• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于宏觀金屬輔助化學刻蝕制備硅納米線的研究

    2016-09-05 13:04:14李志勝胡慧東宋維力華北電力大學可再生能源學院新能源電力系統(tǒng)國家重點實驗室北京006北京師范大學能量轉換與存儲材料北京市重點實驗室北京00875北京科技大學新材料技術研究院北京0008
    物理化學學報 2016年4期
    關鍵詞:北京科技大學原電池納米線

    劉 琳 李志勝 胡慧東 宋維力(華北電力大學可再生能源學院,新能源電力系統(tǒng)國家重點實驗室,北京006;北京師范大學,能量轉換與存儲材料北京市重點實驗室,北京00875;北京科技大學新材料技術研究院,北京0008)

    基于宏觀金屬輔助化學刻蝕制備硅納米線的研究

    劉琳1,2,*李志勝1胡慧東1宋維力3
    (1華北電力大學可再生能源學院,新能源電力系統(tǒng)國家重點實驗室,北京102206;2北京師范大學,能量轉換與存儲材料北京市重點實驗室,北京100875;3北京科技大學新材料技術研究院,北京100083)

    分別利用鍍銀的硅襯底和鉑絲電極作為原電池反應中的陰極和陽極,基于金屬輔助化學刻蝕采用宏觀原電池的方法制備硅納米線,深入研究了該法制備硅納米線陣列的機理。通過改變電連接、鍍銀、刻蝕參數(shù)、硅襯底和光照等實驗條件,系統(tǒng)地研究了所得硅納米線形貌與其對應短路電流的關系,實驗發(fā)現(xiàn)短路電流與硅納米線長度有一定的對應關系。文章中所提出的模型旨在從根本上解決金屬輔助化學刻蝕制備硅納米線的機理。最后對這種方法所具有的潛在應用價值進行了展望和討論。

    半導體;微結構;電化學;硅納米線;金屬刻蝕

    [Article]

    www.whxb.pku.edu.cn

    In principle,the fabrication of Si via MACE process is intrinsically microscopic galvanic corrosion,electrons flow from the Si anodes to the noble metal cathodes with the presence of an aqueous solution containing oxidant.In the recent work,many factors and improvements have been considered in this process18-21,but unfortunately,real-time corrosion current that is significant to understand the fundamental of the process which was absent in the strategies above.

    On the other hand,the macro-galvanic cells,which could be formed when a noble metal is short-circuited to Si in the presence of an oxidant in the hydrofluoric acid(HF)solution,were firstly demonstrated by Kelly and co-workers22-26.Currently,Liu et al.14have fabricated SiNWs by combining the macro-galvanic cell with micro-galvanic cell via the MACE process,and investigated the relationship between the circuit current and SiNW length by changing the size of the cathode area.It is noteworthy that fabrication of SiNWs could be realized by the MACE using dissolved oxygen as the oxidizing agent with the presence of HF solution.

    The follow-up work based on the combination of traditional MACE and anodic etching has been explored for achieving modified SiNWs27-31,and it is noted that an external electrical bias (current or voltage source)is needed in such process.Compared to the traditional MACE,the holes for accelerating etching in such combined method are provided by the external bias,which is greater than the contribution from reduction of the added oxidants. Usually,this combined method has been widely used for studying MACE mechanism or producing porous SiNWs.Hence,it should be emphasized that the combined method is different from the MACE aforementioned,where external electrical bias is not needed and the holes are solely provided by the reduction of the oxidants.The use of cathode materials in the MACE is known to fully utilize the oxygen in the etchant.

    Up to date,there are still many phenomena and mechanisms that have not been well understood in the nanowire fabrication. For such purpose,here we utilize the MACE to fabricate SiNWs in the HF solution and take insight into the formation of SiNW arrays.In the setup of MACE,the catalytic Ag coating and Pt electrode are specifically employed as the cathode.Effects of electrical connection,Ag coatings,etching conditions,Si substrates,and light irradiations on the SiNWs are intensively studied based on the SiNW morphologies and related current densities recorded in the preparation.The results indicate that the control of the holes in the Si substrates via changing the conditions is the critical key in the kinetics of forming SiNWs.The corresponding mode for understanding the mechanism in the MACE has been proposed and discussed.

    2 Experimental

    2.1Materials

    As listed in Table 1,four types of Si wafers,Si(100)wafers(ptype,boron-doped,2.0-8.0 Ω?cm),Si(100)wafers(p-type,borondoped,0.5-0.8 Ω?cm),Si(100)wafers(p-type,boron-doped, 0.003-0.009 Ω?cm),Si(100)wafers(n-type,phosphor-doped, 0.002-0.006 Ω?cm),were commercially available and used as the starting materials.HF(49%),H2O2(30%),H2SO4(98%),AgNO3(>99.9%),CH3COCH3(AR)and EtOH(AR)were purchased from Sigma-Aldrich.

    2.2Nanowire synthesis

    In a typical synthesis,Si substrates of 4 cm2area were firstly cleaned with acetone,ethanol and deionized water via ultrasonic condition,followed by being immersed into a boiling solution of H2SO4-H2O2(volume ratio 3:1)for 15 min.The Si sheets were rinsed with deionized(DI)water.The substrates were then dipped into an aqueous solution of 5%HF for a few tens of seconds before use.The as-cleaned Si pieces were coated with Ag nanoparticle films by immersing into the mixing solution of HF and AgNO3.The back side of the prepared Si substrates with the Ag nanoparticle films that were connected with copper plates was scratched with a eutectic InGa alloy to establish good electrical contact.The silicon wafer was attached to the cell with an O-ring for a window,and a part of(1 cm2)the test specimen was exposed to the solution.The Pt electrode was electrically connected to the Si substrate directly.Prior to each experiment,the cell body and the Pt electrode were carefully cleaned.After etching,the surface of Si was rinsed with deionized water for several times to remove the residual fluoride ions,followed by drying in the dark.All experiments were carried out at room temperature.

    2.3Characterization

    Surface morphology and microstructure of the as-prepared SiNWs were examined on a field emission scanning electron microscopy(SEM,HITACHI S-4800).Electrochemical data in the galvanic corrosion studies were obtained on the Zennium IM6 (Zahner)electrochemical workstation.In the three-electrode system,silicon,Pt,and silver chloride electrode(RHE)were used as the working electrode,counter electrode,and reference electrode,respectively.

    Table 1 Silicon wafers used in this work

    3 Results and discussion

    3.1Mechanisms of the etching

    The experimental setup is illustrated in Fig.1.Upon immersing into HF and AgNO3for Ag coating,the as-prepared Ag-coated Si substrate was exposed to the aqueous HF solution and meanwhile the other side was connected to the Pt electrode,as shown in Fig.1 (a).It is noted that the area of the Pt electrode immersed in the etchant remained exactly the same throughout all the experimentsin this work.In the reference setup,no electrical connection was applied between the Pt electrode and Si substrate,as shown in Fig.1(b).SEM images of the as-prepared SiNWs under different conditions were given in Fig.1(c,d),exhibiting that the electrical connection between the Pt electrode and Si substrate essentially promoted the growth of SiNWs.According to the well-recognized mechanism,it is suggested that redox reactions of the etching should follow Eqs.(1),(2)14

    Fig.1 (a,b)Schemes of the galvanic cell for preparing SiNWs and(c,d)SEM images of the as-prepared SiNWs

    Cathode reactions:

    According to Eq.(1),electrical connection between the Pt electrode and Si substrate in term of increasing reaction area would substantially enhance electron consumption on the cathode (Fig.1(a)),which in turn promotes the kinetics for Si etching.As a consequence,generation of macroscopic galvanic cell could vastly facilitate the growth of SiNWs via MACE.On the basis of the etching mechanisms and characteristics,the effects of preparation conditions on the MACE would be systematically investigated.

    3.2Effects of Ag coating on growing SiNWs

    In order to investigate the effects of Ag coating,a reference sample was prepared under the same conditions(Table 2)except for using bare Si substrate in the MACE.Typical SEM images in Fig.2 demonstrate the top-down sectional and cross-sectional views of the porous Si from bare Si(Fig.2(a,c))and SiNW arrays from Ag-coated Si(Fig.2(b,d)).Apparently,the presence of Ag leads to rapid Si etching to form the SiNW arrays(with length up to 6.2 μm),which indicates that Ag plays a strong catalytic role in term of electron acceptor upon MACE(Fig.1),consistent with previous observation12,15.

    Table 2 Silicon wafers with differentAg coating treatments

    The electrochemical measurements of these two samples were plotted in Fig.2(e,f),exhibiting the current density-time and the potential-time curves,respectively.According to the curve in Fig.2(f),it is clearly seen that a macroscopic galvanic cell is constructed between the Si substrate and Pt electrode when both are electrically connected.Two pronounced effects were found via such connection.(1)Potential is sharply increased,and(2) electrons start to transfer between the Si substrate and Pt electrode (Fig.2(f)).As exhibited in Fig.2(e),a very small current density appeared between the Si substrate and Pt electrode in the setup with bare Si,indicating formation of porous Si(Fig.1(d)).In the setup with Ag-coated Si,on the contrary,a dramatically enhanced initial current density and a stable current density were observed after hundreds of minute(Fig.2(e)),which corresponds to the moment when electrical connection is established and potential is stabilized in the polarization process,respectively.Such polarization process is associated with the production of SiNW arrays (Fig.1(c)).The comparison also confirms that the presence of Ag tremendously boosts the Si etching rate in the HF solution,consistent with the results found in the SEM images.Additionally,it is note that the shift observed in the potential is in good agreementwith the galvanic cell theory21-25.In principle,a potential difference between Si and metals is assumed in the rest potential of the system when the metal electrode is connected to the Si electrode. Prior to electrical connection,the potential of the Ag-coated Si is higher than that of the bare Si,because the potential of the Agcoated Si refers to the rest potential of the bare Si and Ag.Upon electrical connection,the potential shift ofAg-coated Si was found to be much larger than that of the bare Si as expectation.

    Fig.2 (a-d)SEM images of the as-prepared SiNWs and(e-f)results of the electrochemical testing

    Further investigation was carried out via changing the immersing time(1,2,and 4 min)in the HF and AgNO3solution, followed by the same preparation conditions(listed in Table 2). Fig.3(a,c,e)exhibits the top-down sectional views of the SiNW arrays with various immersing time of 1,2,and 4 min in the HF and AgNO3solution,respectively.When the Ag coating time is shorter,it is observed that the length of the SiNW arrays is much shorter,but larger in the average diameter(Fig.3(b,d,f)).The results imply that the increasing Ag coatings are expected to essentially enhance the Si etching rate.In contrast to the current densities for Pt/Si galvanic couples with different Ag coating time (Fig.3(g)),the current densities are considerably higher for the Pt/ Si galvanic couples with longer Ag-coating time,also indicating that the highest Ag amount has the strongest catalytic activity for the formation of SiNWs.

    For understanding the effects of the etching parameters on the SiNWs,the Ag-coated Si substrates(Si-1,2 min coating)were immersed into the 9 mol?L-1HF solution for different time,as listed in Table 3.Fig.4 shows the representative SEM images of the top-down sectional and cross-sectional views of the SiNW arrays.Compared to the sample without etching(Fig.4(a,b)),the Ag coating gradually sunk into the Si substrate once electrical connection was generated between the Ag-coated Si and Pt electrode in the HF solution.As the etching time stayed longer,the as-formed SiNWs were found to grow longer as anticipated(Fig.4 (c-h(huán))).In the early etching stage,Ag coatings could be maintained at the bottom of the SiNW arrays,as shown in Fig.4(d).With increasing etching time,the Ag coatings were found to break intoAg nanoparticles and SiNW arrays could be clearly observed (Fig.4(f,h)).Moreover,it is emphasized that the evolution of the Ag coating in the MACE here is almost the same as that of the traditional MACE12,15.The SiNWdiameter could be affected by the Ag shape,but it is difficult to control and evaluate the SiNW diameter in this paper32,33.

    Fig.3 (a-f)Top-down sectional and cross-sectional SEM images of the SiNW arrays with various immersing time in the HF andAgNO3solution and(g)current density-time curves for the coupled Si and Pt electrodes in HF solution with differentAg-coating time

    Table 3 Growth of SiNWs with different etching time

    The concentration of the HF solution was also varied to study the concentration-dependent etching in the formation of the SiNWs.As listed in Table 4,the concentrations of the HF etchant were changed into 4,9,and 15 mol?L-1,and the other conditions remained the same.Fig.5(a-c)presents the cross-sectional SEM images of the prepared SiNW arrays,which indicates that the HF concentration possess the fastest etching rate,leading to the longest SiNWs(Table 4).As plotted in Fig.5(d),the current density-time curves also exhibit that the coupled Si and Pt electrodes in 15 mol?L-1HF solution deliver the largest current density among the three samples.Implication of the results suggests that the length of the as-formed SiNWs is due to the effect of fluorine anions within a certain concentration range.According to Eq.(2),the mechanism is associated with the fact that increasingfluorine anions participate in the oxidation reaction.As a consequence,the generated electrons are transferred onto the Pt surface and participate in the reduction reaction as given by Eq.(1).

    Fig.4 Top-down sectional and cross-sectional SEM images of the SiNW arrays with different immersing time in 9 mol?L-1HF solution

    Table 4 Growth of SiNWs with different concentrations in the HF etchant

    The doping levels of the Si wafers used for achieving SiNWs also have great impacts on the morphology of the prepared SiNWs.According to Table 5,the Si substrates of different electrical resistivity were applied in the preparation and the other procedures stayed the same.SEM images shown in Fig.6(a-c)are the cross-sectional views of the SiNW arrays using various Si substrates,suggesting that the SiNW length ranges from 6.2 to 8.5 μmas the decrease in the electrical resistivity.As exhibited in Fig.6 (d),current densities were observed to enhance with the increase of the doping level,which is identical to the anodic etching for fabricating porous Si in the previous report34,35.This observation could be linked to the point that the consumption of holes during the Si etching plays an important role in the electrochemical reaction.Consequently,current density was found to be enlarged with increasing number of holes in the p-type Si substrates,which indicates the promotion of dissolving Si in the HF solution.

    Fig.5 (a-c)Cross-sectional SEM images of the SiNW arrays with different HF concentrations in the etching and(d)current density-time curves for coupled Si and Pt electrodes in the HF solutions with different concentrations

    In order to explore the doping influences of Si substrates on the prepared SiNWs,three different types of Si substrates were utilized and the conditions were listed in Table 6.Representative SEM images of the SiNWs are given in Fig.7(a-c),showing that the SiNWs grown on the heavily boron-doped Si possess larger length(Fig.7).Additionally,the current density-time curves in Fig.7(d)demonstrate that the setup based on heavily phosphor-doped Si delivers a larger current density than those based on ptype Si.The result here is completely different from the observation on the modestly doped n-type substrates in the previous work7.In general,a much larger cathode area or light irradiation is required to draw the equivalent current density on the modestly doped n-type Si.However,the current density-time characteristics are similar in both p-type and heavily doped n-type Si samples in this work,where the area of the Pt electrode was exactly the same.In the previous studies,on the other hand,surface breakdown effect was found to result in a larger current36.

    Table 5 Silicon wafers for growing SiNWs

    Fig.6 (a-c)Cross-sectional SEM images of the SiNW arrays prepared and(d)current density-time curves for coupled Si and Pt electrodes assembled with the Si substrates of various doping levels

    Silicon wafer Si-1(boron doped,p-type,2.0-8.0 Ω?cm) Si-3(boron doped,p-type,0.003-0.009 Ω?cm) Si-4(phosphor doped,n-type,0.002-0.006 Ω?cm) Growth ofAg coating/min 2 2 2 9 9 9 HF etchant/(mol?L-1) Etching time/h 2 2 2 SiNW length/μm 6.2 8.5 0.2

    3.3Effects of light irradiation on the growing SiNWs In the previous work for etching SiNWs,utilization of lightirradiation has been proved to be an effective approach for enlarging the kinetics in growing SiNW7.In the MACE setup here, light-irradiation was introduced as an assistant condition in the preparation of SiNWs.For understanding the impact of light-irradiation on the SiNWs,n-type Si substrates(0.002-0.006 Ω?cm) were used with different irradiation conditions in the process (Table 7).According to the SEM images shown in Fig.8,the light from the front side has a strong effect on dissolving Si,with no pronounced SiNWs formed(Fig.8(c,d)).In the contrary,the light irradiation from the back side presents a more favorable condition for growing SiNWs,as exhibited in Fig.8(e,f).The current density-time curves are not provided here,because the large current density in the sample without light irradiation was very strong.Therefore,the changes in the current density under the light irradiation were insufficient to be monitored.

    3.4More discussion

    For overall understanding the electrochemical mechanisms of preparing the SiNW arrays in this work,a model of the macroscopic galvanic cell driven MACE process is shown in Fig.9.As illustrated in Fig.9(a),only one galvanic cell exists in the system before electrical connection and it is formed by the microscopic short-circuit galvanic cells between Si and Ag nanoparticles, which deliver weak corrosion in the Si.Upon electrical connection (Fig.9(b)),another galvanic cell based on the connected macroscopic short-circuit galvanic cell between Si and Pt is introduced into the system.In this work,the recorded current densities in the electrical connection systems refer to the electron flows from Si to Pt,which greatly contributes to the formation of SiNWs.Because of diffusion effect and electric field37-39,the left holes transfer to theAg-coated Si surface,which could be described as Eq.(3):

    Fig.7 (a-c)Cross-sectional SEM images of the SiNW arrays and(d)current density-time curves for coupled Si and Pt electrodes prepared with the Si substrates of different types

    Table 7 Conditions of light irradiation for growing SiNWs

    Fig.8 Top-down sectional and cross-sectional SEM images of the SiNW arrays using n-type Si substrates with different irradiation conditions

    Moreover,the light-irradiation effects from the front side and the back side are illustrated in Fig.9(c,d),respectively.The number of holes can be massively enlarged in the n-type Si under light irradiations.In the case of the light irradiations from the front side(Fig.9(c)),the generated holes are easy to transfer to the surface by the surface breakdown effect,leading to formation of SiNWs in term of dissolving Si.On the other hand,the generated holes are prone to transfer to theAg-coated valleys if the holes are generated from the back side(Fig.9(d)).In addition,the generatedholes that are close to the sidewalls or far from the metal areas may enhance the porosity of the SiNWs under the light irradiations either from the front side or back side.

    Fig.9 (a,b)Schemes of the macroscopic galvanic cell driven MACE process for the SiNW preparation in HF aqueous solution and(c,d)light-irradiation effect on the heavily doped n-type Si

    According to the above results,the overall MACE process mainly involves four steps.(1)Due to the catalytic activity of Ag, the oxidant is reduced at its surface;once the Si is electrically connected with Pt electrode,the oxidant is reduced at both the Pt and Ag surfaces.(2)The corrosion rate of the SiNWs depends on the hole concentration and its transfer direction,which is controlled by the rate of cathodic reactions and the types of Si substrates.(3)Due to the reduction of the oxidant,the generated holes are injected into the Si,and Si is subsequently oxidized and dissolved into HF.(4)The holes that diffuse to the off-metal areas or to the NW sidewall may shorten the SiNW length and enlarge porosity.

    4 Conclusions

    In summary,various SiNW arrays were produced by MACE in the HF solution via varying the process parameters.Significant factors including electrical connection,Ag coatings,etching conditions,Si substrates and light irradiations have been considered to investigate the corresponding impacts on the formation of the SiNWs.The generation of holes in silicon plays a vital role on the formation of SiNWs and the associated mechanism has been discussed.The results suggest that MACE holds various advantages of facile,effective and scalable features,promising a unique stage for large-scale synthesizing SiNWs in many fields.

    References

    (1)Brodoceanu,D.;Alhmoud,H.Z.;Elnathan,R.;Delalat,B.; Voelcker,N.H.;Kraus,T.Nanotechnology 2016,27,075301. doi:10.1088/0957-4484/27/7/075301

    (2)Cao,M.S.;Yang,J.;Song,W.L.;Zhang,D.Q.;Wen,B.;Jin, H.B.;Hou,Z.L.;Yuan,J.ACS Appl.Mater.Interfaces 2012, 4,6948.doi:10.1021/am3021069

    (3)Cao,M.S.;Song,W.L.;Hou,Z.L.;Yang,J.Carbon 2010,48, 788.doi:10.1016/j.carbon.2009.10.028

    (4)Cao,M.S.;Shi,X.L.;Fang,X.Y.;Jin,H.B.;Hou,Z.L.; Zhou,W.;Chen,Y.J.Appl.Phys.Lett.2007,91,203110.doi: 10.1063/1.2803764

    (5)Zhou,X.;Sun,M.Q.;Wang,G.C.Acta Phys.-Chim.Sin. 2016,32,975.[周曉,孫敏強,王庚超.物理化學學報,2016, 32,975.]doi:10.3866/PKU.WHXB201601281

    (6)Wang,J.D.;Peng,T.J.;Xian,H.Y.;Sun,H.J.Acta Phys.-Chim.Sin.2015,31,90.

    [汪建德,彭同江,鮮海洋,孫紅娟.物理化學學報,2015,31,90.]doi:10.3866/PKU. WHXB201411202

    (7)Hu,R.J.;Wang,J.;Zhu,H.C.Acta Phys.-Chim.Sin.2015, 31,1997.

    [胡瑞金,王兢,朱慧超.物理化學學報,2015,31, 1997.]doi:10.3866/PKU.WHXB201508241

    (8)Wagner,R.S.;Ellis,W.C.Appl.Phys.Lett.1964,4,89.doi: 10.1063/1.1753975

    (9)Lee,G.;Woo,Y.S.;Yang,J.E.;Lee,D.H.;Kim,C.J.;Jo,M. H.Angew.Chem.Int.Edit.2009,48,7366.doi:10.1002/anie. v48:40

    (10)Kolasinski,K.W.Curr.Opin.Solid State Mater.Sci.2005,9, 73.doi:10.1016/j.cossms.2006.03.004

    (11)Lehmann,V.;Stengl,R.;Luigart,A.Mater.Sci.Eng.B 2000, 69,11.doi:10.1016/S0921-5107(99)00286-X

    (12)Peng,K.Q.;Wu,Y.;Fang,H.;Zhong,X.Y.;Xu,Y.;Zhu,J. Angew.Chem.Int.Edit.2005,44,2737.doi:10.1002/ anie.200462995

    (13)Peng,K.Q.;Zhu,J.Electrochim.Acta 2004,49,2563.doi: 10.1016/j.electacta.2004.02.009

    (14)Liu,L.;Peng,K.Q.;Hu,Y.;Wu,X.L.;Lee,S.T.Adv.Mater. 2014,26,1410.doi:10.1002/adma.201304327

    (15)Huang,Z.P.;Geyer,N.;Werner,P.;Boor,J.D.;G?sele,U. Adv.Mater.2011,23,285.doi:10.1002/adma.v23.2

    (16)Hochbaum,A.I.;Chen,R.;Delgado,R.D.;Liang,W.J.; Garnett,E.C.;Najarian,M.;Majumdar,A.;Yang,P.D.Nature 2008,451,163.doi:10.1038/nature06381

    (17)Brammer,K.S.;Choi,C.;Oh,S.;Cobb,C.J.;Connelly,L.S.; Loya,M.;Kong,S.D.;Jin,S.Nano Lett.2009,9,3570. doi:10.1021/nl901769m

    (18)Liu,L.;Wang,Y.T.Acta Phys.Sin.2015,64,148201. doi:10.7498/aps.64.148201

    (19)Liu,L.Sci.China Tech.Sci.2015,58,362.doi:10.1007/ s11431-014-5740-9

    (20)Tsujino,K.;Matsumura,M.Adv.Mater.2005,17,1045. doi:10.1002/adma.200401681

    (21)Liu,L.J.Mater.Chem.C 2014,2,9631.doi:10.1039/C4TC01431F

    (22)Ashruf,C.M.A.;French,P.J.;Bressers,P.M.M.C.;Kelly,J. J.Sens.Actuators 1999,74,118.doi:10.1016/S0924-4247(98) 00340-9

    (23)Ashruf,C.M.A.;French,P.J.;Sarro,P.M.;Kazinczi,R.;Xia, X.H.;Kelly,J.J.J.Micromech.Microeng.2000,10,505.doi: 10.1088/0960-1317/10/4/304

    (24)Xia,X.H.;Ashruf,C.M.A.;French,P.J.;Kelly,J.J.Chem. Mater.2000,12,1671.doi:10.1021/cm9912066

    (25)Kelly,J.J.;Xia,X.H.;Ashruf,C.M.A.;French,P.J.IEEE Sens.J.2001,1,127.doi:10.1109/JSEN.2001.936930

    (26)Song,Y.Y.;Gao,Z.D.;Kelly,J.J.;Xia,X.H.Electrochem. Solid-State Lett.2005,8,C148.doi:10.1149/1.2033616

    (27)Huang,Z.P.;Geyer,N.;Liu,L.F.;Li,M.Y.;Zhong,P. Nanotechnology 2010,21,465301.doi:10.1088/0957-4484/ 21/46/465301

    (28)Chourou,M.L.;Fukami,K.;Sakka,T.;Virtanen,S.;Ogata,Y. H.Electrochim.Acta 2010,55,903.doi:10.1016/j. electacta.2009.09.048

    (29)Kim,J.;Rhu,H.;Lee,W.J.Mater.Chem.2011,15889. doi:10.1039/C1JM13831F

    (30)Weisse,J.M.;Lee,C.H.;Kim,D.R.;Cai,L.;Rao,P.M.; Zheng,X.Nano Lett.2013,13,4362.doi:10.1021/nl4021705

    (31)Lai,C.Q.;Zheng,W.;Choi,W.K.;Thompson,C.V. Nanoscale 2015,7,11123.doi:10.1039/C5NR01916H

    (32)Huang,Z.P.;Zhang,X.X.;Reiche,M.;Liu,L.F.;Lee,W.; Shimizu,T.;Senz,S.;G?sele,U.Nano Lett.2008,8,3046. doi:10.1021/nl802324y

    (33)Huang,Z.P.;Shimizu,T.;Senz,S.;Zhang,Z.;Zhang,X.X.; Lee,W.;Geyer,N.;G?sele,U.Nano Lett.2009,9,2519. doi:10.1021/nl803558n

    (34)VanDjlk,H.J.A.;de Jonge,J.J.Electrochem.Soc.1970,177, 553.doi:10.1149/1.2407568

    (35)Theunissen,M.J.J.;Appels,J.A.;Verkuylen,W.H.C.G. J.Electrochem.Soc.1970,117,959.doi:10.1149/1.2407698

    (36)Meek,R.L.J.Electrochem.Soc.1971,118,437.doi:10.1149/ 1.2408076 doi:10.1149/1.2408076

    (37)F?ll,H.Appl.Phys.A 1991,53,8.doi:10.1007/BF00323428

    (38)Lehmann,V.J.Electrochem.Soc.1993,140,2836.doi: 10.1149/1.2220919

    (39)Bertagna,V.;Plougonven,C.;Rouelle,F.;Chemla,M. J.Electrochem.Soc.1996,143,3532.doi:10.1149/1.1837249

    Insight into Macroscopic Metal-Assisted Chemical Etching for Silicon Nanowires

    LIU Lin1,2,*LI Zhi-Sheng1HU Hui-Dong1SONG Wei-Li3
    (1State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,School of Renewable Energy, North China Electric Power University,Beijing 102206,P.R.China;2Beijing Key Laboratory of Energy Conversion and Storage Materials,Beijing Normal University,Beijing 100875,P.R.China;3Institute of Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,P.R.China)

    To understand the principles of the fabrication of nanowire arrays using macroscopic metal-assisted chemical etching(MACE),Si nanowires(SiNWs)are synthesized using Ag-coated Si substrates and Pt electrodes by the macroscopic MACE.Analysis of the SiNW morphology coupled with the corresponding current density in the MACE process is applied to systematically investigate the effects of the electrical connection,Ag coating,etching conditions,Si substrates,and light irradiation on the formation of SiNWs.It is found that there is a certain relationship between the current density and the SiNW length.Amode is proposed to fundamentally understand the mechanisms of the preparation of SiNWs using MACE.Associated opportunities are also discussed.

    Semiconductor;Microstructure;Electrochemistry;Silicon nanowire;Metal etching

    1 Introduction

    Over the past decades,nanomaterials have been tremendously considered as one of the most important materials in the electronics industry1-7.Recently,various efforts have been largely paid to fabricate Si nanostructures with applicable performance in the device applications,such as vapor-liquid-solid growth8,9,electrochemical etching10,11.Very recently,the metal-assisted chemical etching(MACE)technique has been well developed by Peng and coworkers12-14and is now widely utilized to fabricate Si nanowires (SiNWs)with exceptional morphologies and structures.Thus far,MACE is believed to be a low-cost,simple,reliable top-down fabrication technique for producing a variety of Si nanostructures15,and the nanostructures fabricated by MACE have demonstrated great potential application in various fields16,17.

    December 30,2015;Revised:February 15,2016;Published on Web:February 18,2016.*Corresponding author.Email:liulin2014@ncepu.edu.cn;Tel:+86-10-61773932. The project was supported by the China Postdoctoral Science Foundation(2014M560934)and Fundamental Research Funds for the Central Universities,China(2015QN16).

    O649

    10.3866/PKU.WHXB201602183

    中國博士后科學基金面上項目(2014M560934)和中央高校基本科研業(yè)務費項目(2015QN16)資助

    猜你喜歡
    北京科技大學原電池納米線
    《北京科技大學學報(社會科學版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    《北京科技大學學報(社會科學版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    《北京科技大學學報》(社會科學版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    例析原電池解題策略
    2017年7月原電池及原電池組產(chǎn)量同比增長2.53%
    消費導刊(2017年19期)2017-12-13 08:30:52
    溫度對NiAl合金納米線應力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    原電池知識點面面觀
    田永訴北京科技大學拒絕頒發(fā)畢業(yè)證、學位證案
    法學與實踐(2015年1期)2015-12-01 03:41:13
    国产精品av久久久久免费| 最新的欧美精品一区二区| 国产成人一区二区三区免费视频网站| 一级毛片电影观看| 亚洲五月色婷婷综合| 午夜影院在线不卡| 国产有黄有色有爽视频| 久久精品成人免费网站| 性高湖久久久久久久久免费观看| 我要看黄色一级片免费的| 亚洲精品国产av成人精品| 久久青草综合色| 国产男女内射视频| 久久ye,这里只有精品| 日本av手机在线免费观看| 丰满少妇做爰视频| 97精品久久久久久久久久精品| 五月天丁香电影| 超碰成人久久| 少妇猛男粗大的猛烈进出视频| 久久久久久久久免费视频了| 久久精品国产综合久久久| 国产精品1区2区在线观看. | 各种免费的搞黄视频| 极品人妻少妇av视频| 爱豆传媒免费全集在线观看| 午夜久久久在线观看| 777米奇影视久久| 成人18禁高潮啪啪吃奶动态图| av一本久久久久| 人人澡人人妻人| www.精华液| 一级毛片精品| 国产免费视频播放在线视频| 50天的宝宝边吃奶边哭怎么回事| 一本色道久久久久久精品综合| 亚洲精品国产色婷婷电影| 国产99久久九九免费精品| 中文字幕精品免费在线观看视频| 久久国产精品影院| 悠悠久久av| 午夜影院在线不卡| 午夜福利,免费看| 久久人妻熟女aⅴ| 两性夫妻黄色片| 日本vs欧美在线观看视频| 婷婷丁香在线五月| 免费在线观看日本一区| a级毛片黄视频| 狠狠精品人妻久久久久久综合| 考比视频在线观看| 亚洲精品美女久久av网站| 久久九九热精品免费| 中国国产av一级| 秋霞在线观看毛片| 欧美日本中文国产一区发布| 国产一区二区在线观看av| 国产成人精品久久二区二区免费| 免费黄频网站在线观看国产| 久久久久久久久久久久大奶| 国产片内射在线| 侵犯人妻中文字幕一二三四区| 在线观看免费视频网站a站| 国产福利在线免费观看视频| 久久久久精品国产欧美久久久 | 黄色视频,在线免费观看| 一区二区av电影网| av不卡在线播放| 欧美精品高潮呻吟av久久| 狠狠婷婷综合久久久久久88av| 爱豆传媒免费全集在线观看| 国产精品一区二区精品视频观看| 在线精品无人区一区二区三| 国产av又大| 一级毛片女人18水好多| av在线app专区| 叶爱在线成人免费视频播放| 老司机午夜福利在线观看视频 | 韩国高清视频一区二区三区| 性高湖久久久久久久久免费观看| 国产麻豆69| av福利片在线| 国产xxxxx性猛交| 久久精品熟女亚洲av麻豆精品| 另类亚洲欧美激情| 视频区欧美日本亚洲| 美女大奶头黄色视频| bbb黄色大片| 久久ye,这里只有精品| 无限看片的www在线观看| 天堂俺去俺来也www色官网| 在线观看一区二区三区激情| 老汉色av国产亚洲站长工具| 天天操日日干夜夜撸| 18禁黄网站禁片午夜丰满| 欧美另类一区| 美国免费a级毛片| 999精品在线视频| 精品人妻在线不人妻| 国产av精品麻豆| 青草久久国产| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠躁躁| 永久免费av网站大全| 欧美国产精品一级二级三级| 亚洲国产成人一精品久久久| 满18在线观看网站| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三区在线| 久久99一区二区三区| √禁漫天堂资源中文www| 日韩一区二区三区影片| 午夜福利在线免费观看网站| 久久久精品94久久精品| 欧美+亚洲+日韩+国产| 大陆偷拍与自拍| 老司机福利观看| 亚洲五月色婷婷综合| 中文字幕人妻丝袜一区二区| 亚洲精品乱久久久久久| 性色av一级| 大香蕉久久网| 欧美中文综合在线视频| 国产高清视频在线播放一区 | 中国国产av一级| 老熟妇仑乱视频hdxx| 大陆偷拍与自拍| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 精品乱码久久久久久99久播| 成在线人永久免费视频| 日韩人妻精品一区2区三区| 国产97色在线日韩免费| 91精品国产国语对白视频| 国产精品一二三区在线看| 久久精品aⅴ一区二区三区四区| 99精国产麻豆久久婷婷| 中文字幕人妻丝袜一区二区| 男女之事视频高清在线观看| 午夜老司机福利片| 人人澡人人妻人| 精品少妇一区二区三区视频日本电影| 青春草视频在线免费观看| 1024香蕉在线观看| 嫩草影视91久久| 丝袜喷水一区| 在线天堂中文资源库| 久久性视频一级片| 国产区一区二久久| 看免费av毛片| 黑人巨大精品欧美一区二区mp4| 日本欧美视频一区| 黄色视频,在线免费观看| 热99re8久久精品国产| 色视频在线一区二区三区| 秋霞在线观看毛片| avwww免费| 天堂中文最新版在线下载| 亚洲国产av新网站| 日日夜夜操网爽| 国产精品久久久久久精品古装| 久久毛片免费看一区二区三区| 99国产精品一区二区蜜桃av | 久久中文看片网| 国产国语露脸激情在线看| 一本综合久久免费| 精品人妻熟女毛片av久久网站| 久久久精品国产亚洲av高清涩受| 老熟妇乱子伦视频在线观看 | 精品一区在线观看国产| 国产日韩欧美亚洲二区| 中文欧美无线码| 亚洲av成人一区二区三| a级片在线免费高清观看视频| 国产国语露脸激情在线看| 国产老妇伦熟女老妇高清| 欧美激情 高清一区二区三区| 三级毛片av免费| 男人爽女人下面视频在线观看| 男女床上黄色一级片免费看| 色综合欧美亚洲国产小说| 在线观看www视频免费| 国产精品自产拍在线观看55亚洲 | 日韩大片免费观看网站| 亚洲精品国产区一区二| 久久免费观看电影| 亚洲国产欧美网| 欧美黑人精品巨大| 性少妇av在线| 久久人人爽人人片av| 国产三级黄色录像| 啪啪无遮挡十八禁网站| 精品国产一区二区久久| 国产片内射在线| 韩国高清视频一区二区三区| 欧美日本中文国产一区发布| 99久久国产精品久久久| 男男h啪啪无遮挡| 丝瓜视频免费看黄片| 午夜免费观看性视频| 国产精品偷伦视频观看了| 高清av免费在线| 在线观看舔阴道视频| 国产在线一区二区三区精| 天天添夜夜摸| 高清av免费在线| 777久久人妻少妇嫩草av网站| 免费少妇av软件| 亚洲九九香蕉| 久久久久国产一级毛片高清牌| 国产精品久久久久久精品电影小说| 亚洲视频免费观看视频| 久久天躁狠狠躁夜夜2o2o| 多毛熟女@视频| 五月天丁香电影| 国产亚洲精品第一综合不卡| 高清黄色对白视频在线免费看| 欧美少妇被猛烈插入视频| 亚洲精品在线美女| 在线天堂中文资源库| 久久性视频一级片| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 高清黄色对白视频在线免费看| 一区二区av电影网| 国产免费一区二区三区四区乱码| 成年动漫av网址| a级毛片在线看网站| 久久久久精品国产欧美久久久 | 久久国产精品影院| 日本黄色日本黄色录像| 免费高清在线观看视频在线观看| 欧美大码av| 久久人人爽人人片av| 亚洲第一青青草原| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 欧美在线黄色| 欧美精品一区二区免费开放| 欧美日韩国产mv在线观看视频| 久久久精品免费免费高清| 欧美日韩福利视频一区二区| 中文字幕精品免费在线观看视频| a级片在线免费高清观看视频| 美女主播在线视频| 啦啦啦中文免费视频观看日本| 免费在线观看影片大全网站| 少妇裸体淫交视频免费看高清 | 黄色视频,在线免费观看| 男女高潮啪啪啪动态图| 91字幕亚洲| 老鸭窝网址在线观看| 国产成人免费无遮挡视频| 丁香六月天网| 日韩欧美免费精品| 婷婷丁香在线五月| 国产精品熟女久久久久浪| 亚洲精品久久成人aⅴ小说| 久久九九热精品免费| 一本大道久久a久久精品| 99久久人妻综合| 狠狠婷婷综合久久久久久88av| 久久久精品94久久精品| 激情视频va一区二区三区| 免费高清在线观看日韩| 男女高潮啪啪啪动态图| 韩国精品一区二区三区| 欧美xxⅹ黑人| √禁漫天堂资源中文www| 女性被躁到高潮视频| 亚洲国产精品999| 日韩一卡2卡3卡4卡2021年| 日韩 亚洲 欧美在线| 免费在线观看完整版高清| 成年人黄色毛片网站| 日日摸夜夜添夜夜添小说| 久久久久久人人人人人| 欧美黄色片欧美黄色片| 久久精品亚洲av国产电影网| 一区二区三区四区激情视频| 国产精品影院久久| 久久99一区二区三区| 男女高潮啪啪啪动态图| 日韩电影二区| 成年女人毛片免费观看观看9 | 少妇猛男粗大的猛烈进出视频| 久久中文看片网| www.精华液| tube8黄色片| 操出白浆在线播放| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看| av不卡在线播放| 国产精品一区二区在线观看99| 人人澡人人妻人| h视频一区二区三区| 色婷婷av一区二区三区视频| 欧美+亚洲+日韩+国产| 国产色视频综合| 一边摸一边抽搐一进一出视频| 欧美日韩亚洲综合一区二区三区_| 脱女人内裤的视频| 十八禁网站网址无遮挡| 午夜免费鲁丝| 十八禁网站网址无遮挡| 50天的宝宝边吃奶边哭怎么回事| 久久天堂一区二区三区四区| 男女国产视频网站| 一区福利在线观看| 成人国语在线视频| 日本五十路高清| 日本一区二区免费在线视频| 999久久久国产精品视频| 在线观看免费日韩欧美大片| 亚洲专区国产一区二区| 亚洲一区二区三区欧美精品| 久久国产精品影院| 久久久久国内视频| 99热全是精品| 大香蕉久久成人网| 999久久久精品免费观看国产| 久久天躁狠狠躁夜夜2o2o| 美女国产高潮福利片在线看| 亚洲黑人精品在线| 国产精品1区2区在线观看. | 日韩精品免费视频一区二区三区| 亚洲精品国产一区二区精华液| 欧美精品高潮呻吟av久久| 免费不卡黄色视频| 涩涩av久久男人的天堂| 成人国语在线视频| 免费少妇av软件| 日韩大片免费观看网站| tube8黄色片| 亚洲av男天堂| 少妇精品久久久久久久| 少妇的丰满在线观看| 精品人妻一区二区三区麻豆| 99久久精品国产亚洲精品| 男人舔女人的私密视频| 午夜老司机福利片| 极品少妇高潮喷水抽搐| 女人精品久久久久毛片| 国产在线观看jvid| 人妻久久中文字幕网| 丝袜喷水一区| 91麻豆av在线| 国产真人三级小视频在线观看| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区蜜桃| 极品人妻少妇av视频| www.自偷自拍.com| 女人精品久久久久毛片| 天天影视国产精品| 午夜久久久在线观看| 男女无遮挡免费网站观看| 成人三级做爰电影| 久久精品国产亚洲av香蕉五月 | 久久久久视频综合| 美女午夜性视频免费| 大码成人一级视频| 精品一区二区三卡| 免费av中文字幕在线| 一区二区日韩欧美中文字幕| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| 黄色怎么调成土黄色| 捣出白浆h1v1| 国产1区2区3区精品| 日韩三级视频一区二区三区| 99国产精品99久久久久| 国产av精品麻豆| 一区二区三区乱码不卡18| 国产av精品麻豆| 人妻人人澡人人爽人人| 满18在线观看网站| 少妇 在线观看| 亚洲av国产av综合av卡| 亚洲中文字幕日韩| 久9热在线精品视频| 久久久久久人人人人人| 亚洲伊人久久精品综合| 婷婷色av中文字幕| 国产黄色免费在线视频| 69av精品久久久久久 | 精品久久久久久电影网| 黑人巨大精品欧美一区二区mp4| 国产男女超爽视频在线观看| av天堂久久9| av在线老鸭窝| av福利片在线| 少妇 在线观看| 免费观看av网站的网址| 窝窝影院91人妻| 国产精品国产av在线观看| 久久亚洲精品不卡| 亚洲av男天堂| 国产一级毛片在线| 一级片免费观看大全| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 午夜激情久久久久久久| 老汉色∧v一级毛片| 日韩三级视频一区二区三区| 久久热在线av| 啦啦啦 在线观看视频| 国产一区二区 视频在线| 国产xxxxx性猛交| 最新在线观看一区二区三区| 精品视频人人做人人爽| 国产亚洲午夜精品一区二区久久| kizo精华| 日日夜夜操网爽| 亚洲人成77777在线视频| 女人爽到高潮嗷嗷叫在线视频| 国产伦人伦偷精品视频| 亚洲欧美精品综合一区二区三区| 国产黄频视频在线观看| 伊人久久大香线蕉亚洲五| 桃花免费在线播放| 久久亚洲精品不卡| 一级毛片电影观看| 亚洲精品美女久久av网站| 精品卡一卡二卡四卡免费| 亚洲九九香蕉| 国产精品一区二区精品视频观看| 免费高清在线观看视频在线观看| 三上悠亚av全集在线观看| 操美女的视频在线观看| 午夜影院在线不卡| 国产人伦9x9x在线观看| 岛国毛片在线播放| 亚洲自偷自拍图片 自拍| av网站免费在线观看视频| 狂野欧美激情性bbbbbb| 久9热在线精品视频| 久久精品国产a三级三级三级| 亚洲国产av新网站| 亚洲第一av免费看| 中国国产av一级| 亚洲精品粉嫩美女一区| 中文字幕精品免费在线观看视频| 亚洲精品自拍成人| 少妇粗大呻吟视频| 少妇的丰满在线观看| 久久精品国产亚洲av香蕉五月 | 极品人妻少妇av视频| 天天影视国产精品| 久久国产精品人妻蜜桃| 黄色视频不卡| 又黄又粗又硬又大视频| 国产黄色免费在线视频| 999久久久国产精品视频| 成人国语在线视频| 久久精品aⅴ一区二区三区四区| 国产精品一区二区免费欧美 | 午夜福利视频精品| 免费女性裸体啪啪无遮挡网站| 男人爽女人下面视频在线观看| 超色免费av| 三上悠亚av全集在线观看| 首页视频小说图片口味搜索| 国产免费av片在线观看野外av| 久久久久久久久免费视频了| 91成年电影在线观看| 亚洲专区字幕在线| 亚洲激情五月婷婷啪啪| 欧美 日韩 精品 国产| 欧美黄色淫秽网站| avwww免费| 久久热在线av| 亚洲中文av在线| 欧美乱码精品一区二区三区| 亚洲色图综合在线观看| 国产亚洲欧美在线一区二区| 不卡av一区二区三区| a在线观看视频网站| 久久人人97超碰香蕉20202| 91麻豆av在线| 在线精品无人区一区二区三| 国产在视频线精品| 视频在线观看一区二区三区| 伊人久久大香线蕉亚洲五| 日韩大片免费观看网站| 欧美av亚洲av综合av国产av| 精品久久久久久电影网| 精品国产乱子伦一区二区三区 | 91精品三级在线观看| 欧美少妇被猛烈插入视频| 亚洲精品久久成人aⅴ小说| 亚洲国产中文字幕在线视频| 久久精品aⅴ一区二区三区四区| 人妻久久中文字幕网| 亚洲欧美色中文字幕在线| 亚洲av男天堂| 亚洲伊人色综图| 国产成人av教育| 自线自在国产av| 国产麻豆69| 午夜免费成人在线视频| 国产精品秋霞免费鲁丝片| 国产深夜福利视频在线观看| 视频区图区小说| 丝瓜视频免费看黄片| 国产麻豆69| 精品亚洲乱码少妇综合久久| 极品人妻少妇av视频| 新久久久久国产一级毛片| 成人国语在线视频| 国产精品久久久av美女十八| 久久久久视频综合| 国产真人三级小视频在线观看| 国产亚洲欧美精品永久| 国产主播在线观看一区二区| 一级毛片电影观看| 亚洲视频免费观看视频| 久久热在线av| 老汉色av国产亚洲站长工具| 丁香六月欧美| 亚洲av电影在线进入| 丰满少妇做爰视频| 天堂中文最新版在线下载| 少妇 在线观看| 69精品国产乱码久久久| 97在线人人人人妻| 一级片'在线观看视频| 91麻豆精品激情在线观看国产 | av视频免费观看在线观看| 免费一级毛片在线播放高清视频 | 国产片内射在线| 一个人免费在线观看的高清视频 | 国产伦人伦偷精品视频| 亚洲精品国产区一区二| 老司机福利观看| 亚洲精品粉嫩美女一区| 水蜜桃什么品种好| 热99re8久久精品国产| 少妇被粗大的猛进出69影院| 午夜91福利影院| 欧美日韩成人在线一区二区| videos熟女内射| 9色porny在线观看| 日本a在线网址| 欧美亚洲日本最大视频资源| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成av片中文字幕在线观看| 不卡av一区二区三区| 一区在线观看完整版| 啦啦啦免费观看视频1| 日日爽夜夜爽网站| 一级,二级,三级黄色视频| 乱人伦中国视频| 国产高清国产精品国产三级| 丝袜美腿诱惑在线| 婷婷成人精品国产| 国产男女内射视频| 精品久久久久久久毛片微露脸 | 男女下面插进去视频免费观看| 中文字幕制服av| 欧美国产精品一级二级三级| 亚洲av电影在线进入| 日韩中文字幕欧美一区二区| 精品久久蜜臀av无| 捣出白浆h1v1| 男男h啪啪无遮挡| 日韩欧美免费精品| 一边摸一边抽搐一进一出视频| 美女大奶头黄色视频| 日韩一区二区三区影片| 国产欧美日韩一区二区精品| 精品人妻1区二区| 美女扒开内裤让男人捅视频| 久久亚洲精品不卡| av一本久久久久| 男女床上黄色一级片免费看| 50天的宝宝边吃奶边哭怎么回事| 国产精品.久久久| 欧美日韩国产mv在线观看视频| 久久99一区二区三区| 午夜两性在线视频| 最黄视频免费看| 国产亚洲av片在线观看秒播厂| 久久久国产一区二区| 久久av网站| 久久国产精品男人的天堂亚洲| 欧美国产精品一级二级三级| 亚洲久久久国产精品| 在线观看免费高清a一片| 性色av乱码一区二区三区2| 国产精品久久久久久精品电影小说| 一级,二级,三级黄色视频| 丝袜在线中文字幕| 一区二区av电影网| 国产xxxxx性猛交| 久久久久精品国产欧美久久久 | 亚洲一卡2卡3卡4卡5卡精品中文| 十八禁高潮呻吟视频| 亚洲精品国产一区二区精华液| 亚洲成av片中文字幕在线观看| 9191精品国产免费久久| 老司机影院毛片| 少妇人妻久久综合中文| 午夜福利乱码中文字幕| 美女福利国产在线| 久久99一区二区三区| 麻豆乱淫一区二区| 免费观看a级毛片全部| 纯流量卡能插随身wifi吗| 精品久久久久久电影网| av在线老鸭窝| 午夜久久久在线观看| 黄片小视频在线播放| 亚洲色图综合在线观看| 亚洲人成77777在线视频| 99国产精品一区二区三区|