of the sodium vapor cell;the side of the oven had a small opening for the perpendicular fluorescence detection.The fluorescence was coupled into a spectrometer (HOIBA JOBIN YVON,FHR1000,France)by an optical fiber. The spectrometer has very high scatter light annihilation ratio,the pump light had absolutely no effect on the fluorescence detection. The spectrometer has an intensified charge-coupled device(ICCD) detector with maximum gain of 4000.The exposure time of ICCD was set as 1 μs,to efficiently collect the fluorescence and reduce the dark noise as well.The synchronization of experiment was controlled by a time delay generator(Stanford Research System, DG645,USA).The relative positions of oven,vapor cells,optical fiber,and laser focus point were fixed to eliminate discrepancy caused by the fluorescence collection efficiency.

    There were four kinds of buffer gases(Ar,Xe,CH4,and C2H6) used in the sodium vapor cells.All the pressure of buffer gases is 600 torr(1 torr=133 Pa)at room temperature,and the sodium vapor cell was heated to 280°C.Na atom vapor density is 1.24× 1014cm-3at 280°C.

    Fig.2 Experiment scheme of XPNaLfluorescence spectrum

    3 Experiment results and discussion

    The absorption of XPAL is generally very weak at blue satel-lites;it is difficult to obtain the absolute absorption coefficients of different excimer pairs.Fortunately,the fluorescence intensity reflects the absorption condition,and it could be detected easily. Fluorescence intensities of D1and D2lines were recorded while scanning the wavelength of pump laser,and profiles of blue satellites were obtained and shown in Fig.3.The blue satellite spectrum indicated that the wavelength range of absorption was broad,meanwhile,the wavelength corresponding to the maximum fluorescence(named as center wavelength)could be obtained for Na-Ar,Na-Xe,Na-CH4,and Na-C2H6systems(listed in Table 1). Center wavelengths of Na-Ar and Na-Xe systems were 555 and 560 nm,respectively,and they were quite consistent with the results of literature14.Therefore,this demonstrated that our experimental results were reliable.The blue satellite center wavelengths of Na-CH4and Na-C2H6systems were obtained to be 555 and 553 nm,respectively.

    Fig.3 Plots of fluorescence intensity in relationship with wavelength of pump laser for sodium based excimer systems at 280°CThese plots are equivalent to blue satellite absorption spectra of excimer pairs.

    Table 1 Comparison of the four excimer pairs

    After the range of blue satellites was obtained,pumping laser was tuned to the wavelengths that produced the strongest fluorescence(center wavelength)to pump the sodium vapor cell, while fluorescence intensities of D1and D2lines were recorded. The energy of dye laser was kept the same value throughout the fluorescence detection.Fluorescence of Na-Ar,Na-Xe,Na-CH4, and Na-C2H6systems were compared at 280°C and are shown in Fig.4.The fluorescence intensity follows the order of Na-C2H6> Na-Xe>Na-CH4>Na-Ar.In Fig.4,fluorescence linewidths for excimer systems of Na-C2H6and Na-CH4were significantly broader than that of Na-Xe system,and this is mainly due to the collision broadening mechanism.Collision broadening is proportional to collision cross section,and the square root of the reciprocal of reduced mass of collision pair.The square roots of the reciprocal of reduced mass are 0.23,0.32,and 0.28 for collision pairs of Na-Xe,Na-CH4,and Na-C2H6;the collision crosssections are 26′10-16cm2and 36′10-16cm2for collision pairs of Na-Xe and Na-CH4,this gave the linewidth ratio of 0.52 between collision pairs of Na-Xe and Na-CH4.The collision cross section for collision pairs of Na-C2H6is more complicated to calculate.But considering the overall effects of collision cross section and reduced mass,fluorescence linewidths for collision pairs of Na-C2H6and Na-CH4should be similar.The peak area of fluorescence intensity curves should be a better indication of the order of the absorption coefficients(A)of different excimer systems,and it was calculated as A(Na-Ar):A(Na-Xe):A(Na-CH4):A(Na-C2H6)=1.0:6.4:4.9:10.4.

    Fig.4 Comparison of fluorescence intensities of D1and D2lines of sodium based excimer systems at 280°C

    4 Computational method and results

    There are many possible excimer pairs for potential XPNaL applications and it would be really costly to explore every possible excimer pair.Quantum chemistry calculation was thus a very good alternative option to explore optimal excimer pair for XPNaL. Absorption coefficient normally required the calculation of Frank-Condon factor;thus,the full potential curves for the ground state and excited states,as well as transition dipole moments were necessary15.It is important to note that binding energy of the Na-M complex is very small(in a magnitude of 100 cm-1or even smaller)with a long Na-M distance.Also the excited states are normally pre-dissociative states.Methods with high accuracy together with very large basis set augmented with diffused functions is required to obtain reliable potential curves of ground and excited pre-dissociation states.This would be computationally very demanding.On the other hand,larger binding energy will lead to shorter bond length,thus more compact nuclear wavefunction,and bigger transition moment and absorption coefficient was expected.Transition probabilities from loose bond ground state to unbounded state should be closely related to the binding energy of the ground state.Therefore the binding energies of Na-M complexes were calculated,and were employed to relate to the strengths of absorption of the involved complexes.Comparison between fluorescence experiment results and binding energy calculations would provide a good evaluation for this relationship.

    The Na-M systems investigated in the present work are van der Waals complexes and their binding energies originate from London dispersion force,i.e.,interaction between the induced dipoles of Na and M.According to the London formula,the interaction energy can be estimated based on the following equation16:

    whereα1′andα2′are the polarizability volumes of Na and M,I1and I2are corresponding ionization potentials,and R is the distance between Na and M.Experimental ionization potentials17as well as polarizability volumes18,19for the involved atoms and molecules are listed in Table 2 together with the calculated C term in Eq.(1). Ionization potential of Na is smaller than those of the others to a large extent,which means that differences in ionization energies of M only has a minor effect on C.On the other hand,polarizabilities of the rare gas atoms or the alkyls have a larger effect on magnitude of C.One can see from this table that C increases in the same order as polarizabilities,i.e.,in the order of Ar,CH4,Xe, C2H6.However,the interaction energy is proportional to the inverse sixth power of R according to Eq.(1)and the distance between Na and M will thus play an important role in the binding energy.

    Alternatively,binding energies between Na and M are calculated with quantum chemistry approach.Electron correlation must be treated reliably to achieve a reasonable description on these systems and the CCSD(T)approach,the so called“gold standard”of quantum chemistry,is employed in the present work.Moreover, Na only has one valence electron and its correlation energy will be zero if core electrons are not considered in calculations of correlation energies.This indicates that contribution of core electrons to correlation energy is important for these systems.The correlation-consistent basis set with core-valence correlation effects augmented with a set of diffuse basis functions,i.e.,aug-ccpCVQZ20-22is employed in calculations for all the involved atoms except for Xe.The ECP28MDF23pseudopotential developed by the Stuttgart/Cologne groups is used for Xe together with the corresponding aug-cc-pWCVQZ24basis set.All electrons that are not treated via pseudopotentials are correlated in calculations and all calculations are carried out using MOLPRO25on clusters of National Supercomputing Center in Shenzhen.It is worth noting that equation-of-motion coupled-cluster approach may also be adopted for such systems26,27.

    Table 2 Experimental ionization potentials(IPs)17and polarizability volumes(α′)18,19for the involved atoms and molecules together with the value of C term in Eq.(1)

    Optimized distance between Na and Ar or Xe can be obtained with ease.On the other hand,structures of CH4and C2H6in Na-CH4and Na-C2H6systems are taken from experimental data of isolated CH428and C2H629molecules and kept frozen in geometry optimization to facilitate calculations.Interaction between Na and CH4or C2H6is rather weak and its effect on structure of CH4or C2H6is neglected.Pilot calculations with a small basis set indeed show that effect of using experimental structure for CH4or C2H6in Na-CH4or Na-C2H6system on binding energy is negligible. Optimized structures for these systems are obtained based on numerical gradients as implemented in MOLPRO.The optimized structures for Na-CH4and Na-C2H6are illustrated in Fig.5.One can see from this figure that both these two systems have a C3vsymmetry.

    Calculated distances between Na and M as well as their binding energies are listed in Table 3.Experimental results30,31for Na-Ar and Na-Xe are also listed for comparison.It should be noted that due to their weak interaction,interaction energies are in fact insensitive to the obtained distances when they are not far from those in the optimal structures.One can see from Table 3 that the calculated bond lengths for Na-Ar and Na-Xe are in good agreement with experimental values.Furthermore,binding energies between Na and M are in consistent with polarizabilities of M.To further investigate effects of basis set on the calculated results, interaction energies with the aug-cc-pCV5Z basis set at the optimized structures obtained with the aug-cc-pCVQZ basis set are also calculated for these systems.Unfortunately,the number of basis functions for the Na-C2H6system is too large and we are not able to carry out calculation for this system due to limited computational resources.The calculated results are also listed in Table 3 and result for Na-C2H6is estimated based on difference in binding energy of Na-CH4with these two basis sets.One can see from this table that binding energies with the aug-cc-pCV5Z basis set are consistent with those using the aug-cc-pCVQZ basis set. Effect of basis set superposition error(BSSE)32is usually considered to correct binding energies of weak interaction systems. However,BSSE correction will decrease the obtained interaction energies.According to results in Table 3,we can see that the binding energies actually increase with the size of the basis set. BSSE correction thus should not be used to improve results for the investigated systems.On the other hand,basis set extrapolation is employed to estimate binding energies at the basis set limit with the following equations33:

    The Hartree-Fock energy used in Eq.(2)is taken from result with aug-cc-pCV5Z basis set.is the CCSD(T)correlation energy obtained with the aug-cc-pCVXZ basis set.The parameters a and the extrapolated complete basis set limit CCSD(T)correlation energyin Eq.(3)are determined from correlation energies with the aug-cc-pCVQZ and aug-cc-pCV5Z basis sets. The obtained results are listed in Table 3 and once again,the binding energies are consistent with those using the aug-ccpCVQZ basis set.In comparison with experimental results,the achieved binding energies for Na-Ar and Na-Xe are about 10 cm-1larger.

    Fig.5 Optimized structures of Na-CH4and Na-C2H6systems

    Table 3 Optimized distance(R)between Na and M and binding energies(De)of Na-M(M=Ar,Xe,CH4,C2H6)

    Binding energies of the Na-M complexes follow the order of Na-C2H6>Na-Xe>Na-CH4>Na-Ar.According to the analysis above,the absorption coefficients were expected to follow the same order.Fluorescence experimental results from Fig.4 and Table 1 showed exactly same order and even with similar pattern. Both binding energy and fluorescence intensity of Na-C2H6are significant larger than those of Na-Xe and Na-CH4,and are much larger than those of Na-Ar.This shows that theoretical and experimental results are consistent with each other.This result indicates that binding energy calculated by high precision quantum chemistry method in combination with large basis set is a very good approximation for the ordering of the absorption coefficients and fluorescence intensities of Na-M complexes.This result pavedthe road to the optimal Na-M excimer system by exploring Nacomplexes in a very large scale.The fluorescence experiment results also showed that Na-Xe and Na-C2H6are optimal systems for possible XPNaL system,although lasering experiment is still required to support this conclusion.

    5 Conclusions

    In this work,we measured fluorescence intensity for excimer systems of Na-Ar,Na-Xe,Na-CH4,and Na-C2H6to investigate absorption coefficients of these systems.Under the condition of same pump energy,the bigger the absorption coefficient was,the intenser fluorescence was expected.The peak area ratio of fluorescence intensity curves for these systems was given as 1.0:6.4: 4.9:10.4 by experiment.On the other hand,Binding energies for excimer pairs of Na-Ar,Na-Xe,Na-CH4,and Na-C2H6with the CCSD(T)approach and basis set extrapolation were calculated as 52.8,124.5,117.7,and 150.0 cm-1,respectively.Therefore predication by quantum chemistry calculation was in good consistent with experimental results.This demonstrated that quantum chemistry calculations could play an important role in the selection of excimer pairs of XPNaL,and it was expected to be applicable for all XPAL as well.Experimental results showed that for XPNaL laser operation,excimer pair of Na-C2H6was the best choice among the four systems studied in this work,and it was 10 times more efficient than excimer pairs of Na-Ar.For the application for sodium beacon light purpose,both excimer pairs of Na-C2H6and Na-Xe were good choice and they were approximately 6 times more efficient than Na-Ar system.The fluorescence experimental results were crucial for the development of high power XPNaL,because to achieve the same amount of output energy,Na-C2H6system was expected to only require one tenth of pumping energy of Na-Ar system.

    References

    (1)Max,C.E.;Olivier,S.S.;Friedman,H.W.;An,J.;Avicola, K.;Beeman,B.V.;Bissinger,H.D.;Brase,J.M.;Erbert,G. V.;Gavel,D.T.;Kanz,K.;Liu,M.C.;Macintosh,B.;Neeb, K.P.;Patience,J.;Waltjen,K.E.Science 1997,277,1649.doi: 10.1126/science.277.5332.1649

    (2)Rochester,S.M.;Otarola,A.;Boyer,C.;budker,D.; Ellerbroek,B.;Holzl?hner,R.;Wang,L.J.Opt.Soc.Am.B 2012,29(8),2176.doi:10.1364/JOSAB.29.002176

    (3)Lee,I.;Jalali,M.;Vanasse,N.;Prezkuta,Z.;Groff,K.;Roush, J.;Rogers,N.;Andrews,E.;Moule,G.;Tiemann,B.;Hankla, A.K.;Adkins,S.M.;d'Orgeville.C.Proc.SPIE Adaptive Optics Systems 2008,7015,70150N.doi:10.1117/12.790534

    (4)Wang,P.;Xie,S.;Bo,Y.;Wang,B.;Zuo,J.;Wang,Z.;Shen, Y.;Zhang,F.;Wei,K.;Jin,K.;Xu,Y.;Xu,J.;Peng,Q.;Zhang, J.;Lei,W.;Cui,D.;Zhang,Y.;Xu,Z.Chin.Phys.B 2014,23 (11),094208.doi:10.1088/1674-1056/23/9/094208

    (5)Cong,Z.;Zhang,X.;Wang,Q.;Chen,X.;Fan,S.;Liu,Z.; Zhang,H.;Tao,X.;Wang,J.;Zhao,H.;Li,S.Laser Phys.Lett. 2010,7(12),862.doi:10.1002/lapl.201010076

    (6)Duering,M.;Kolev,V.;Luther-Davies,B.Opt.Express 2009, 17(2),437.doi:10.1364/OE.17.000437

    (7)Dhiflaoui,J.;Berriche,H.;Heaven,M.C.AIP Conf.Proc. 2011,1370,234.doi:10.1063/1.3638107

    (8)Merritt,J.M.;Han,J.;Chang,T.;Heaven,M.C.Proc.SPIE 2009,7196,71960H.doi:10.1117/12.815155

    (9)Readle,J.D.;Verdeyen,J.T.;Eden,J.G.;Davis,S.J.; Galbally-Kinney,K.L.;Rawlins,W.T.;Kessler,W.J.Opt. Lett.2009,34(23),3638.doi:10.1364/OL.34.003638

    (10)Hewitt,J.D.;Houlahan,T.J.,Jr.;Gallagher,J.E.;Carroll,D. L.;Palla,A.D.;Verdeyen,J.T.;Perram,G.P.;Eden,J.G. Appl.Phys.Lett.2013,102,111104.doi:10.1063/1.4796040

    (11)Palla,A.D.;Carroll,D.L.;Verdeyen,J.T.;Heaven,M.C. J.Phys.B:At.Mol.Opt.Phys.2011,44,135402.doi:10.1088/ 0953-4075/44/13/135402

    (12)Szudy,J.;Baylis,W.E.J.Quantum Spectrosc.Ra.1975,15 (7-8),641.doi:10.1016/0022-4073(75)90032-1

    (13)Markov,R.V.;Plekhanov,A.I.;Shalagin,A.M.Phys.Rev. Lett.2002,88(21),213601.doi:10.1103/ PhysRevLett.88.213601

    (14)Chung,H.K.;Shurgalin,M.;Babb,J.F.AIP Conf.Proc.2002, 645,211.doi:10.1063/1.1525457

    (15)Alioua,K.;Bouledroua,M.;Allouche,A.R.;Aubert-Frecon, M.J.Phys.B:At.Mol.Opt.Phys.2008,41(17),175102.doi: 10.1088/0953-4075/41/17/175102

    (16)Atkins,P.;De Paula,J.Physical Chemistry,8th ed.;Oxford University Press:Oxford,UK,2006;p 634.

    (17)Martin,W.C.;Musgrove,A.;Kotochigova,S.;Sansonetti,J. E.2011,Ground Levels and Ionization Energies for the NeutralAtoms(version 1.3).National Institute of Standards and Technology,Gaithersburg,MD.[Online]Available:http:// physics.nist.gov/IonEnergy[Wednesday,22-Apr-2015,21: 45:55 EDT].

    (18)Olney,T.N.;Cann,N.M.;Cooper,G.;Brion,C.E.Chem. Phys.1997,223(1),59.doi:10.1016/S0301-0104(97)00145-6

    (19)Langhoff,P.W.;Karplus,M.J.Opt.Soc.Am.1969,59(7), 863.doi:10.1364/JOSA.59.000863

    (20)Dunning,T.H.,Jr.J.Chem.Phys.1989,90(2),1007.doi: 10.1063/1.456153

    (21)Woon,D.E.;Dunning,T.H.,Jr.J.Chem.Phys.1994,100(4), 2975.doi:10.1063/1.466439

    (22)Woon,D.E.;Dunning,T.H.,Jr.J.Chem.Phys.1993,98(2), 1358.doi:10.1063/1.464303

    (23)Peterson,K.A.;Figgen,D.;Goll,E.;Stoll,H.;Dolg,M. J.Chem.Phys.2003,119(21),11113.doi:10.1063/1.1622924

    (24)Peterson,K.A.;Yousaf,K.E.J.Chem.Phys.2010,133(17), 174116.doi:10.1063/1.3503659

    (25)Werner,H.J.;Knowles,P.J.;Knizia,G.;Manby,F.R.;Schütz, M.Wires Comput.Mol.Sci.2012,2,242;MOLPRO,version 2012.1,http://www.molpro.net.doi:10.1002/wcms.82

    (26)Liang,Y.N.;Wang,F.Acta Phys.-Chim.Sin.2014,30(8), 1447.[梁艷妮,王繁.物理化學(xué)學(xué)報(bào),2014,30(8),1447.] doi:10.3866/PKU.WHXB201405302

    (27)Cao,Z.L.;Wang,Z.F.;Yang,M.L.;Wang,F.Acta Phys.-Chim.Sin.2014,30(3),431.[曹戰(zhàn)利,王治釩,楊明理,王繁.物理化學(xué)學(xué)報(bào),2014,30(3),431.]doi:10.3866/PKU. WHXB201401023

    (28)Sverdlov,L.M.;Kovner,M.A.;Krainov,E.P.Vibrational Spectra of Polyatomic Molecule;Wiley:New York,1974.

    (29)Benran,K.Bond Lengths and Angles in Gas-Phase Molecules, 3rd ed.II;Maruzen Company,LTD.:Tokyo,Japan,1984;p 649.

    (30)Baumann,P.;Zimmermann,D.;Brühl,R.J.Mol.Spec.1992, 155(2),277.doi:10.1016/0022-2852(92)90517-R

    (31)Schwarzhans,D.;Zimmermann,D.Eur.Phys.J.D 2003,22 (2),193.doi:10.1140/epjd/e2002-00242-8

    (32)Boys,S.F.;Bernardi,F.Mol.Phys.1970,19(4),553.doi: 10.1080/00268977000101561

    (33)Pahl,E.;Figgen,D.;Thierfelder,C.;Peterson,K.A.;Calvo,F.; Schwerdtfeger,P.J.Chem.Phys.2010,132(11),114301.doi: 10.1063/1.3354976

    Experimental and Theoretical Evaluation of the Absorption Coefficients of Excimer Pairs of Sodium with Noble Gases and Alkanes

    HU Shu1GAI Bao-Dong1CAO Zhan-Li2GUO Jing-Wei1,*WANG Fan2
    (1Key Laboratory of Chemical Lasers,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, Liaoning Province,P.R.China;2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610064,P.R.China)

    The excimer-pumped sodium laser(XPNaL)is very important for its application in sodium guide star.However,the absorption coefficients(for the pumping source)of traditional excimer pairs,such as Na-He and Na-Ar,are very small.In this work,four systems(Na-Ar,Na-Xe,Na-CH4,and Na-C2H6)are investigated based on both fluorescence experiment and theoretical binding energies obtained from highly accurate quantum chemistry calculations to determine better excimer pairs.The experiment results show that the peak area ratio of fluorescence intensity curves for the excimer pairs of Na-Ar,Na-Xe,Na-CH4,and Na-C2H6was 1.0:6.4:4.9: 10.4.Meanwhile,using the CCSD(T)approach and basis set extrapolation,binding energies for these four systems were calculated as 52.8,124.5,117.7,and 150.0 cm-1,respectively.Therefore,predication by quantum chemistry calculation was consistent with experimental results.The Na-C2H6system was found to be the most efficient system both experimentally and theoretically,and has the potential to be used in the development of a high power XPNaL.This work also demonstrates that the binding energy from highly accurate quantum chemistry calculations with a large basis set is a very good criterion for the selection of excimer pairs for the excimer-pumped alkali laser(XPAL).

    Excimer pair;XPAL;CCSD(T);Basis set;Fluorescence;Absorption coefficient

    October 28,2015;Revised:January 13,2016;Published on Web:January 15,2016.*Corresponding author.Email:jingweiguo@dicp.ac.cn;Tel:+86-411-84379715. The project was supported by the National Natural Science Foundation of China(11475177,11304311,61505210,61405197).

    O641

    10.3866/PKU.WHXB201601151

    國(guó)家自然科學(xué)基金(11475177,11304311,61505210,61405197)資助項(xiàng)目

    猜你喜歡
    基組結(jié)合能準(zhǔn)分子
    晶體結(jié)合能對(duì)晶格動(dòng)力學(xué)性質(zhì)的影響
    借鑒躍遷能級(jí)圖示助力比結(jié)合能理解*
    高能炸藥CL-20分子結(jié)構(gòu)的理論模擬方法探究
    火工品(2019年6期)2019-06-05 02:35:44
    精確計(jì)算核磁共振屏蔽常數(shù)的擴(kuò)展焦點(diǎn)分析方法
    基組遞推方法的研究進(jìn)展
    308 nm準(zhǔn)分子光聯(lián)合復(fù)方卡力孜然酊治療白癜風(fēng)的療效及護(hù)理
    ε-CL-20/F2311 PBXs力學(xué)性能和結(jié)合能的分子動(dòng)力學(xué)模擬
    對(duì)“結(jié)合能、比結(jié)合能、質(zhì)能方程、質(zhì)量虧損”的正確認(rèn)識(shí)
    308nm準(zhǔn)分子激光治療白癜風(fēng)臨床研究
    308nm準(zhǔn)分子光治療36例白癜風(fēng)患者臨床觀察
    亚洲欧美一区二区三区国产| 蜜桃在线观看..| 亚洲av二区三区四区| 黄片无遮挡物在线观看| 国产高清国产精品国产三级 | 91精品一卡2卡3卡4卡| 亚洲欧美精品自产自拍| 视频区图区小说| 久久ye,这里只有精品| 五月天丁香电影| 国产久久久一区二区三区| 久久精品国产亚洲av涩爱| 2022亚洲国产成人精品| 男女国产视频网站| 亚洲欧美一区二区三区国产| 80岁老熟妇乱子伦牲交| 日本-黄色视频高清免费观看| 国产一区二区在线观看日韩| 欧美日韩视频高清一区二区三区二| 性色avwww在线观看| 国产精品一区www在线观看| 丝袜脚勾引网站| 欧美bdsm另类| 精品国产露脸久久av麻豆| 久久这里有精品视频免费| 91狼人影院| 黄色一级大片看看| 久久女婷五月综合色啪小说| 国产成人一区二区在线| 一级爰片在线观看| av专区在线播放| 亚洲精品一二三| 日韩,欧美,国产一区二区三区| 亚洲av日韩在线播放| av在线观看视频网站免费| 欧美精品国产亚洲| 亚洲国产色片| 午夜免费观看性视频| 欧美日韩一区二区视频在线观看视频在线| 国产一区亚洲一区在线观看| 日韩亚洲欧美综合| tube8黄色片| 高清午夜精品一区二区三区| 99久久精品热视频| 99久久综合免费| 99热这里只有精品一区| 亚洲经典国产精华液单| 菩萨蛮人人尽说江南好唐韦庄| 日日摸夜夜添夜夜爱| 中文字幕免费在线视频6| 久久久久国产网址| 久久久久精品久久久久真实原创| 毛片一级片免费看久久久久| 极品少妇高潮喷水抽搐| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦在线观看免费高清www| 国内精品宾馆在线| 日韩电影二区| 男女边摸边吃奶| 男女边吃奶边做爰视频| 99热6这里只有精品| 国产午夜精品一二区理论片| 久久精品人妻少妇| 久久影院123| 麻豆精品久久久久久蜜桃| 18+在线观看网站| 婷婷色麻豆天堂久久| 91久久精品国产一区二区三区| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 少妇裸体淫交视频免费看高清| 嘟嘟电影网在线观看| 十八禁网站网址无遮挡 | 99九九线精品视频在线观看视频| 久久精品久久久久久久性| 国产毛片在线视频| 黄片wwwwww| 高清不卡的av网站| 老师上课跳d突然被开到最大视频| 最近中文字幕2019免费版| 99热网站在线观看| 老司机影院成人| 成人综合一区亚洲| 亚洲精品自拍成人| 午夜免费鲁丝| 欧美成人精品欧美一级黄| 免费大片黄手机在线观看| 久久精品国产自在天天线| 亚洲成人手机| 亚洲三级黄色毛片| 人人妻人人澡人人爽人人夜夜| 黄色一级大片看看| 亚洲国产成人一精品久久久| 青春草视频在线免费观看| 精品亚洲乱码少妇综合久久| 高清欧美精品videossex| 久久精品国产亚洲网站| 国产欧美日韩一区二区三区在线 | 亚洲欧洲日产国产| 美女cb高潮喷水在线观看| 国产精品伦人一区二区| 国产在线一区二区三区精| 国产在线一区二区三区精| 久久av网站| 午夜日本视频在线| 色吧在线观看| 女人十人毛片免费观看3o分钟| 人妻系列 视频| 老女人水多毛片| 久久久精品免费免费高清| 亚洲性久久影院| 九九在线视频观看精品| 久久久午夜欧美精品| 一区二区av电影网| 国产国拍精品亚洲av在线观看| 高清不卡的av网站| 国产亚洲精品久久久com| 啦啦啦啦在线视频资源| 精品久久久噜噜| 精品少妇黑人巨大在线播放| 纵有疾风起免费观看全集完整版| 日本与韩国留学比较| 国产一区亚洲一区在线观看| av在线播放精品| 黄色视频在线播放观看不卡| av在线老鸭窝| 亚洲精品自拍成人| 91精品伊人久久大香线蕉| 精品亚洲成a人片在线观看 | 国产69精品久久久久777片| 日本黄色日本黄色录像| 各种免费的搞黄视频| 在线免费十八禁| 国产成人午夜福利电影在线观看| 国内揄拍国产精品人妻在线| 老司机影院成人| 日韩在线高清观看一区二区三区| 搡女人真爽免费视频火全软件| 女人十人毛片免费观看3o分钟| 国产69精品久久久久777片| 亚洲内射少妇av| 日韩伦理黄色片| 国产男人的电影天堂91| 老司机影院成人| 欧美日本视频| 在线观看一区二区三区| 国产亚洲精品久久久com| 久久久欧美国产精品| 国产一区二区在线观看日韩| 久久久久精品性色| 久久av网站| 在线 av 中文字幕| 国产又色又爽无遮挡免| 日韩不卡一区二区三区视频在线| 国产老妇伦熟女老妇高清| 国产又色又爽无遮挡免| 最新中文字幕久久久久| 丝袜脚勾引网站| 一个人看视频在线观看www免费| 日本vs欧美在线观看视频 | 日韩 亚洲 欧美在线| 日本黄色日本黄色录像| 久久人人爽人人爽人人片va| 麻豆精品久久久久久蜜桃| 网址你懂的国产日韩在线| 亚洲综合色惰| 久久精品久久久久久久性| 欧美最新免费一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日本视频| 久久久成人免费电影| 国产片特级美女逼逼视频| 高清视频免费观看一区二区| 丰满人妻一区二区三区视频av| 51国产日韩欧美| 亚洲欧美日韩东京热| 爱豆传媒免费全集在线观看| 嘟嘟电影网在线观看| 免费观看av网站的网址| 青青草视频在线视频观看| 亚洲精品一区蜜桃| 久久精品人妻少妇| 一区二区三区乱码不卡18| 人妻 亚洲 视频| 日韩中字成人| 国产 精品1| 伊人久久精品亚洲午夜| 国产精品三级大全| 国产精品蜜桃在线观看| 国产女主播在线喷水免费视频网站| 18禁在线播放成人免费| 日韩视频在线欧美| 少妇人妻 视频| 中文乱码字字幕精品一区二区三区| 亚洲性久久影院| 一本色道久久久久久精品综合| 建设人人有责人人尽责人人享有的 | 成人免费观看视频高清| 九色成人免费人妻av| 亚洲精品456在线播放app| 一级毛片黄色毛片免费观看视频| 免费观看性生交大片5| 国产日韩欧美在线精品| 成人国产麻豆网| 下体分泌物呈黄色| 黄色日韩在线| 欧美另类一区| 老师上课跳d突然被开到最大视频| 亚洲真实伦在线观看| 一区二区三区免费毛片| 99国产精品免费福利视频| 99久久中文字幕三级久久日本| 天堂俺去俺来也www色官网| 国产高清不卡午夜福利| 超碰av人人做人人爽久久| 国产日韩欧美亚洲二区| 欧美日韩在线观看h| 日本一二三区视频观看| 人妻制服诱惑在线中文字幕| 国产视频首页在线观看| 国产一区有黄有色的免费视频| 91aial.com中文字幕在线观看| 午夜福利影视在线免费观看| 国产成人精品福利久久| 丰满迷人的少妇在线观看| 极品少妇高潮喷水抽搐| 五月伊人婷婷丁香| 少妇 在线观看| 99视频精品全部免费 在线| 久久综合国产亚洲精品| 人妻 亚洲 视频| 精品一区二区免费观看| 国产精品蜜桃在线观看| 国产乱人视频| 高清欧美精品videossex| 十八禁网站网址无遮挡 | 日韩 亚洲 欧美在线| av福利片在线观看| 亚洲色图综合在线观看| kizo精华| xxx大片免费视频| 国产v大片淫在线免费观看| 国产精品一区二区性色av| 卡戴珊不雅视频在线播放| 小蜜桃在线观看免费完整版高清| 国产男人的电影天堂91| 乱码一卡2卡4卡精品| 国产精品偷伦视频观看了| 国产精品熟女久久久久浪| 成人高潮视频无遮挡免费网站| 免费久久久久久久精品成人欧美视频 | 国产成人精品福利久久| 久久人人爽av亚洲精品天堂 | 久久综合国产亚洲精品| 亚洲人成网站在线观看播放| 777米奇影视久久| 国产欧美日韩一区二区三区在线 | 永久免费av网站大全| 国产成人免费无遮挡视频| kizo精华| a级毛片免费高清观看在线播放| 亚洲av在线观看美女高潮| 中文欧美无线码| 人妻少妇偷人精品九色| 免费观看av网站的网址| 午夜老司机福利剧场| 伦精品一区二区三区| 日韩av免费高清视频| 久久精品国产a三级三级三级| 国产午夜精品久久久久久一区二区三区| 国产精品嫩草影院av在线观看| 欧美+日韩+精品| 2018国产大陆天天弄谢| 少妇精品久久久久久久| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 大话2 男鬼变身卡| 插阴视频在线观看视频| 久久国产精品大桥未久av | 欧美 日韩 精品 国产| 午夜日本视频在线| 在线 av 中文字幕| 国产免费福利视频在线观看| 97热精品久久久久久| 国产探花极品一区二区| 久久综合国产亚洲精品| 在线播放无遮挡| 精品午夜福利在线看| 青春草国产在线视频| 亚洲精品一二三| av免费观看日本| 免费大片18禁| 久久99热6这里只有精品| 久久久久国产网址| 亚洲国产精品专区欧美| 在线观看免费高清a一片| 晚上一个人看的免费电影| 99精国产麻豆久久婷婷| 精品久久久久久久久av| 国产视频内射| 欧美激情极品国产一区二区三区 | 国产亚洲欧美精品永久| 狂野欧美白嫩少妇大欣赏| 国产在线视频一区二区| av免费在线看不卡| 水蜜桃什么品种好| 久久鲁丝午夜福利片| 啦啦啦在线观看免费高清www| 久久99热6这里只有精品| 国产成人freesex在线| 欧美日韩精品成人综合77777| 97精品久久久久久久久久精品| 国产成人精品久久久久久| 99久久综合免费| 岛国毛片在线播放| 国产高清有码在线观看视频| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 国产精品人妻久久久久久| 啦啦啦在线观看免费高清www| 精品亚洲成国产av| 亚洲国产精品专区欧美| 国产大屁股一区二区在线视频| 99热国产这里只有精品6| 一级av片app| 精品人妻偷拍中文字幕| 最近的中文字幕免费完整| 交换朋友夫妻互换小说| 国产 精品1| 1000部很黄的大片| 国产精品一区www在线观看| 亚洲电影在线观看av| 最后的刺客免费高清国语| 久久女婷五月综合色啪小说| 精品久久久久久久末码| 国产男女超爽视频在线观看| 性色avwww在线观看| 波野结衣二区三区在线| 精品久久久久久久末码| 人体艺术视频欧美日本| 18禁裸乳无遮挡免费网站照片| 亚洲中文av在线| 亚洲色图综合在线观看| 看十八女毛片水多多多| 国模一区二区三区四区视频| 国产高清不卡午夜福利| 日韩免费高清中文字幕av| 一个人看的www免费观看视频| 啦啦啦中文免费视频观看日本| 91狼人影院| 丰满迷人的少妇在线观看| 蜜桃在线观看..| 亚洲精品国产色婷婷电影| 80岁老熟妇乱子伦牲交| 舔av片在线| 欧美老熟妇乱子伦牲交| 人人妻人人添人人爽欧美一区卜 | 国产国拍精品亚洲av在线观看| 成人美女网站在线观看视频| 一边亲一边摸免费视频| 久久久精品免费免费高清| 国产亚洲午夜精品一区二区久久| 久久这里有精品视频免费| 精品久久久久久久久av| 国产成人午夜福利电影在线观看| 欧美一区二区亚洲| 亚洲欧美日韩东京热| 久久精品久久精品一区二区三区| www.av在线官网国产| 久久久久久久精品精品| 性高湖久久久久久久久免费观看| 大片免费播放器 马上看| 黄色日韩在线| 国产精品久久久久成人av| 高清午夜精品一区二区三区| 亚洲精品日本国产第一区| 国产高潮美女av| 人妻少妇偷人精品九色| 欧美精品人与动牲交sv欧美| 最近的中文字幕免费完整| 国产黄色免费在线视频| 天堂俺去俺来也www色官网| 国产精品成人在线| 国产欧美日韩一区二区三区在线 | 深夜a级毛片| 国产精品久久久久久久久免| 搡女人真爽免费视频火全软件| 国产久久久一区二区三区| 精品一区二区免费观看| 国产日韩欧美在线精品| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 少妇裸体淫交视频免费看高清| 免费看光身美女| 国产高清有码在线观看视频| 夫妻性生交免费视频一级片| 99久国产av精品国产电影| 1000部很黄的大片| 99热全是精品| 精品久久久久久久久亚洲| 特大巨黑吊av在线直播| 久久久久久伊人网av| tube8黄色片| 一级片'在线观看视频| 久热这里只有精品99| 激情 狠狠 欧美| 日韩成人伦理影院| 久久青草综合色| 看十八女毛片水多多多| 99久久精品国产国产毛片| 成年美女黄网站色视频大全免费 | 久久综合国产亚洲精品| 国产淫语在线视频| 特大巨黑吊av在线直播| 久久久久久久久久久免费av| 国产精品免费大片| 亚洲图色成人| 天天躁夜夜躁狠狠久久av| 国精品久久久久久国模美| 夜夜爽夜夜爽视频| 日韩不卡一区二区三区视频在线| 99热这里只有是精品在线观看| 精品国产一区二区三区久久久樱花 | 久久精品国产自在天天线| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品自产自拍| 99久久综合免费| 十八禁网站网址无遮挡 | 啦啦啦视频在线资源免费观看| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 蜜桃久久精品国产亚洲av| 国产午夜精品久久久久久一区二区三区| 丝袜脚勾引网站| 日本-黄色视频高清免费观看| 好男人视频免费观看在线| 国产一区二区三区综合在线观看 | 九九爱精品视频在线观看| www.色视频.com| 欧美一级a爱片免费观看看| 久久久精品94久久精品| 日韩,欧美,国产一区二区三区| 美女内射精品一级片tv| 纵有疾风起免费观看全集完整版| 色视频www国产| 男女下面进入的视频免费午夜| 精品亚洲成a人片在线观看 | 色综合色国产| 婷婷色综合www| 日韩人妻高清精品专区| 亚洲av综合色区一区| 日本wwww免费看| 亚洲av成人精品一区久久| 精品国产一区二区三区久久久樱花 | 下体分泌物呈黄色| 日本av免费视频播放| 99热这里只有精品一区| 亚洲精品色激情综合| a级一级毛片免费在线观看| 一级毛片久久久久久久久女| 看十八女毛片水多多多| 毛片女人毛片| 自拍偷自拍亚洲精品老妇| 蜜桃久久精品国产亚洲av| 久久久久视频综合| 日韩成人伦理影院| 好男人视频免费观看在线| 国产精品一区二区性色av| 久久久久性生活片| 亚洲av成人精品一二三区| 日本欧美视频一区| 在线观看国产h片| 国产伦在线观看视频一区| 天天躁日日操中文字幕| 纵有疾风起免费观看全集完整版| 国产无遮挡羞羞视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品视频人人做人人爽| 在线观看美女被高潮喷水网站| 女性生殖器流出的白浆| 国内精品宾馆在线| 国产精品福利在线免费观看| 又爽又黄a免费视频| 多毛熟女@视频| 人妻制服诱惑在线中文字幕| 热99国产精品久久久久久7| 国产极品天堂在线| 国产在线一区二区三区精| 国产精品免费大片| www.av在线官网国产| 我要看黄色一级片免费的| 亚洲精品久久久久久婷婷小说| 久久久久久人妻| 久久人人爽人人爽人人片va| 一个人看视频在线观看www免费| 亚洲婷婷狠狠爱综合网| 天天躁夜夜躁狠狠久久av| 特大巨黑吊av在线直播| 日韩中文字幕视频在线看片 | 男男h啪啪无遮挡| 在线看a的网站| 欧美3d第一页| 各种免费的搞黄视频| 91精品一卡2卡3卡4卡| 六月丁香七月| 男女啪啪激烈高潮av片| 午夜精品国产一区二区电影| 少妇的逼好多水| 亚洲欧美日韩东京热| 毛片女人毛片| 少妇人妻一区二区三区视频| 国产一区有黄有色的免费视频| 一级二级三级毛片免费看| 99精国产麻豆久久婷婷| 人妻系列 视频| www.色视频.com| 少妇的逼水好多| 毛片一级片免费看久久久久| 天天躁夜夜躁狠狠久久av| 中文字幕免费在线视频6| 日韩av免费高清视频| 国产一区二区三区综合在线观看 | 精品人妻视频免费看| 国产色爽女视频免费观看| 美女xxoo啪啪120秒动态图| 亚洲成人av在线免费| 欧美xxxx性猛交bbbb| 少妇丰满av| 日韩一区二区视频免费看| 啦啦啦中文免费视频观看日本| 国产免费福利视频在线观看| 极品教师在线视频| 日韩av免费高清视频| 国产成人精品福利久久| 人妻少妇偷人精品九色| 国产精品av视频在线免费观看| 亚洲av中文字字幕乱码综合| 在线观看免费高清a一片| 日韩人妻高清精品专区| 国产在线一区二区三区精| 日韩强制内射视频| 美女脱内裤让男人舔精品视频| 国产精品国产三级国产专区5o| av免费在线看不卡| 欧美+日韩+精品| 在现免费观看毛片| 欧美bdsm另类| 午夜视频国产福利| 大片免费播放器 马上看| 婷婷色麻豆天堂久久| 久久久久久久久久久丰满| 免费av中文字幕在线| 女性生殖器流出的白浆| 少妇人妻精品综合一区二区| 亚洲av男天堂| 亚洲,欧美,日韩| 99久久精品国产国产毛片| 久久国产乱子免费精品| 成年女人在线观看亚洲视频| 男男h啪啪无遮挡| 日日啪夜夜撸| 涩涩av久久男人的天堂| 午夜免费鲁丝| 男的添女的下面高潮视频| 久久久久久久国产电影| av一本久久久久| 国产男女超爽视频在线观看| 韩国高清视频一区二区三区| 亚洲精品乱久久久久久| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区国产| 亚洲综合色惰| 99re6热这里在线精品视频| av女优亚洲男人天堂| 久久精品久久久久久噜噜老黄| 午夜免费观看性视频| 欧美成人一区二区免费高清观看| 免费高清在线观看视频在线观看| 国产一区有黄有色的免费视频| av国产精品久久久久影院| 精品人妻偷拍中文字幕| 精品人妻一区二区三区麻豆| 美女xxoo啪啪120秒动态图| 在线看a的网站| 亚洲精品乱码久久久v下载方式| 青春草亚洲视频在线观看| 免费观看av网站的网址| 亚洲国产成人一精品久久久| 亚洲精品国产成人久久av| 夜夜看夜夜爽夜夜摸| 18禁动态无遮挡网站| 欧美少妇被猛烈插入视频| 亚洲成人av在线免费| 男人狂女人下面高潮的视频| 色哟哟·www| 国产男女超爽视频在线观看| 超碰97精品在线观看| 一级片'在线观看视频| 国产精品一区二区在线观看99| 久久精品久久久久久久性| 九色成人免费人妻av| 亚洲成人av在线免费| 美女视频免费永久观看网站| 欧美另类一区| 欧美三级亚洲精品| 久久久久久人妻| 偷拍熟女少妇极品色| 亚洲精品aⅴ在线观看| 老熟女久久久| 久久人人爽av亚洲精品天堂 | 女的被弄到高潮叫床怎么办| av一本久久久久| 身体一侧抽搐| 国产乱人偷精品视频|