• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    熱剝離法制備石墨烯納米片對Pb2+和Cd2+的吸附

    2016-09-05 13:04:13李保慶袁文輝廣東環(huán)境保護工程職業(yè)學(xué)院重金屬污染防治與土壤修復(fù)重點實驗室廣東佛山586華南理工大學(xué)化學(xué)與化工學(xué)院廣州50640華南理工大學(xué)環(huán)境科學(xué)與工程學(xué)院廣州50640
    物理化學(xué)學(xué)報 2016年4期
    關(guān)鍵詞:華南理工大學(xué)化工學(xué)院石墨

    李保慶 袁文輝 李 莉(廣東環(huán)境保護工程職業(yè)學(xué)院,重金屬污染防治與土壤修復(fù)重點實驗室,廣東佛山586;華南理工大學(xué)化學(xué)與化工學(xué)院,廣州50640;華南理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,廣州50640)

    熱剝離法制備石墨烯納米片對Pb2+和Cd2+的吸附

    李保慶1袁文輝2,*李莉3
    (1廣東環(huán)境保護工程職業(yè)學(xué)院,重金屬污染防治與土壤修復(fù)重點實驗室,廣東佛山528216;2華南理工大學(xué)化學(xué)與化工學(xué)院,廣州510640;3華南理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,廣州510640)

    石墨粉氧化后,在氮氣氣氛下,快速高溫剝離制得石墨烯納米片。采用X射線衍射(XRD)、掃描電子顯微鏡(SEM)、透射電子顯微鏡(HRTEM)、拉曼(Raman)光譜、傅里葉變換紅外(FT-IR)光譜和氮氣吸附-脫附等分析手段對石墨烯樣品進行了表征。這些分析測試結(jié)果顯示:石墨烯樣品主要由很薄的1-4層石墨組成,呈褶皺狀態(tài),比表面積為628.5 m2?g-1。研究了石墨烯吸附水溶液中的Pb2+和Cd2+的pH值、吸附時間、吸附溫度和金屬離子初始濃度等影響因素,Pb2+和Cd2+的最大吸附量分別為460.20和72.39 mg?g-1。結(jié)果表明,熱剝離法制得的高質(zhì)量石墨烯納米片可以作為一種高效的從水中去除Pb2+和Cd2+的吸附材料。

    石墨烯;熱剝離;表征;吸附;重金屬離子

    [Article]

    www.whxb.pku.edu.cn

    1 Introduction

    Heavy metal ions present in water pose a severe threat to human health and ecosystem.They are found in industrial and domestic waste waters1,and acidic leachate2from landfills.Accordingly, these heavy metal ions must be removed prior to discharge into surface waters.Many different adsorbents,such as activated carbon,ash,zeolites,metal oxides,chitosan,and agricultural byproducts3-8,have been used to remove heavy metal ions from water.In recent years,carbon-based materials have served as the major adsorbents of heavy metal ions in practice because of their superior pore distribution structure and large specific surface area9-11.For example,Shim et al.12studied metal ions adsorption on modified carbon fibers and Machida et al.13examined the simultaneous adsorption of Cu2+and Pb2+.Mohan et al.14studied the adsorption properties of cadmium and zinc using activated carbon derived from bagasse.Leyva-Ramos et al.15researched the adsorption of Cd2+from aqueous solution on natural and oxidized corncob.Li et al.16conducted the competitive adsorption of Pb2+, Cu2+and Cd2+ions from aqueous solutions by multiwalled carbon nanotubes(CNTs).As one member of the carbon family,graphene has been confirmed to be a possible candidate for metal ions adsorption fields.

    Graphene is a one-atomic-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice.Its extended honeycomb network is the basic structural element of some allotropes:it can be stacked to form three-dimensional(3D)graphite,rolled to form one-dimensional(1D) nanotubes,and wrapped to form zero-dimensional(0D)fullerenes17.Because of the splanar structure of graphene,it is attracting great interest for producing field-effect transistors,lithium ion batteries,hydrogen storage,molecular sensors,artificial muscle actuators,and reinforcing fillers in high performance polymer composites18.The upper and lower surface of single layer graphene gives it a theoretical specific surface area 2600 m2?g-1,9but it is still a challenge to prepare a single layer graphene in practice. Freestanding graphene was discovered experimentally by Novoselov et al.19,but its chemical and physical characteristic are still not fully understood20.As the researches showed above,the properties of graphene materials depend on the number of graphene layers.For adsorption applications,various graphene structures with few layers are desirable because this gives the largest surface area per gram.Recently,graphene materials have attracted a lot of attention for heavy metal ions removal from aqueous solution.Hou et al.21successfully linked chelating groups to graphene oxide(GO)surface to form ethylene diamine tetraacetic acid-graphene oxide(EDTA-GO),which was found to be an ideal adsorbent for Pb2+removal with a high capacity of (479±46)mg?g-1.Pei et al.22investigated the effect of humic acid (HA)on Cu2+adsorption onto reduced GO and graphene.When HAwas added at pH 4.0 and 6.0,more Cu2+was adsorbed.Hu et al.23studied the adsorption of Cu2+,Cd2+,and Ni2+from aqueous single metal solutions on GO membranes.The maximum adsorption capacities of the GO membranes for Cu2+,Cd2+,and Ni2+were obtained,respectively.

    There are many methods24-29to prepare graphene nanosheets (GNSs)up to now.Among them,the thermal exfoliation method is fast and efficient.Thus,it is interesting to adsorb heavy metal ions from aqueous solution by GNSs prepared through thermal exfoliation.

    In the present study,high-quality GNSs with fewer layers(~4 layers)and large specific surface area(628.5 m2?g-1)were successfully prepared by thermal exfoliation.The ability of the graphene to adsorb Pb2+and Cd2+from aqueous solution was evaluated and the effect of pH,adsorption time,adsorption temperature,and equilibrium concentration of metal ions were also evaluated in detail.

    2 Experimental

    2.1Preparation of graphene sheets

    GNSs were prepared in two steps:graphite powder(99.8%, ~325 mesh,Alfa Aesar)was oxidized using a modified Hummers′method25,27,28and then rapidly exfoliated at high temperature under nitrogen atmosphere24,26.In the oxidation process,a reaction flask containing magnetic stir bar was charged with 200 mL concentrated sulfuric acid(98.0%,AR,Tianjin Rui Jin Te Chemical Reagent Factory,China)and 5 g sodium nitrate(98.0%,AR, Tianjin Rui Jin Te Chemical Reagent Factory,China),cooled by immersion in an ice bath.The mixture was stirred for 15 min and 5 g graphite from the procedure described above was added into the mixture.After the graphite was well dispersed,25 g potassium perchlorate(98.0%,AR,Tianjin Rui Jin Te Chemical Reagent Factory,China)and 15 g potassium permanganate(98.0%,AR, Tianjin Rui Jin Te Chemical Reagent Factory,China)were added slowly over a period of 15 min to avoid a sudden increase in temperature.The ice bath was removed after the suspension had been continuously stirred for 30 min.Then the reaction flask was loosely capped and was stirred for 48 h at room temperature. Subsequently,the suspension was diluted with 250 mL warm deionized water and 40 mL H2O2(30%,AR,Guangdong Guanghua Chemical Factory,China)to reduce residual permanganate and manganese dioxide to colorless soluble manganese sulfate. The suspension was centrifuged at 10000 r?min-1and washed with a mixed aqueous solution of 6%(w)HCl/3%(w)H2O2,then washed with water until the pH was 7 and dried in a vacuum oven at 60°C for 16 h to obtain GO.For thermal exfoliation,0.2 g GO was first loaded in a quartz boat of 100 mm in length and 20 mm in diameter and inserted into a 1.5 m-long quartz tube with an inner diameter of 22 mm and outer diameter of 25 mm.The sample was flushed with N2for 1 h,and then the quartz tube was quickly inserted into a Lindberg tube furnace preheated to 1050°C and held in the furnace for 30 seconds and this produced the GNSs for these experiments.

    2.2Characterization

    X-ray diffraction(XRD)patterns were obtained at room temperature from a Bruker-D8 Advance(German)power diffractometer using Cu Kαradiation(λ=0.1541 nm)operating at 40 kVand 40 mA.The morphology and structure of the prepared GNSs were observed by scanning electron microscope(SEM,S-3700N, Japan)and high-resolution transmission electron microscope (HRTEM)(FEI,Tecnai C2F30 S-Twin).Fourier transform infrared (FT-IR)spectra were recorded with a Bruker Vector 33 FT-IR spectrometer.Raman spectra were measured using a Horiba Jobin Yvon LabRam Aramis Raman spectrometer with a laser focal length of 632.8 nm.BET specific surface area and pore distribution were determined from nitrogen adsorption,using a MicromeriticsASAP 2010(USA)analyzer.

    2.3Reagents and measurements of adsorption tests

    The Pb2+and Cd2+stock solution of 100 mL(1 mg?mL-1)was prepared by dissolving reagent grade PbCl2and CdCl2.To prepare differing concentration metal ions solution,0.1 mol?L-1NaCl and 5 mL hexamethylene tetramine buffer solution were added into appropriate stock solution,then diluted to 100 mL with distilled water in a 100 mL flask.Initial pH of each solution was adjusted by 0.1 mol?L-1HCl or NaOH,and was measured with a pH meter (Ecoscan-pH6,Singapore)

    2.4Determination of the point of zero charge

    The point of zero charge was determined using the following method:100 mL of distilled water was added into an Erlenmeyer flask,and then was heated until boiling for 30 min to eliminate CO2dissolved in water.Once boiling ceased,the flask was immediately capped.Subsequently,0.03 g of GNSs and 10 mLof the pretreated water were placed in a 50 mL Erlenmeyer flask,which was sealed with a rubber stopper and left on a shaker table for 48 h at room temperature.Then pH value of filtrate was measured and was taken to be the point of zero charge30.

    2.5Adsorption measurements

    A series of adsorption isotherm experiments were carried out using a bottle point method,in order to investigate the effects of various parameters on the adsorption of Pb2+and Cd2+onto GNSs. Each bottle was a 100 mL Erlenmeyer flask containing 20 mL of metal ions solution and 15 mg of GNSs that was outgassed at 150°C.Once the bottles were filled they were placed on a thermostatically controlled shaking table at a set temperature for 3 days,which allowed them to reach equilibrium.The initial concentrations of Pb2+and Cd2+in the solution ranged from 100 to 500 mg?L-1.Then the equilibrium solution was piped out and diluted with 0.1 mol?L-1HCl to allow for their measurement and to convert all metal species to ion form.The pH of the solutions was always<6.5 throughout the experiments to prevent precipitation of metal hydroxides.The metal solution was vacuum filtered and the concentration of the residual metal ions was analyzed using atomic adsorption spectroscopy(AAS,Varian AA 240FS).The quantities of adsorbed Pb2+and Cd2+were calculated the difference between the initial and the final amounts in the metal solution8,12.

    Fig.1 XRD patterns of(a)graphite powder,(b)GO,and(c)GNSs

    3 Results and discussion

    3.1Results of characterization

    XRD patterns of graphite powder,GO and GNSs were displayed in Fig.1.The characteristic peak of graphite powder presented at 2θ=26.58°.After oxidation,a new peak of GO could be seen at 2θ=11.36°,indicating the successful transformation from graphite to GO.The variation of d-spacing from 0.34 nm of graphite powder to 0.78 nm of GO could be calculated by Scherrer′s equation31,owing to the oxide-induced O-containing functional groups and inserted H2O molecules32that could be confirmed by FT-IR.After rapid thermal exfoliation,the diffraction peak of GO disappeared,and a new weak peak of GNSs in the inset was observed(see inset),indicating the O-containing functional groups were removed and GO was successfully exfoliated to GNSs which consist of fewer layers(1-4 layers)of graphene.

    Fig.2 shows FT-IR spectra of GO and GNSs.For GO,the strongest peak at 3413 cm-1exhibits O―H stretching vibrations of adsorbed water molecules and structural OH groups,and the peak at 1626 cm-1presents O―H bending vibration33.The peaks at around 1735 and 1053 cm-1are attributed to the presence of carboxyl and epoxy functional groups32-34.The peaks of O-containing groups indicate that during the oxidation process of graphite flake, the original extended conjugated π-orbital system of the graphite was destroyed and the O-containing groups were inserted among the interspace.After rapid thermal treatment of GO,these O-containing groups were eliminated,as is shown by the weakening of the peaks at 1735,1626,1225,and 1053 cm-1(see Fig.2b).The presence of a new peak at 1565 cm-1reflects the skeletal vibration of GNSs35.These results reveal the successful conversion from GO to GNSs through rapid thermal exfoliation.

    Fig.2 FT-IR spectra of(a)GO and(b)GNSs

    The Nitrogen adsorption-desorption isotherms and pore size distribution of GNSs are shown in Fig.3.BET specific surface area and the total pore volume of GNSs prepared by thermal exfoliation are~628.5 m2?g-1and~2.28 cm3?g-1,respectively,which are much larger than those of graphite powder(~8.5 m2?g-1)and indicate that the average particle size of graphite has been decreased during the process of oxidation and exfoliation.Although the specific surface area of GNSs is much smaller than the theoretical specific surface area(2600 m2?g-1),the specific surface area of our samples is still larger than those reported previously (184 m2?g-1)35.A hysteresis loop in the Nitrogen adsorption-desorption isotherms of GNSs was observed,which demonstrated that the samples are porous structure formed between parallel layers36.

    Fig.4a displays the low-magnification SEM image of GNSs. The morphology of evident agglomeration and worm appearance can be observed.Fig.4b shows the high-magnifaction SEM image of GNSs.The GNSs intrinsically possess37a curled morphology, which consist of thin wrinkled paper-like structure.It is obvious that the stacking of GNSs is fluffy and disordered and the appearance is agglomerated and overlapped.Thus,it is easy to form a porous structure,which is in agreement with the Nitrogen adsorption-desorption measurement.

    The morphology of GNSs was further analyzed using TEM and HRTEM as shown in Fig.4(c,d).Fig.4c shows that GNSs are composed of thin wrinkled graphene,indicating that GNSs were prepared successfully.Fig.4d shows the smooth and homogeneous appearance for most surface of GNSs,which demonstrated the high-quality of the prepared GNSs34.However,it still can be observed that the GNSs have multi-layered graphene on some sites due to the little agglomeration among graphene layers.Concluded from the scale in Fig.4(c,d),the thickness of GNSs is approximately 1.3 nm and the GNSs are composed of approximately 1-4 layers of graphene,which can be proved by the conclusions of Stankovich38and Cheng26.Stankovich reported that the thickness of a chemically derived single-layer graphene was~1.1 nm.Cheng also discovered that the thicknesses of single-,double-,and triplelayer graphenes are approximately 0.57,1.25,and 1.83 nm,respectively.The agglomerated and overlapped individual monatomic graphene layers make the sample stack together,leading to the smaller specific surface area than the theoretical one(2600 m2?g-1)9.

    Fig.3 Nitrogen adsorption-desorption isotherms(a)and pore size distribution(b)of GNSs

    Fig.4 SEM(a,b)and TEM(c,d)images of GNSs

    The significant structural changes during the process of GO to GNSs can also be characterized by Raman spectroscopy,as shown in Fig.5.For graphite powder,the Raman spectra at 1567 cm-1displays a G band corresponding to the first-order scattering of the E2gmode observed for sp2domains and D band,which represents edge planes and disordered structures39.In the Raman spectra of GO,the G band is broadened and shifted to 1578 cm-1and a broad D band at 1335 cm-1also appears.These changes of Raman spectra indicated that the original extended conjugated π-orbital system of graphite were destroyed and oxygen-containing functional groups were inserted into carbon skeleton.The Raman spectra of graphene showed a G band at 1577 cm-1and D band at 1334 cm-1. Comparing the D/G band intensity ratio(ID/IG)of GNSs with that of GO,we found that the ratio(ID/IG=1.17)of GNSs is larger than that in GO(ID/IG=1.04).Although the graphitization degree is in inverse ratio to the ID/IGvalue40,41,the process of oxidation and thermal exfoliation results in the significant decrease in average size of the in-plane sp2domains.Even if new graphitic domainswere created,they are smaller in size to the ones present in GO before reduction.The variation of data indicates the decrease of size of the in-plane sp2domains,as well as the increase of edge planes and of the degree of disorder to the as-synthesized GNSs34,42.In addition,there is a 10 cm-1blue shift in G band position when compared with bulk graphite(1567 cm-1)and this shift is attributed to the transformation of bulk graphite crystal to GNSs34.These evidences demonstrated the significant changes of structure from graphite powder to GO and then to GNSs.

    Fig.5 Raman spectra of(a)graphite powder,(b)GO,and(c)GNSs

    3.2Adsorption performance

    In the adsorption experiments,four effect factors including pH, adsorption time,temperature and initial concentration were investigated and the maximum adsorption capacities of Pb2+and Cd2+on GNSs were determined at optimum pH,adsorption time and temperature.

    3.2.1Effect of pH on the adsorption

    A series of metal solutions by dissolving corresponding metal salts at the same initial concentration were adjusted to a pH range of 1.0-6.5 with 0.1 mol?L-1HCl or NaOH,then the adsorption experiments were conducted.According to the solubility-product constant(Ksp)of Pb(OH)2(1.43×10-15)or Cd(OH)2(7.20×10-15), and the initial concentration of metal ions of 0.001 mol?L-1,the pH value for the onset of precipitation is 8.08 or 8.42,respectively, which indicates no precipitation will occur in the pH range that we used.The removal efficiency(E)is calculated based on the Eq.(1),

    where C0and Ceare initial and equilibrium concentrations(mg?L-1)of metal ions in aqueous phase,respectively.

    Effect of pH on the adsorption of Pb2+and Cd2+by GNSs is shown in Fig.6.It can be observed that the uptake of Pb2+and Cd2+is tiny at pH 1.0-3.1.The reason for this phenomenon is that there are no any O-containing groups covering the surface active sites of GNSs and the surface active sites are occupied by plenty of H+in the liquid phase.Thus,the H+restrained the binding between the surface active sites of GNSs and metal ions at pHrange of 1.0-3.1.With the increase of pH,the charge of GNSs surface became more negative,43which caused electrostatic interactions and resulted in higher adsorption of metal ions.The graphed effect of pH also demonstrated the success of exfoliation of GO by rapid thermal treatment at high temperature.Most of the O-containing groups were eliminated successfully in the form of H2O or CO2. The plots demonstrated that the adsorption percentages of Pb2+and Cd2+onto GNSs are 96.27%at pH 5.80 and 76.75%at pH 6.30, respectively.

    Fig.6 Effect of pH on the adsorption of Pb2+and Cd2+by GNSs

    Fig.7 Effect of adsorption time on the adsorption of Pb2+and Cd2+by GNSs

    3.2.2Effect of adsorption time

    The experiment to explore the effects of adsorption time of Pb2+and Cd2+onto GNSs was examined using initial metal ion concentration of 0.001 mol?L-1at pH 5.5 for Pb2+and at pH 6.1 for Cd2+.Fig.7 shows the kinetic curves of Pb2+and Cd2+adsorbed onto GNSs.It can be observed that the uptake capacities of Pb2+and Cd2+increase sharply in the initial 20 min,and then rise slowly and reaches equilibrium at 30 min.The adsorption process achieved equilibrium in a short time,indicating that the GNSs are prospectively an excellent adsorptive material.

    3.2.3Effect of equilibrium concentration of metal ions

    Equilibrium concentration of metal ions plays an important role in the adsorption of metal ions onto adsorbent.The appropriate concentration is advantageous to the interaction between metal ions and graphene.Aseries of solutions with Pb2+and Cd2+initial concentration ranges from 100 to 500 mg?L-1at pH 5.5 for Pb2+and at pH 6.1 for Cd2+were used to investigate the effect of initial concentration.From Fig.8,it is obvious that the adsorption ca-pacity increases with increasing equilibrium concentration of metal ions,and reaches saturation progressively.In addition,the adsorption capacity of Pb2+increased sharply with the equilibrium concentration of Pb2+,comparing with that of Cd2+,which demonstrated that Pb2+has easier adsorptive property onto GNSs.

    Fig.8 Effect of equilibrium concentration on the adsorption of Pb2+and Cd2+by GNSs

    3.2.4Adsorption isotherms

    The adsorption isotherms of Pb2+and Cd2+onto GNSs were measured to estimate the performance of graphene for metal ion removal.Adsorption experiments were conducted in optimal conditions from above adsorption results.The adsorption isotherms of Pb2+and Cd2+at the temperature range of 20-40°C are shown in Fig.9.It can be found that the adsorption capacities of metal ions increase with the increase of the equilibrium ions concentration.As shown in Fig.9,the adsorption capacity for Pb2+increases sharply until to about 500 mg?L-1of the equilibrium concentration,while that for Cd2+increases slowly.In addition,a reciprocal relationship between temperature and the uptake capacity of the metal ions can be observed from the curves.This indicates that the adsorption of metal ions onto GNSs is an exothermic reaction and room temperature is favorable to the adsorption experiments.For the same equilibrium concentration,the adsorption capacities of Pb2+and Cd2+reached up to 460.20 and 72.39 mg?g-1at 20°C,respectively,which are much higher or no less than that of functionalized GNSs(406.6 mg?g-1for Pb2+and 73.42 mg?g-1for Cd2+)44and the references listed in Table 1,and the adsorption capacities of Pb2+and Cd2+onto GNSs are higher than that of CNTs and modified GNSs.Therefore,it can be concluded that graphene has more superior adsorptive properties for removing Pb2+and Cd2+than CNTs and modified GNSs.

    Finally,we explain the origin of these high adsorption capacities of Pb2+and Cd2+onto GNSs.Sanchez-Polo and Rivera-Utrilla50,51had estimated the adsorption sites of Cπ electrons on graphene layer as well as the aromatics adsorption.Consequently, the Pb2+and Cd2+adsorption sites can be also expected to be involved in Cπ electrons.The high-quality of GNSs prepared in this paper provided more abundant Cπ electrons,increasing the stronger adsorptive power among graphene and metal ions.In addition,Yushin and colleagues52demonstrated that as pore size decreased,uptake capacity on materials increased.As mentioned above,the pore size distribution of as-prepared GNSs revealed the highcontentofmicro-andmeso-porositytothestructure.Therefore, it can be considered that GNSs are superior in removal of Pb2+and Cd2+.

    Fig.9 Adsorption isotherms of Pb2+and Cd2+at different temperatures

    Table 1 Comparison of adsorption capacity of Pb2+and Cd2+by different adsorbents

    4 Conclusions

    High-quality GNSs with fewer layers were successfully fabricated by a rapid thermal exfoliation method.XRD results confirmed the successful exfoliation of GO to GNS.FT-IR and Raman spectra demonstrated the difference of groups introduced into GO and the structure between GO and GNSs.SEM and HRTEM analyses showed that the resultant GNS sample consisted of 1-4 layers of individual monatomic graphene and possessed a large surface area.For the same equilibrium concentration of metal ions, the adsorption capacities(Qe)of Pb2+and Cd2+onto GNSs were 460.20 and 72.39 mg?g-1,respectively,which are much larger or no less than CNTs and modified GNSs.Moreover,the adsorption process achieved equilibrium in only 30 min.Also,the adsorption mechanism was preliminarily explained by Cπ-cation interactionand the micropore structure of graphene.The outstanding properties of GNSs prepared by the rapid thermal exfoliation route make it an attractive adsorptive material for removing Pb2+and Cd2+in future.

    References

    (1)Gaur,V.K.;Gupta,S.K.;Pandey,S.D.;Gopal,K.;Misra,V. Environ.Monit.Assess.2005,102,419.doi:10.1007/s10661-005-6395-6

    (2)Wu,G.;Li,L.Y.J.Contam.Hydrol.1998,33,313.doi: 10.1016/S0169-7722(98)00075-8

    (3)Kikuchi,Y.;Qian,Q.;Machida,M.;Tatsumoto,H.Carbon 2006,44,195.doi:10.1016/j.carbon.2005.07.040

    (4)Gardea-Torresdey,J.;Hejazi,M.;Tiemann,K.;Parsons,J.G.; Duarte-Gardea,M.;Henning,J.J.Hazard.Mater.B 2002,91, 95.doi:10.1016/S0304-3894(01)00363-6

    (5)Dabrowski,A.Adv.Colloid Interface 2001,93,135.doi: 10.1016/S0001-8686(00)00082-8

    (6)Lagadic,I.L.;Mitchell,M.K.;Payne,B.D.Environ.Sci. Technol.2001,35,984.doi:10.1021/es001526m

    (7)Machida,M.;Yamazaki,R.;Aikawa,M.;Tatsumoto,H.Sep. Purif.Technol.2005,46,88.doi:10.1016/j.seppur.2005.04.015

    (8)Machida,M.;Mochimaru,T.;Tatsumoto,H.Carbon 2006,44, 2681.doi:10.1016/j.carbon.2006.04.003

    (9)Chae,H.K.;Siberio-Pérez,D.Y.;Kim,J.Nature 2004,427, 523.doi:10.1038/nature02311

    (10)Yang,Z.;Xia,Y.;Mokaya,R.J.Am.Chem.Soc.2007,129, 1673.doi:10.1021/ja067149g

    (11)Wu,W.Q.;Yang,Y.;Zhou,H.H.;Ye,T.T.;Huang,Z.Y.;Liu, R.;Kuang,Y.F.Water Air Soil Pollut.2013,224,1372.doi: 10.1007/s11270-012-1372-5

    (12)Shim,J.W.;Park,S.J.;Ryu,S.K.Carbon 2001,39,1635. doi:10.1016/S0008-6223(00)00290-6

    (13)Machida,M.;Aikawa,M.;Tatsumoto,H.J.Hazard.Mater.B 2005,120,271.doi:10.1016/j.jhazmat.2004.11.029

    (14)Mohan,D.;Singh,K.P.Water Res.2002,36,2304.doi: 10.1016/S0043-1354(01)00447-X

    (15)Leyva-Ramos,R.;Bernal-Jacome,L.A.;Acosta-Rodriguez,I. Sep.Purif.Technol.2005,45,41.doi:10.1016/j. seppur.2005.02.005

    (16)Li,Y.H.;Ding,J.;Luan,Z.;Di,Z.;Zhu,Y.;Xu,C.;Wu,D.; Wei,B.Carbon 2003,41,2787.doi:10.1016/S0008-6223(03) 00392-0

    (17)Allen,M.J.;Tung,V.C.;Kaner,R.B.Chem.Rev.2010,110, 132.doi:10.1021/cr900070d

    (18)Sridhar,V.;Jeon,J.H.;Oh,I.K.Carbon 2010,48,2953.doi: 10.1016/j.carbon.2010.04.034

    (19)Novoselov,K.S.;Geim,A.K.;Morozov S.V.Science 2004, 306,666.doi:10.1126/science.1102896

    (20)Liang,M.;Zhi,L.J.Mater.Chem.2009,19,5871.doi: 10.1039/b901551e

    (21)Madadrang,C.J.;Kim,H.Y.;Gao,G.H.;Wang,N.;Zhu,J.; Feng,H.;Matthew Gorring,M.;Kasner,M.L.;Hou,S.F.ACS Appl.Mater.Interfaces 2012,4,1186.doi:10.1021/am201645g

    (22)Yang,S.;Li,L.Y.;Pei,Z.G.;Li,C.M.;Shan,X.Q.;Wen,B.; Zhang,S.Z.;Zheng,L.R.;Zhang,J.;Xie,Y.N.;Huang,R.X. Carbon 2014,75,227.doi:10.1016/j.carbon.2014.03.057

    (23)Tan,P.;Sun,J.;Hu,Y.Y.;Fang,Z.;Bi,Q.;Chen,Y.C.;Cheng, J.H.J.Hazard.Mater.2015,297,251.doi:10.1016/j. jhazmat.2015.04.068

    (24)Schniepp,H.C.;Li,J.L.;McAllister,M.J.;Sai,H.;Herrera-Alonso,M.;Adamson,D.H.;Prud′homme,R.K.;Car,R.; Saville,D.A.;Aksay,I.A.J.Phys.Chem.B 2006,110,8535.

    (25)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80, 1339.doi:10.1021/ja01539a017

    (26)Wu,Z.S.;Ren,W.;Gao,L.;Liu,B.;Jiang,C.;Cheng,H.M. Carbon 2009,47,493.doi:10.1016/j.carbon.2008.10.031

    (27)Yuan,W.H.;Li,B.Q.;Li,L.Acta Phys.-Chim.Sin.2011,27, 2244.[袁文輝,李保慶,李莉.物理化學(xué)學(xué)報,2011,27, 2244.]doi:10.3866/PKU.WHXB20110838

    (28)Yuan,W.H.;Li,B.Q.;Li,L.Appl.Surf.Sci.2011,257,10183. doi:10.1016/j.apsusc.2011.07.015

    (29)Qian,J.S.;Jin,H.Y.;Chen,B.L.;Lin,M.;Lu,W.;Tang,W. M.;Xiong,W.;Chan,H.L.W.;Lau,S.P.;Yuan,J.K.Angew. Chem.Int.Edit.2015,54,6800.doi:10.1002/anie.201501261

    (30)Moreno-Castilla,C.;López-Ramón,M.V.;Carrasco-Marín,F. Carbon 2000,38,1995.doi:10.1016/S0008-6223(00)00048-8

    (31)Scherrer,P.G?ttinger Nachrichten 1918,2,98.

    (32)Pan,D.;Wang,S.;Zhao,B.;Wu,M.;Zhang,H.;Wang,Y.; Jiao,Z.Chem.Mater.2009,21,3136.doi:10.1021/cm900395k

    (33)Szabó,T.;Berkesi,O.;Dékány,I.Carbon 2005,43,3186.doi: 10.1016/j.carbon.2005.07.013

    (34)Wang,G.X.;Yang,J.;Park,J.;Gou,X.L.;Wang,B.;Liu,H.; Yao,J.J.Phys.Chem.C 2008,112,8192.doi:10.1021/ jp710931h

    (35)Guo,P.;Song,H.;Chen,X.Electrochem.Commun.2009,11, 1320.doi:10.1016/j.elecom.2009.04.036

    (36)Paek,S.M.;Yoo,E.J.;Honma,I.Nano Lett.2009,9,72.doi: 10.1021/nl802484w

    (37)Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov,K.S.; Booth,T.J.;Roth,S.Nature 2007,446,60.doi:10.1038/ nature05545

    (38)Jung,I.;Pelton,M.;Piner,R.;Dikin,D.A.;Stankovich,S.; Watcharotone,S.Nano Lett.2007,7,3569.doi:10.1021/ nl0714177

    (39)Pimenta,M.A.;Dresselhaus,G.;Dresselhaus,M.S.;Can?ado, L.G.;Jorio,A.;Saito,R.Phys.Chem.Chem.Phys.2007,9, 1276.doi:10.1039/b613962k

    (40)Liu,M.X.;Gan,L.H.;Xiong,W.;Zhao,F.Q.;Fan,X.Z.; Zhu,D.Z.;Xu,Z.J.;Hao,Z.X.;Chen,L.W.Energy Fuel. 2013,27,1168.doi:10.1021/ef302028j

    (41)Liu,M.X.;Gan,L.H.;Xiong,W.;Xu,Z.J.;Zhu,D.Z.;Chen,L.W.J.Mater.Chem.A 2014,2,2555.

    (42)Stankovich,S.;Dikin,D.A.;Piner,R.D.;Kohlhaas,K.A.; Kleinhammes,A.;Jia,Y.;Wu,Y.;Nguyen,S.T.;Ruoff,R.S. Carbon 2007,45,1558.doi:10.1016/j.carbon.2007.02.034

    (43)Stafiej,A.;Pyrzynska,K.Sep.Purif.Technol.2007,58,49. doi:10.1016/j.seppur.2007.07.008

    (44)Deng,X.J.;Lv,L.L.;Li,H.W.;Luo,F.J.Hazard.Mater. 2010,183,923.doi:10.1016/j.jhazmat.2010.07.117

    (45)Kabbashi,N.A.;Atieh,M.A.;Al-Mamun,A.;Mirghami,M. E.;Alam,M.D.Z.;Yahya,N.J.Environ.Sci.2009,21,539. doi:10.1016/S1001-0742(08)62305-0

    (46)Li,Y.H.;Ding,J.;Luan,Z.;Di,Z.;Zhu,Y.;Xu,C.;Wu,D.; Wei,B.Carbon 2003,41,2787.doi:10.1016/S0008-6223(03) 00392-0

    (47)Wang,H.J.;Zhou,A.L.;Peng,F.;Yu,H.;Chen,L.F.Mater. Sci.Eng.A 2007,466,201.doi:10.1016/j.msea.2007.02.097

    (48)Li,Y.H.;Wang,S.;Luan,Z.;Ding,J.;Xu,C.;Wu,D.Carbon 2003,41,1057.doi:10.1016/S0008-6223(02)00440-2

    (49)Wang,J.;Chen,B.L.Chem.Eng.J.2015,281,379.doi: 10.1016/j.cej.2015.06.102

    (50)Sanchez-Polo,M.;Rivera-Utrilla,J.Environ.Sci.Technol. 2002,36,3850.doi:10.1021/es0255610

    (51)Rivera-Utrilla,J.;Sanchez-Polo,M.Water.Res.2003,37, 3335.doi:10.1016/S0043-1354(03)00177-5

    (52)Yushin,G.;Dash,R.;Jagiello,J.;Fischer,J.E.;Gogotsi,Y. Adv.Funct.Mater.2006,16,2288.doi:10.1002/ adfm.200500830

    Adsorption of Pb2+and Cd2+on Graphene Nanosheets Prepared Using Thermal Exfoliation

    LI Bao-Qing1YUAN Wen-Hui2,*LI Li3
    (1The Key Laboratory of Heavy Metal Pollution Prevention and Soil Remediation,Guangdong Vocational College of Environmental Protection Engineering,Foshan 528216,Guangdong Province,P.R.China;2School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510640,P.R.China;3College of Environmental Science and Engineering, South China University of Technology,Guangzhou 510640,P.R.China)

    Graphene nanosheets(GNSs)were prepared using oxidation of graphite powder followed by rapid thermal exfoliation under a nitrogen atmosphere.The as-prepared samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy (HRTEM),Raman spectroscopy,and Fourier transform infrared(FT-IR)spectroscopy.The specific surface area was determined using the nitrogen adsorption and desorption method.These analytic techniques revealed that the samples possessed a curled morphology consisting of a thin paper-like structure,which was made of a few graphite layers(approximately four layers)and a large specific surface area(628.5 m2?g-1).The effects of pH, adsorption time,temperature and initial concentration of Pb2+and Cd2+on adsorption onto the GNSs were investigated.The maximum adsorption capacities of GNSs for Pb2+and Cd2+ions were approximately 460.20 and 72.39 mg?g-1,respectively.These results indicate that the resulting high-quality GNSs can be used as an attractive adsorptive material for removing Pb2+and Cd2+from water.

    Graphene;Thermal exfoliation;Characterization;Adsorption;Heavy metal ion

    December 22,2015;Revised:February 17,2016;Published on Web:February 18,2016.*Corresponding author.Email:cewhyuan@scut.edu.cn;Tel:+86-20-87111887. The project was supported by the Presidential Foundation of Guangdong Vocational College of Environmental Protection Engineering in 2013,China (KY201303001)and National Natural Science Foundation of China(20976057).

    O643

    10.3866/PKU.WHXB201602182

    廣東環(huán)境保護工程職業(yè)學(xué)院2013年院長基金及國家自然科學(xué)基金(20976057)資助項目

    猜你喜歡
    華南理工大學(xué)化工學(xué)院石墨
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    石墨系升溫球的實踐與應(yīng)用
    昆鋼科技(2022年1期)2022-04-19 11:36:14
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    本期作者
    世界建筑(2018年5期)2018-05-25 09:51:38
    石墨烯的健康路
    當機器人遇上人工智能——記華南理工大學(xué)自動化科學(xué)與工程學(xué)院副教授張智軍
    《化工學(xué)報》贊助單位
    焦唯、王琪斐美術(shù)作品
    王雁、謝盼盼藝術(shù)作品
    国产xxxxx性猛交| 黑人巨大精品欧美一区二区蜜桃| 国产无遮挡羞羞视频在线观看| 曰老女人黄片| 不卡av一区二区三区| 卡戴珊不雅视频在线播放| av网站在线播放免费| 久久精品国产亚洲av涩爱| 亚洲精品aⅴ在线观看| 国产成人精品在线电影| 国产免费又黄又爽又色| 人人澡人人妻人| 91国产中文字幕| 在线观看免费日韩欧美大片| 日韩人妻精品一区2区三区| 亚洲七黄色美女视频| 精品免费久久久久久久清纯 | 久久午夜综合久久蜜桃| 国产97色在线日韩免费| 成人国产麻豆网| 中文天堂在线官网| 亚洲精品aⅴ在线观看| 欧美xxⅹ黑人| 满18在线观看网站| 久久免费观看电影| 亚洲国产欧美一区二区综合| 国产伦人伦偷精品视频| 亚洲人成电影观看| 性少妇av在线| 男女高潮啪啪啪动态图| 色播在线永久视频| 777久久人妻少妇嫩草av网站| 性色av一级| 日本91视频免费播放| 国产午夜精品一二区理论片| 国产毛片在线视频| 久久精品aⅴ一区二区三区四区| 国产又色又爽无遮挡免| 亚洲国产看品久久| 国产xxxxx性猛交| 两个人免费观看高清视频| 尾随美女入室| 亚洲七黄色美女视频| 伊人亚洲综合成人网| 在线观看免费日韩欧美大片| 亚洲一卡2卡3卡4卡5卡精品中文| 成人黄色视频免费在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 日本一区二区免费在线视频| 人人妻人人澡人人看| 菩萨蛮人人尽说江南好唐韦庄| 久久久久视频综合| 777米奇影视久久| 国产人伦9x9x在线观看| 我的亚洲天堂| 观看美女的网站| 久久久久久久久免费视频了| 久久久久久久精品精品| 国产一区二区 视频在线| 91老司机精品| 亚洲精品久久午夜乱码| 最近中文字幕高清免费大全6| 黄色毛片三级朝国网站| av不卡在线播放| av天堂久久9| 校园人妻丝袜中文字幕| 亚洲精品久久午夜乱码| 久久国产亚洲av麻豆专区| av国产久精品久网站免费入址| 亚洲四区av| 亚洲欧美中文字幕日韩二区| 中文乱码字字幕精品一区二区三区| 在现免费观看毛片| 亚洲精品日本国产第一区| 亚洲欧美一区二区三区久久| 亚洲国产最新在线播放| 精品卡一卡二卡四卡免费| 国语对白做爰xxxⅹ性视频网站| 大片免费播放器 马上看| 中文字幕av电影在线播放| 看免费av毛片| 久久青草综合色| 青青草视频在线视频观看| 男女国产视频网站| 91老司机精品| 嫩草影院入口| 9191精品国产免费久久| 亚洲成人手机| 成人国产麻豆网| 日本wwww免费看| 菩萨蛮人人尽说江南好唐韦庄| 一边亲一边摸免费视频| 精品午夜福利在线看| 少妇的丰满在线观看| 免费久久久久久久精品成人欧美视频| 国产精品免费大片| 成人三级做爰电影| 免费av中文字幕在线| 欧美少妇被猛烈插入视频| 国产精品三级大全| 久久久久精品久久久久真实原创| 精品久久久久久电影网| 欧美日韩一级在线毛片| 菩萨蛮人人尽说江南好唐韦庄| 丝袜人妻中文字幕| 在线观看免费日韩欧美大片| 中文字幕人妻熟女乱码| 久久精品久久久久久噜噜老黄| 国产97色在线日韩免费| 大码成人一级视频| 七月丁香在线播放| 亚洲国产欧美在线一区| 欧美另类一区| 国产精品女同一区二区软件| 久久青草综合色| 啦啦啦中文免费视频观看日本| 好男人视频免费观看在线| 久久97久久精品| 在现免费观看毛片| 青春草国产在线视频| 18禁观看日本| tube8黄色片| 少妇精品久久久久久久| 免费在线观看完整版高清| 欧美人与善性xxx| 免费观看人在逋| 伊人亚洲综合成人网| 两性夫妻黄色片| 成人国语在线视频| 国产人伦9x9x在线观看| 欧美日韩国产mv在线观看视频| 老司机亚洲免费影院| 麻豆乱淫一区二区| 一区二区日韩欧美中文字幕| 人妻一区二区av| 一级毛片黄色毛片免费观看视频| 亚洲精品,欧美精品| 日本vs欧美在线观看视频| 免费av中文字幕在线| 久久国产亚洲av麻豆专区| 亚洲五月色婷婷综合| 老司机靠b影院| 午夜影院在线不卡| 亚洲av日韩精品久久久久久密 | 青春草国产在线视频| 国产在线一区二区三区精| 国产免费又黄又爽又色| 午夜免费男女啪啪视频观看| 欧美最新免费一区二区三区| 男女边摸边吃奶| 国产国语露脸激情在线看| 啦啦啦在线观看免费高清www| 久久影院123| 亚洲国产欧美网| 激情视频va一区二区三区| 亚洲欧美色中文字幕在线| 看免费成人av毛片| 日韩人妻精品一区2区三区| av又黄又爽大尺度在线免费看| av天堂久久9| 一边摸一边抽搐一进一出视频| 亚洲av综合色区一区| 天天影视国产精品| 国产探花极品一区二区| 午夜福利免费观看在线| 最新的欧美精品一区二区| 亚洲av男天堂| 天美传媒精品一区二区| 国产日韩欧美视频二区| 飞空精品影院首页| 免费黄频网站在线观看国产| 免费看不卡的av| 你懂的网址亚洲精品在线观看| 午夜日本视频在线| 极品人妻少妇av视频| 一级毛片电影观看| 一二三四中文在线观看免费高清| 水蜜桃什么品种好| 久久精品国产a三级三级三级| 蜜桃在线观看..| 一级毛片黄色毛片免费观看视频| 在线观看免费日韩欧美大片| 可以免费在线观看a视频的电影网站 | 国产精品 欧美亚洲| 久久精品久久精品一区二区三区| 在现免费观看毛片| 99久久人妻综合| 免费在线观看完整版高清| 欧美精品一区二区大全| 精品国产乱码久久久久久小说| 精品一区在线观看国产| 日本欧美国产在线视频| 欧美日韩亚洲高清精品| av视频免费观看在线观看| 黄频高清免费视频| 亚洲国产av新网站| 国产亚洲av高清不卡| 麻豆乱淫一区二区| 少妇精品久久久久久久| 香蕉丝袜av| 十分钟在线观看高清视频www| 一区二区三区四区激情视频| 三上悠亚av全集在线观看| 精品酒店卫生间| 色婷婷av一区二区三区视频| 丁香六月欧美| 免费黄色在线免费观看| 新久久久久国产一级毛片| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 国产成人a∨麻豆精品| 丝瓜视频免费看黄片| 黑丝袜美女国产一区| 亚洲欧美成人综合另类久久久| 日本爱情动作片www.在线观看| 婷婷色av中文字幕| 19禁男女啪啪无遮挡网站| 美女主播在线视频| √禁漫天堂资源中文www| 一级a爱视频在线免费观看| 久久婷婷青草| av网站免费在线观看视频| 日本猛色少妇xxxxx猛交久久| 下体分泌物呈黄色| 久久精品熟女亚洲av麻豆精品| 日韩av在线免费看完整版不卡| 国产免费一区二区三区四区乱码| 不卡视频在线观看欧美| 丰满乱子伦码专区| 国产精品久久久av美女十八| 视频区图区小说| 又黄又粗又硬又大视频| 亚洲在久久综合| 狂野欧美激情性xxxx| 国产日韩欧美视频二区| 满18在线观看网站| 亚洲精品国产av成人精品| 人人妻人人爽人人添夜夜欢视频| 国产精品免费大片| 丝袜喷水一区| 又大又黄又爽视频免费| 亚洲av综合色区一区| 午夜福利网站1000一区二区三区| 大片免费播放器 马上看| 国产又爽黄色视频| 久久这里只有精品19| 免费黄色在线免费观看| 天天操日日干夜夜撸| 啦啦啦视频在线资源免费观看| 久久狼人影院| 国产一区亚洲一区在线观看| av在线app专区| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 欧美黑人欧美精品刺激| 中文字幕最新亚洲高清| 美女中出高潮动态图| 亚洲美女视频黄频| 在线亚洲精品国产二区图片欧美| 亚洲精品视频女| 亚洲自偷自拍图片 自拍| 黄色一级大片看看| 9色porny在线观看| 亚洲欧美成人精品一区二区| 夫妻午夜视频| 亚洲第一av免费看| 亚洲av男天堂| 国产乱人偷精品视频| 午夜av观看不卡| 中文字幕精品免费在线观看视频| 国产免费现黄频在线看| 久久青草综合色| 国产午夜精品一二区理论片| 午夜久久久在线观看| videos熟女内射| 如日韩欧美国产精品一区二区三区| 国产片特级美女逼逼视频| 成人亚洲欧美一区二区av| 久久99热这里只频精品6学生| 国产av一区二区精品久久| 日日撸夜夜添| 亚洲精品中文字幕在线视频| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 午夜福利网站1000一区二区三区| 欧美 亚洲 国产 日韩一| 成人亚洲精品一区在线观看| 色视频在线一区二区三区| 午夜福利一区二区在线看| 女人精品久久久久毛片| 国产深夜福利视频在线观看| 国产国语露脸激情在线看| 在线观看www视频免费| 母亲3免费完整高清在线观看| 一二三四中文在线观看免费高清| 啦啦啦 在线观看视频| av天堂久久9| 在线观看免费视频网站a站| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 又大又爽又粗| 亚洲欧美精品综合一区二区三区| 香蕉丝袜av| 热re99久久国产66热| 国产成人午夜福利电影在线观看| 亚洲精品国产一区二区精华液| 久久久国产欧美日韩av| 欧美人与性动交α欧美精品济南到| 午夜91福利影院| 黄网站色视频无遮挡免费观看| 亚洲国产最新在线播放| 在线观看人妻少妇| 国产成人精品久久二区二区91 | 99久久99久久久精品蜜桃| 一区福利在线观看| 青草久久国产| 亚洲自偷自拍图片 自拍| 午夜福利,免费看| 亚洲精品视频女| 久久精品国产综合久久久| 日本91视频免费播放| 欧美日韩一区二区视频在线观看视频在线| 久久久精品94久久精品| 亚洲精品国产av蜜桃| 午夜福利在线免费观看网站| 亚洲精品自拍成人| 9色porny在线观看| 超色免费av| 亚洲美女视频黄频| av国产久精品久网站免费入址| 少妇 在线观看| 亚洲国产日韩一区二区| 18禁裸乳无遮挡动漫免费视频| 一二三四在线观看免费中文在| 在线天堂中文资源库| 大码成人一级视频| 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 国产一区二区 视频在线| 97在线人人人人妻| 丝袜人妻中文字幕| 久久精品国产综合久久久| 国产午夜精品一二区理论片| 日韩不卡一区二区三区视频在线| 国产片特级美女逼逼视频| 老汉色av国产亚洲站长工具| 色吧在线观看| 啦啦啦啦在线视频资源| 免费观看人在逋| 在线观看免费午夜福利视频| 国产无遮挡羞羞视频在线观看| 18在线观看网站| 最近的中文字幕免费完整| 久久久久久久久久久久大奶| 侵犯人妻中文字幕一二三四区| 男女下面插进去视频免费观看| 亚洲四区av| 免费女性裸体啪啪无遮挡网站| 一级毛片我不卡| 最近中文字幕2019免费版| 国产1区2区3区精品| 国产成人一区二区在线| 制服人妻中文乱码| 熟女av电影| 一级毛片电影观看| 亚洲精品一二三| 亚洲精品国产一区二区精华液| 极品少妇高潮喷水抽搐| av片东京热男人的天堂| 国产野战对白在线观看| 在线观看三级黄色| 精品人妻在线不人妻| 欧美国产精品一级二级三级| 18禁国产床啪视频网站| 日本av手机在线免费观看| 十八禁网站网址无遮挡| 91精品国产国语对白视频| 亚洲中文av在线| 男男h啪啪无遮挡| 成年人免费黄色播放视频| 中文字幕最新亚洲高清| 亚洲国产精品999| 国产精品一区二区在线不卡| 午夜福利,免费看| 天堂8中文在线网| 亚洲第一青青草原| 久久97久久精品| 岛国毛片在线播放| 9色porny在线观看| 国产成人精品福利久久| 亚洲国产最新在线播放| 男女免费视频国产| 侵犯人妻中文字幕一二三四区| 最新的欧美精品一区二区| 激情视频va一区二区三区| 香蕉国产在线看| 激情视频va一区二区三区| 欧美精品一区二区免费开放| 999久久久国产精品视频| 一区二区av电影网| 日韩制服丝袜自拍偷拍| 亚洲成国产人片在线观看| 亚洲第一av免费看| 男女高潮啪啪啪动态图| 亚洲久久久国产精品| 人人妻人人添人人爽欧美一区卜| 熟女av电影| 天美传媒精品一区二区| 午夜福利在线免费观看网站| 久久精品亚洲熟妇少妇任你| 1024视频免费在线观看| 无限看片的www在线观看| 满18在线观看网站| 一边摸一边做爽爽视频免费| 哪个播放器可以免费观看大片| 熟妇人妻不卡中文字幕| 国产成人免费观看mmmm| avwww免费| 国产视频首页在线观看| 99re6热这里在线精品视频| 啦啦啦视频在线资源免费观看| 午夜福利在线免费观看网站| 国产精品嫩草影院av在线观看| 久久久久久久久久久久大奶| 另类精品久久| 精品久久久久久电影网| tube8黄色片| 美女扒开内裤让男人捅视频| 人妻一区二区av| 亚洲精品av麻豆狂野| 国产高清不卡午夜福利| av女优亚洲男人天堂| 最新的欧美精品一区二区| 国产精品久久久久久精品古装| av免费观看日本| 亚洲图色成人| 久久久国产一区二区| 蜜桃在线观看..| 久久99热这里只频精品6学生| 国产免费现黄频在线看| 五月天丁香电影| 1024视频免费在线观看| 晚上一个人看的免费电影| 精品一区二区免费观看| 搡老岳熟女国产| 久久久精品94久久精品| 看免费成人av毛片| 国产精品久久久久成人av| 纵有疾风起免费观看全集完整版| 激情视频va一区二区三区| 久久精品久久久久久噜噜老黄| 丁香六月天网| 久久久久精品国产欧美久久久 | av女优亚洲男人天堂| 久久99精品国语久久久| 亚洲av成人不卡在线观看播放网 | 精品国产乱码久久久久久小说| 国产日韩欧美亚洲二区| 黑人猛操日本美女一级片| 精品少妇黑人巨大在线播放| 99久久99久久久精品蜜桃| 国产成人精品无人区| 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 国产深夜福利视频在线观看| 亚洲欧美成人综合另类久久久| 欧美精品高潮呻吟av久久| 国产片内射在线| 看免费成人av毛片| 久久精品亚洲熟妇少妇任你| 丝袜人妻中文字幕| 老熟女久久久| 国产亚洲午夜精品一区二区久久| 欧美人与善性xxx| 午夜91福利影院| 美女大奶头黄色视频| 蜜桃国产av成人99| 亚洲精品乱久久久久久| 宅男免费午夜| av国产久精品久网站免费入址| 交换朋友夫妻互换小说| 老司机靠b影院| 亚洲国产av新网站| 久久狼人影院| 欧美中文综合在线视频| 人妻 亚洲 视频| 久久ye,这里只有精品| 19禁男女啪啪无遮挡网站| 日本爱情动作片www.在线观看| 亚洲成av片中文字幕在线观看| 国产成人免费无遮挡视频| 你懂的网址亚洲精品在线观看| 亚洲精品第二区| bbb黄色大片| 日韩 欧美 亚洲 中文字幕| 久久久久久久久免费视频了| 国产有黄有色有爽视频| 国产乱来视频区| 日韩精品有码人妻一区| 国产日韩欧美在线精品| 久久热在线av| 国产熟女欧美一区二区| 亚洲精品成人av观看孕妇| 亚洲欧美成人综合另类久久久| 男女无遮挡免费网站观看| 欧美久久黑人一区二区| 一级毛片黄色毛片免费观看视频| 亚洲欧美激情在线| 亚洲av男天堂| 欧美老熟妇乱子伦牲交| 一级毛片我不卡| 日韩大码丰满熟妇| 涩涩av久久男人的天堂| 亚洲av电影在线观看一区二区三区| 大香蕉久久网| 女性被躁到高潮视频| av在线观看视频网站免费| 黑人巨大精品欧美一区二区蜜桃| 欧美国产精品一级二级三级| 90打野战视频偷拍视频| 水蜜桃什么品种好| 午夜老司机福利片| 亚洲人成网站在线观看播放| 精品卡一卡二卡四卡免费| 男女边摸边吃奶| 亚洲av成人不卡在线观看播放网 | 大码成人一级视频| 老汉色av国产亚洲站长工具| 国产精品嫩草影院av在线观看| 国产 一区精品| 亚洲第一av免费看| 亚洲 欧美一区二区三区| 男女下面插进去视频免费观看| 女人被躁到高潮嗷嗷叫费观| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av涩爱| 日本欧美国产在线视频| av免费观看日本| 亚洲国产看品久久| 国产成人免费无遮挡视频| 母亲3免费完整高清在线观看| 999久久久国产精品视频| 亚洲欧洲日产国产| 伦理电影大哥的女人| 水蜜桃什么品种好| 久久这里只有精品19| 亚洲视频免费观看视频| 亚洲综合精品二区| 在线观看免费日韩欧美大片| 国产一区有黄有色的免费视频| 午夜免费鲁丝| 91精品伊人久久大香线蕉| 老鸭窝网址在线观看| 亚洲图色成人| 丰满迷人的少妇在线观看| 色网站视频免费| 一级黄片播放器| 色吧在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲精品久久成人aⅴ小说| 美女福利国产在线| 最新的欧美精品一区二区| 在线观看人妻少妇| 亚洲精品久久午夜乱码| 欧美精品人与动牲交sv欧美| 人人妻,人人澡人人爽秒播 | 日韩欧美精品免费久久| 超色免费av| 搡老岳熟女国产| 亚洲精品av麻豆狂野| 久久天躁狠狠躁夜夜2o2o | 国产伦人伦偷精品视频| 亚洲国产欧美日韩在线播放| 午夜久久久在线观看| 免费高清在线观看日韩| 啦啦啦啦在线视频资源| 久久久国产一区二区| 色94色欧美一区二区| 亚洲熟女毛片儿| 最新在线观看一区二区三区 | 免费女性裸体啪啪无遮挡网站| 飞空精品影院首页| 久久久精品94久久精品| 欧美激情高清一区二区三区 | 日韩中文字幕视频在线看片| 亚洲在久久综合| 水蜜桃什么品种好| 国产97色在线日韩免费| 不卡视频在线观看欧美| 九色亚洲精品在线播放| 性少妇av在线| 91精品三级在线观看| 777久久人妻少妇嫩草av网站| 亚洲美女视频黄频| 人妻一区二区av| 欧美日韩av久久| 99久久精品国产亚洲精品| 亚洲精品美女久久久久99蜜臀 | 亚洲精华国产精华液的使用体验| 欧美 亚洲 国产 日韩一| 日本一区二区免费在线视频| 国产一卡二卡三卡精品 | 久久国产精品大桥未久av| 超碰97精品在线观看| 亚洲欧洲日产国产| 一级毛片黄色毛片免费观看视频| 久久久久久人人人人人| 一级毛片电影观看| 黄频高清免费视频| 九九爱精品视频在线观看| av天堂久久9| 国产成人精品久久二区二区91 | 69精品国产乱码久久久| 两个人免费观看高清视频| 我要看黄色一级片免费的|