• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in the neurons

    2019-04-13 01:14:48ZuoxianXiang向左鮮ChuanxiangTang唐傳祥andLixinYan顏立新
    Chinese Physics B 2019年4期

    Zuoxian Xiang(向左鮮),Chuanxiang Tang(唐傳祥),and Lixin Yan(顏立新)

    Department of Engineering Physics,Tsinghua University,Beijing 100084,China

    1.Introduction

    Quantum theory is one of the greatest discoveries of the twentieth century. In recent years,quantum effects in biological systems have been discovered in several areas,including olfaction,[1,2]avian magnetoreception,[3,4]photosynthesis,[5–9]quantum entanglement in living bacteria,[10]and so on.[11]Theoretical study of quantum effect in bio-systems and its possible relevance to explaining the functional properties of these systems are also drawing rapid attention,such as consciousness in the brain.

    How to explain consciousness? Classical or quantum? It is so mysterious and researchers have proposed many models.[12–24]Some studies suggested that the quantum effect might play an important role in the functioning of the brain.[16–24]Penrose and Hameroff proposed the orchestrated objective reduction(Orch OR)model,which suggests that microtubules(MTs)in neurons act as a quantum computer,[18–20,24]Fisher proposed that quantum entanglement may exist between two neurons.[23]

    Decoherence is an important phenomenon in quantum information.The“warm,wet,and noisy”environment might destroy the quantum state,[26–29]thus the decoherence time scale τ is an important parameter to the quantum model.

    To study the decoherence process in MTs,researchers determined this parameter according to different mechanisms of decoherence,including quantum gravity,[18]cavity quantum electrodynamics(QED)model,[25,26]and single ion-MT interactions;these results are listed in Table 1 and the value of decoherence time varies greatly.

    Table 1.Decoherence time scales and their mechanisms.

    Decoherence mainly derives from the interaction between quantum systems and the environment.There are 4 basic interactions that have been discovered in nature;in the range of molecule interactions,the main interaction between environment and tubulin dimers is electromagnetic interaction.In this paper,a model based on the electromagnetic interaction Hamiltonian between microtubules and plasmon in the neurons is proposed.Previous studies considered the effect of a single ion on the decoherence process in MTs;however,cells are known to contain different kinds of ions that have different charges and masses,i.e.,some ions have positive charge,whereas others have negative charge.Over a long time scale,cells can be considered to be electrically neutral;however,this is not true over very short time scales.Therefore,the decoherence rates cannot be calculated only considering the effect of a single ion since decoherence is a result of the interaction between tubulin dimers and cellular fluid environment.In this paper,the interaction Hamiltonian is constructed by using the second quantization method,and the decoherence time is estimated according to the interaction Hamiltonian.

    This article is organized as follows.Section 2 includes the introduction for decoherence mechanisms in our model,as well as the total Hamiltonian of tubulin dimers and cell fluid environment;the decoherence timescale τ are computed and howτ changes with environment parameters will be discussed.In Section 3,other mechanisms of decoherence will be discussed,and some important formulas and their derivations are given in the appendix.

    2.Decoherence rates

    In this section,the decohenrence mechanisms in MTs will be discussed.MT is a hollow cylinder with an outer diameter of 24 nm and an inner diameter of 15 nm.The basic unit of MT is tubulin dimer which has two subunits(denoted by α and β);all of the tubulin dimers form MT crystal lattice by helical encircle.The tubulin dimers have different kinds of conformational states which are regarded as quantum bit in Orch model,and MTs can store information owing to different combinations of these conformational states.Electron transition in each tubulin dimer could change the conformational states,and the MT is a polar molecule and has intrinsic electric dipole moment(Fig.1).[25]

    Fig.1.The structure diagram of MTs.

    2.1.Mechanisms of decoherence

    The cellular fluid is considered to have both positive and negative charges(similar to plasma),and thus two basic and very important parameters are used to describe the it,namely Debye length λDand plasma frequency ωp;these two parameters will be discussed compendiously and their range will be given.

    The Debye length λDrepresents the space scale when the plasma is kept as a neutral state and is determined by

    where nk,0is the average density of the k-th kind of ion,qkis the quantity of charge,ε=80ε0is the dielectric constant of water,kBis the Boltzmann constant,and T is the temperature of the cellular fluid.For physiological Ringer solution,λD~0.7 nm,[29]and in the following calculation,the value of λDis set to be around 0.7 nm.

    The surface of tubulin dimers have net charge,[30]so a counterion layer will be formed because of the Debye shielding.The thickness of the counterions is approximately λD,as shown in Fig.2.The counterions could shield the interaction between MTs and the environment,as shown in Appendix C,the coupling coefficient is decreased if the shielding effect is considered.

    Fig.2.Schematic diagram of counterion layer with a thickness of λD.

    The second parameter is called plasma frequency,which describes the collective oscillations of ions and is determined by

    For typical parameters in a cell,[29][K+]in=400 mmol/L,[Na+]in=50 mmol/L[Cl?]in=52 mmol/L,ωp≈ 0.6 THz.Therefore,in the following calculation,the value of ωpis set to be around 0.6 THz.

    When the plasmon is in an excited state,the electric neutrality is destroyed,and some net charges appear.The net charges can interact with the dipole in the tubulin dimmers,as shown in Fig.3.As shown in Appendix A,the local ion density fluctuation could excite ion density waves.There are different ion density waves,but the only one called plasma oscillation could be coupled with MTs,and the dispersion relation of plasma oscillation is

    where β is the average value of ion thermal velocity,which has the same order of magnitude as the thermal velocity.

    The total Hamiltonian of the MT-environmental systems can be derived as follows:whereis the Hamiltonian of the excited systems in the MTs,is the Hamiltonian of the plasmons in the cellular fluid environment,andrepresents the interaction between the MTs and cellular aqueous environment caused by the interactions between the dipole and net charges.is the reason for decoherence;if=0,the decoherence time is τ=∞.

    Fig.3.Schematic diagram of the coupling between tubulin dimers and the cellular fluid environment.

    As shown in Fig.3,the interaction Hamiltonian between a single tubulin dimer with the electric dipole moment pand the cellular fluid environment can be shown as follows:

    2.2.Computation method of decoherence timescale

    Now,the total Hamiltonian equation(4)will be derived;some basic assumption or approximation is listed below,and will be discussed in Section 3 and appendix.

    (i)Water is treated as an medium with a dielectric constant ε=80ε0,and detailed interaction of ion-water molecules and MT-water molecules is ignored.

    (ii)Due to the Debye shielding,plasma oscillations could only be excited above the Debye length,that is to say,the wave numberk has an upper limit of k=kD=2π/λD;in our calculation,we consider k will decay rapidly as a small quantity for the short wavelength modes.

    (iii)Random phase approximation(RPA)for many particles system,In equilibrium state or near equilibrium state,as the position of particles is random,∑iexp(ik ·ri)=0 unless k=0.

    (iv)The tubulin dimers are seen as a mass point with electric dipole moment p.

    As introduced in Subsection 2.1,the tubulin dimers have different conformational states,denoted by|ki,and let?c?k,?ckbe the creation operator and annihilation operator of the quantum state|ki,so the Hamiltonian of tubulin dimers can be expressed by

    The detailed calculation ofwill be given in Appendix A and Appendix B,and the total Hamiltonian of the MTs and cellular environment can be expressed as follows:

    where ω(k)=is the dispersion relation of plasma oscillation,(k)and(k)are the creation operator and annihilation operator of plasma oscillations,respectively,and the coupling coefficient μn,kis given by

    Equation(8)is given in Appendix C,and pnis the electric dipole moment in state|ni.

    Next,Tolkunov’s model is used,[31,32]which describes the interaction between the spin system and Boson thermal reservoir.In 2-level approximation,the Hamiltonian equation(7)of our model is the same with that of Tolkunov’s in form,so the non-diagonal elements of density matrix will also change with time in the same way

    Here,and the integral region is 0

    where

    Obviously,G(t)>0.In the quantum information theory,the decoherence process is reflected in the damping of the nondiagonal element of the density matrix,so we define decoherence timeτas the timescale when qn(t)decays into qn(0)/e,namely

    Equations(11)and(12)could be used to compute decoherence time.

    2.3.Typical order of magnitude of decoherence timescale

    In this section, the typical value of decoherence time scale will be estimated by Eqs.(11)and(12).The parameters in Eq.(10)are chosen as follows:

    pn=3×10?28C·m is the electric dipole moment of tubulin dimer.[25]

    ε=80ε0is the dielectric constant of water.[29]

    λD~0.7 nm,ωp=0.6 THz;these two basic plasma parameters have been discussed in Subsection 2.1.

    T=310 K is the environment temperature.

    β=300 m/s since it has the same order of magnitude with the thermal velocity.

    kB=1.38×10?23J/K is the Boltzmann’s constant.

    =1.0546×10?34J·s is the Planck’s constant.

    The function G(t)can be computed in a numerical method(Fig.4).Set G(τ)=1 and the decoherence time could be easily obtained

    The decoherence timescale is about 10 fs.

    Fig.4.Schematic diagram of how to compute the decoherence time by the exponential factor G(t).

    2.4.The dependence of decoherence time with other parameters

    Decoherence time may change with other parameters;how these parameters affect the decoherence time will be studied in this section.As discussed in Subsection 2.3,the typical time scale for decoherence is T0=10 fs.So set T0=10 fs as the time unit,six dimensionless physical quantities are shown below

    Then equations(11)and(12)become

    The typical values of these parameters are given in Subsection 2.3;in this section,their values are given in a wide range as follows:

    Here,some values may never be reached,such as T=900 K,ε=240ε0,and so on;but the purpose in this model is to analyze how the decoherence time changes with physical parameter,so the parameter distribution is in a very wide range.

    Case 1: Decoherence time changes with plasma frequency ωp

    As shown in Fig.5,decoherence remains almost unchanged when the plasma frequency changes.

    Fig.5.Decoherence time changes with plasma frequency ωpwhen other parameters are consistent with those in Subsection 2.3.

    Case 2:Decoherence time changes with average thermal velocity β

    As shown in Fig.6,decoherence remains almost unchanged when the average thermal velocity β changes,similar to Case 1.

    Fig.6.Decoherence time changes with average thermal velocity β when other parameters are consistent with those in Subsection 2.3.

    Case 3:Decoherence time changes with Debye length λD

    In Fig.7,the decoherence time increases with Debye length;since the plasma oscillation modes could only be excited when k<2π/λD,a larger Debye length means that fewer modes will be excited,so the number of the modes interacting with MTs will decrease,and the decoherence time will increase.

    Fig.7.Decoherence time changes with Debye length λDwhen other parameters are consistent with those in Subsection 2.3.

    Use τ=CλsDto fit the curve in Fig.7(or equivalently lnτ=slnλD+lnC),the power exponent s and linearly dependent coefficient for lnτ,lnλDare

    Doing the same work to other parameters and we find that τ=CλsDcould fit the relationship between τ,λD,so we can approximately consider that

    Case 4:Decoherence time changes with dielectric constant of water

    In Fig.8,the decoherence time increases with dielectric constant of water,and the reason is obvious.According to Eq.(5),a larger dielectric constant means the weaker interaction between MTs and environment.

    Fig.8.Decoherence time changes with dielectric constant of water when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 5:Decoherence time changes with dipole moment of tubulin dimer pn

    In Fig.9,we show the decoherence time decreases as the dipole moment of tubulin dimer increases;according to Eq.(5),the increase of the dipole moment will enhance the interaction between MTs and environment,and then the decoherence time will decrease.

    Fig.9.Decoherence time changes with dipole moment of tubulin dimer pn when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 6: Decoherence time changes with environment temperature T

    In Fig.10,the decoherence time decreases as the environment temperature increases,and it is also easy to understand.The higher temperature means that more oscillation modes will be excited,and this will have a greater impact on the MTs,so the decoherence time decreases.

    Fig.10.Decoherence time changes with environment temperature T when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    According to Eqs.(16)–(19),the decoherence time could be approximately expressed as Since the decoherence time relies less on ωp, β,then equation(20)will be changed into:

    In fact,equation(21)could be proved,since the plasma frequency

    THz,the decoherence time τ~10 fs–100 fs,and the temperature T ~ 100 K.Therefore,

    Under the condition of Eq.(22),equation(12)could be approximately expressed as

    Then the decoherence time satisfies

    Equation(24)could be used for calculating the decoherence time only under the condition of Eq.(22).However,equation(24)is useful for various actual parameters.

    3.Conclusion and outlook

    If the Orch OR model can be verified both in theory and experiment,the influence will be inestimable;however,the conformational state is affected by the “warm and wet”cellular environment,and the decoherence time is a very important parameter.

    In this paper,the decoherence time scale is even smaller than 0.1 ps.This timescale is so short that quantum state will be destroyed by the cell solution environment soon.This model only considers the coupling between the tubulin dimers and ions in the cellular fluid system,treating the water as a medium and overlooking the interactions of MTs-water molecules;water molecules may shield some interactions of ion-MTs,and the interaction of water-ions and water-MTs may have influence on the decoherence process.[32,33]According to Eq.(24),if the interaction strength a√ttenuates to ε(0<ε<1),the decoherence will increase to 1/ε than before;an enough decoherence requires ε?1 and the strength of shielding by water molecules needs to be measured by experiment.

    Other mechanism for decoherence that is not considered is the coherent pumping of the system via the environment.[21]According to Fro¨hlich’s theory,if a system is strongly coupled to its environment via some degrees of freedom,and a coherent pumping source exists in environment,it might inhibit other degrees of freedom known as coherent oscillations.[35,36]Such oscillations might increase the decoherence time.Guanosine triphosphate(GTP)hydrolyzation in the cells might act as a pumping source.This mechanism was not considered in this paper.

    Decoherence is an important phenomenon in quantum information.Decoherence mainly comes from the interaction of quantum systems with the environment.In the range of molecule interactions,the main interaction between environment and tubulin dimers is the electromagnetic interaction;the electromagnetic field comes from ions and thermal radiation of the environment.However,in this model,the thermal radiation is ignored,and in the range of room temperature,the thermal frequency spectrum mainly concentrates in the range of THz band.The water molecules in the cell environment could strongly absorb the THz photon and the model only takes into account the electromagnetic field from ions.Besides,if the thermal radiation is considered,the decoherence time would be smaller than the result given before,and it will not change the conclusion.

    This model needs to be verified both experimentally and theoretically. This model may offer a helpful theoretical framework to compute the decoherence time in quantum biosystems,even though the environment of biological system is different.However,the electromagnetic interaction is essential in the scale of molecules,so this modelcould be used for reference when dealing with the interaction between the ions in cell environment and dipoles of bio-molecules.The direct experiment to verify this model is hard to be carried out at this time,but with the development of ultrafast biophysics,quantum information,quantum optics,and imaging technology,[37–41]the experiment could be carried out in the future.

    Appendix A:Dispersion relation of ion density wave

    In Appendix A,the dispersion relation of ion density wave is derived by fluid theory.Note that ni,mi,vi,qirepresent the particle number density,ion mass,the macro velocity,and electric charge of the i-th ion. E is the space electric field,βiis used to represent the ion thermal velocity,and?mβ2i?niis the thermodynamic pressure of the i-th ion.Then according to fluid theory

    In order to deduce intrinsic oscillation mode and its dispersion relation,linearization is done for Eq.(A1).For arbitrary physical quantity A,it is divided into two parts

    Now,let us compute the eigenmode with intrinsic wavelength and frequency.Set?A=?A0exp[i(k·r?ωt)].Then the operator?/?t= ?iω,? =ik,and equation(A3)changes to

    According to Eq.(A4),the eigen-equation is

    Or equivalent in matrix form where ?l,k=(ω2?k2β2l)δkl?hnliqlqk/εml,and?=(?1,?2,...,?M)T.Set f(ω,k)=det?(ω,k),equation(A6)must have untrivial solution to ensure eigenmode exits,so the dispersion relation is determined by

    Set ql=(?1)υlZle,where Zlis the valence state of ions,e.g.,for Na+and Cl?,Zl=1,and for Ca2+,Zl=2,and υlrepresents the sign of ion charge,and

    In long-wavelength limit kβl/ω ?1,then

    whereis the plasma frequency,is the average thermal velocity of all ions,and cj(j=2,3,...,M)is the M?1 roots of the following equation

    So M kinds of waves are obtained,and their dispersion relation is

    The ion charged density is

    Use Eqs.(A11)and(A6),under the condition of longwavelength approximation,only when ω2=ω2p+β2k2,ρ 6=0;otherwise ρ =0.That is to say,ω2= ω2p+β2k2represents ion charged density wave,and can be coupled with MTs by dipole–charge interactions as shown in Fig.2.Other M ?1 kinds of waves could not couple with MTs under the condition of long-wavelength approximation.

    Finally,diagonalize matrix ?

    Set P(k)=P(0)+O(k2)and define another variable ρ=(ρ1,ρ2,...,ρM)T,which is determined by

    The transformation between n and ρ is

    Then

    Compare Eqs.(A16)and(A11),then

    So eρ1could also be used to represent net charge density of ions,and equations(A15)and(A17)will be used in Appendix B.

    Appendix B:Second quantization of environment Hamiltonian Heand interaction Hamiltonian Hin

    In the coordinate representation,the Hamiltonian Heof cellular environment can be shown as follows:

    where rk,irepresents the position of the k-th kind of ions that have been numbered i,φ,A are scalar potential and vector potential,respectively,and pk,j=?k,jis the canonical momentum.The first term represents the kinetic energy of the ions,and the second term represents the field energy.

    The potentials φ,A are not unique.For two different potentials(φ,A),(φ0,A0),if they satisfy

    the two potentials will have the same field E, B as follows:

    We use an approach similar to the David Bohm’s electron gas model and define the Hamiltonian Eq.(B1)in another manner;[33]the second term is derived from the interactions between ions and the energy stored in the field.Therefore,equation(B1)can be written in an equivalent way as follows:

    First,set ξ =Rφdt so that φ0=0,then E = ??A/?t, B =?×A.ExpandAin Fourier series exp(ik·r)

    whereek=k/k is an unit vector parallel to the direction of the wave propagation,ekμ(μ =1,2)is another two-unit vector which is perpendicular to ek,and ek1⊥ek2.SoAkandA⊥represent longitudinal wave and transverse wave,respectively.Their electric field and magnetic field are

    where p(?k)=˙q(k),Pμ(?k)=˙Qμ(k).Aand Eare real and can be ensured as follows:

    Use Eqs.(B5)and(B6)as well as the commutative relation[^p,A]=?i??·A,the Hamiltonian equation(B4)will become

    where

    Now,use Eq.(B5),then we have

    where nlis the number of l-th kind of ions in a unit volume.The random phase approximation(RPA)makes the second term inconsiderably smaller than the first termtherefore

    Similarly,

    Use Eqs.(B6a)and(B6b),then we obtain

    means the kinetic energy,and it can be divide it into two parts

    The first term is the macroscopical translational energy,and the second term means the thermodynamic energy.

    The second term in Eq.(B14)can be changed into

    Now,use Eq.(A15)and ignore the cross term ρiρj(i6=j),then

    As discussed in Appendix A,eρ1represents net charge density of ions,so use Gauss’s theorem in k-space

    Use Eqs.(B8)–(B17),then the total Hamiltonian is expressed by

    where the first term means ion sound wave,the second term means interaction between ions and fields and it is neglected for the reason that each ion has a random phase(random phase approximation or RPA),?21(k)= ω2p+c2k2is the dispersion relation of electromagnetic wave in plasma,and ?22(k)=ω2p+β2k2is the dispersion relation of charged density wave or plasma oscillation.

    At last,using second quantization method,define(k),(k)as the creation operator and annihilation operator of electromagnetic wave,respectively,and(k)and ?a(k)as the creation operator and annihilation operator of the plasma oscillations,respectively,and we can obtain

    Andsatisfy the commutation relation

    Use Eqs.(B19)and(B20)and the random phase approximation,the Hamiltonian equation(B18)will become

    where

    In long-wavelength limit,β2k2/ω2p?1,so

    This is the dispersion relation of ion charged density wave as shown in Appendix A.

    In Eq.(B21),only the 3rd term could be coupled with MTs by dipole–charge interactions(as seen in Eq.(B17),ρ(k)is only related to p(k)instead of Pμ(k)),so this model only considers the 3rd term which is named

    namely,the coupling between MTs and cellular environment via interactions between plasma oscillations and dipoles.The interaction Hamiltonian for a single dipole with the cellular environment is determined by Eq.(5).Thus,after Fourier transformation,equation(5)becomes

    According to Eqs.(B17)and(B19b),then

    the MT’s dipole p can be written as follows:

    Here, pn=hn|? p|ni is the observed value of pin state|ni.In Eq.(B27),the the cross term pm,n?c?m?cnwas neglected,use Eqs.(B25)–(B27),then the coupling Hamiltonian can be written as follows:

    where

    The Hn,kmeans the interaction between MTs and cellular fluid environment mentioned later,and it is then used to compute decoherence time,and λn,kis the coupling coefficient.The method for computing the coupling coefficient λn,kwill be introduced in Appendix C.

    Appendix C:Computation of coupling coefficient λn,k

    The coupling coefficient λn,kis expressed as follows:

    where pnis a constant vector;for a certaink,the z axis is set to be parallel tok.In the spherical coordinate frame,k·r =krcosθ,and the volume element dr =r2sinθdθd?;thus, pncan be expressed as follows:

    Thus,

    When the variable ? is integrated in the interval[0,2π],thenpzcosθ exp(ikrcosθ)sinθdrdθd?

    where

    Compute Eq.(C5),then A=0 and

    Here, pz= pn·k/k;generally,in the actual situation,plasma oscillations will be excited only when the wavelength is larger than the Debye length λD.Therefore,only k<2π/λDcould be used to refer to the excited state.The integral in Eq.(C1)in the space|r|> λDbecause a shielding layer charge appears on the surface of MTs with a thickness λD,as shown in Fig.2.The shielding layer charge is stable and cannot excite plasma oscillations;therefore,in Eq.(C6),rmin=λDand rmax=∞.Hence,

    Define b(k)= ?ia(k)as new creation operator and annihilation operator,then the total Hamiltonian is

    where

    and we have obtained Eqs.(7)and(8).

    [1]Turin L 1996 Chem.Senses 21 773

    [2]Franco M I and Siddiqi O 2011 Proc.Natl.Acad.Sci.USA 108 3797

    [3]Ritz T,Adem S and Schulten K 2000 Biophys.J.78 707

    [4]Hiscock H G,Worster S,Kattnig D R,Steers C,Jin Y,Manolopoulos D E,Mouritsen H and Hore P J 2016 Proc.Natl.Acad.Sci.USA 113 201600341

    [5]Gregory S E,Tessa R C,Elizabeth L R,Tae-Kyu A,Toma′s M,Yuan-Chung C,Robert E B and Graham R F 2007 Nature 446 782

    [6]Romero E,Augulis R,Novoderezhkin V I,Ferretti M,Thieme J,Zigmantas D and Van Grondelle R 2014 Nat.Phys.10 676

    [7]Levi F,Mostarda S,Rao F and Mintert F 2015 Rep.Prog.Phys.78 082001

    [8]Novelli F,Nazir A,Richards G H,Roozbeh A,Wilk K E,Curmi P M and Davis J A 2015 J.Phys.Chem.Lett.6 4573

    [9]Sarovar M,Ishizaki A,Fleming G and Whaley B 2010 Nat.Phys.3 462

    [10]Marletto C,Coles D,Farrow T and Vedral V 2018 J.Phys.Commun.2 101001

    [11]Mesquita M V,VasconcellosR,Luzzi R and Mascarenhas S 2005 Int.J.Quantum Chem.102 1116

    [12]Jackendoff R 1987 Consciousness and the Computational Mind(Cambridge:The MIT Press)pp.275–280

    [13]Tononi G,Boly M,Massimini M and Koch C 2016 Nat.Rev.Neurosci.17 450

    [14]Crick F and Koch C 2003 Nat.Neurosci.6 119

    [15]Edelman G M 2003 Proc.Natl.Acad.Sci.USA 100 5520

    [16]Jahn R G and Dunne B J 2007 Found.Phys.3 306

    [17]Mershin A,Sanabria H,Miller J H,Nawarathna D,Skoulakis E M,Mavromatos N E,Kolomenskii A A,Schuessler H A,Luduena R F and Nanopoulos D V 2006 The Emerging Physics of Consciousness(Berlin:Springer)pp.95–170

    [18]Hameroff S and Penrose R 2014 Phys.Life Rev.11 39

    [19]Hameroff S and Penrose R 2014 Phys.Life Rev.11 94

    [20]Hameroff S R and Penrose R 2017 Biophysics of Consciousness:A Foundational Approach(Singapore:World Scientific)pp.517–599

    [21]Craddock T J A and Tuszynski J A 2010 J.Biol.Phys.36 53

    [22]Craddock T J,Priel A and Tuszynski J A 2014 J.Integr.Neurosci.13 293

    [23]Fisher M 2015 Ann.Phys.61 593

    [24]Hameroff S R 2007 Cogn.Sci.31 1035

    [25]Mavromatos N E,Mershin A and Nanopoulos D V 2002 Int.J.Mod.Phys.B 16 3623

    [26]Mavromatos N 1999 Bioelectrochemistry Bioenergetics 48 273

    [27]Tegmark M 2000 Phys.Rev.E 61 4194

    [28]Hagan S,Hameroff S R and Tuszy′nski J A 2002 Phys.Rev.E 65 061901

    [29]Nelson P 2007 Biological Physics(New York:WH Freeman)p.416

    [30]Priel A,Tuszynski J A and Woolf N J 2005 Eur.Biophys.J.Biophys.Lett.35 40

    [31]Privman V and Tolkunov D 2005 Quantum Information and Computation III(Bellingham:The International Society for Optics and Photonics),pp.187–195

    [32]Tolkunov D,Privman V and Aravind P K 2005 Phy.Rev.A 71 060308

    [33]Craddock T J,Friesen D,Mane J,Hameroff S and Tuszynski J A 2014 J.R.Soc.Interface 11 20140677

    [34]Chen Y,Okur H I,Gomopoulos N,Macias-Romero C,Cremer P S,Petersen P B,Tocci G,Wilkins D M,Liang C and Ceriotti M 2016 Sci.Adv.2 e1501891

    [35]Fr?hlich H 1968 Int.J.Quantum Chem.2 641

    [36]Wu T M and Austin S J 1981 J.Biol.Phys.9 97

    [37]Bohm D and Pines D 1953 Phy.Rev.92 609

    [38]Yin C C and Biophysics D O 2018 Chin.Phys.B 27 058703

    [39]Zheng C J,Jia T Q,Zhao H,Xia Y J,Zhang S A and Sun Z R 2018 Chin.Phys.B 27 057802

    [40]Wade C G,ˇSibali′c N,de Melo N R,Kondo J M,Adams C S and Weatherill K J 2017 Nat.Photon.11 40

    [41]Trocha P,Karpov M,Ganin D,Pfeiffer M H,Kordts A,Wolf S,Krockenberger J,Marin-Palomo P,Weimann C and Randel S 2018 Science 359 887

    国产一区有黄有色的免费视频| 纯流量卡能插随身wifi吗| 欧美成人精品欧美一级黄| 十八禁高潮呻吟视频 | 免费观看a级毛片全部| 国产男人的电影天堂91| 99九九在线精品视频 | 久久久久久久久大av| 偷拍熟女少妇极品色| 国产淫片久久久久久久久| 久久久久久久久久久丰满| 中文资源天堂在线| 亚洲av中文av极速乱| 午夜激情久久久久久久| 在现免费观看毛片| 国产亚洲av片在线观看秒播厂| 国产在线免费精品| 亚洲av成人精品一二三区| 日本av手机在线免费观看| 久久久久国产精品人妻一区二区| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| 高清av免费在线| 婷婷色综合www| 在线亚洲精品国产二区图片欧美 | 街头女战士在线观看网站| 日本猛色少妇xxxxx猛交久久| 国产亚洲精品久久久com| 高清在线视频一区二区三区| 制服丝袜香蕉在线| 色哟哟·www| 亚洲精品日本国产第一区| 免费黄频网站在线观看国产| 边亲边吃奶的免费视频| 亚洲精品国产成人久久av| a 毛片基地| 日本欧美视频一区| 午夜福利在线观看免费完整高清在| 久久久久久伊人网av| 精品卡一卡二卡四卡免费| 如何舔出高潮| av福利片在线观看| 五月玫瑰六月丁香| 亚洲欧美中文字幕日韩二区| 亚洲人成网站在线观看播放| 亚洲精品视频女| √禁漫天堂资源中文www| 色婷婷久久久亚洲欧美| 国产欧美日韩精品一区二区| 日日啪夜夜撸| 伦理电影免费视频| 超碰97精品在线观看| 亚洲国产精品999| 免费高清在线观看视频在线观看| 久久6这里有精品| 日本黄色片子视频| 性高湖久久久久久久久免费观看| 最黄视频免费看| 91在线精品国自产拍蜜月| 国产无遮挡羞羞视频在线观看| 尾随美女入室| 久久久久久久久久久久大奶| 一区二区av电影网| 国产黄频视频在线观看| 十八禁网站网址无遮挡 | 少妇的逼好多水| 热re99久久国产66热| 精品久久久精品久久久| 免费看日本二区| 国产成人午夜福利电影在线观看| .国产精品久久| 欧美日韩一区二区视频在线观看视频在线| 国产精品无大码| 亚洲内射少妇av| 美女cb高潮喷水在线观看| 日韩 亚洲 欧美在线| 国产美女午夜福利| 丁香六月天网| 一个人看视频在线观看www免费| 午夜日本视频在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品人妻久久久久久| 女人久久www免费人成看片| 22中文网久久字幕| 亚洲美女黄色视频免费看| 男女国产视频网站| 久久久精品94久久精品| 午夜91福利影院| 国产精品久久久久久精品古装| 国产成人午夜福利电影在线观看| 高清黄色对白视频在线免费看 | 久久久国产欧美日韩av| 黄色一级大片看看| 免费高清在线观看视频在线观看| 亚洲精品乱久久久久久| 丰满乱子伦码专区| 欧美日韩国产mv在线观看视频| 韩国av在线不卡| videos熟女内射| 国产成人一区二区在线| 欧美精品一区二区大全| 99久久精品热视频| 综合色丁香网| 久久久久国产精品人妻一区二区| 亚洲第一av免费看| 亚洲人成网站在线播| 色视频www国产| 欧美一级a爱片免费观看看| 国产成人精品福利久久| 天天躁夜夜躁狠狠久久av| 99久久精品热视频| 美女xxoo啪啪120秒动态图| 99久国产av精品国产电影| 亚洲国产成人一精品久久久| 国产精品不卡视频一区二区| 在线看a的网站| 草草在线视频免费看| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久久大av| av不卡在线播放| 男女无遮挡免费网站观看| 亚洲一区二区三区欧美精品| 精品少妇久久久久久888优播| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 国产亚洲午夜精品一区二区久久| 欧美日韩亚洲高清精品| 国产成人精品久久久久久| √禁漫天堂资源中文www| 性色av一级| 亚洲中文av在线| 国产精品国产三级国产av玫瑰| 国产片特级美女逼逼视频| 免费看不卡的av| 国产精品无大码| 亚洲成人手机| 久久狼人影院| 看非洲黑人一级黄片| 能在线免费看毛片的网站| 国产淫语在线视频| 26uuu在线亚洲综合色| 亚洲va在线va天堂va国产| 精品视频人人做人人爽| 看非洲黑人一级黄片| 夜夜骑夜夜射夜夜干| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩在线中文字幕| 亚洲婷婷狠狠爱综合网| 夜夜爽夜夜爽视频| 3wmmmm亚洲av在线观看| 国产淫片久久久久久久久| 日日摸夜夜添夜夜添av毛片| 我的女老师完整版在线观看| 麻豆乱淫一区二区| 国产av精品麻豆| 国产男女内射视频| 久久久久久人妻| 欧美xxⅹ黑人| 嫩草影院新地址| 国产日韩欧美亚洲二区| 国产极品天堂在线| 一本久久精品| 少妇被粗大的猛进出69影院 | 少妇高潮的动态图| 伦理电影免费视频| tube8黄色片| 亚洲精品视频女| 久久 成人 亚洲| 欧美精品高潮呻吟av久久| 亚洲av中文av极速乱| 91久久精品国产一区二区成人| 精品亚洲成国产av| 国产精品偷伦视频观看了| 六月丁香七月| 日韩成人伦理影院| 极品人妻少妇av视频| 黄色视频在线播放观看不卡| 国产黄片美女视频| 久久久久人妻精品一区果冻| 新久久久久国产一级毛片| 男的添女的下面高潮视频| 黄色怎么调成土黄色| 亚洲图色成人| 中文欧美无线码| av国产久精品久网站免费入址| h视频一区二区三区| 国产一区二区三区av在线| 一级毛片我不卡| 亚洲人成网站在线观看播放| 国产伦精品一区二区三区视频9| 五月天丁香电影| 国产精品99久久久久久久久| 高清av免费在线| 男人狂女人下面高潮的视频| 大陆偷拍与自拍| 国国产精品蜜臀av免费| 亚洲av在线观看美女高潮| 男女啪啪激烈高潮av片| 日韩免费高清中文字幕av| 18+在线观看网站| 精品一区二区免费观看| 麻豆乱淫一区二区| 国产成人精品无人区| 9色porny在线观看| 在线观看一区二区三区激情| 少妇丰满av| 2021少妇久久久久久久久久久| 亚洲,欧美,日韩| 久久久久久伊人网av| 免费在线观看成人毛片| 中文字幕人妻丝袜制服| av卡一久久| 一级毛片aaaaaa免费看小| 欧美日韩精品成人综合77777| 大香蕉97超碰在线| 黄色配什么色好看| 久久久精品94久久精品| 日本91视频免费播放| av播播在线观看一区| 2021少妇久久久久久久久久久| 欧美+日韩+精品| 爱豆传媒免费全集在线观看| 国产深夜福利视频在线观看| 国产亚洲5aaaaa淫片| 性色avwww在线观看| 97超碰精品成人国产| 国产伦精品一区二区三区视频9| 99热6这里只有精品| av天堂中文字幕网| 91在线精品国自产拍蜜月| 在线观看免费视频网站a站| 欧美bdsm另类| 韩国高清视频一区二区三区| 久久久久久久久久久久大奶| 99久国产av精品国产电影| 看免费成人av毛片| 人人澡人人妻人| 成人美女网站在线观看视频| 欧美 亚洲 国产 日韩一| 久久鲁丝午夜福利片| 国产精品免费大片| av黄色大香蕉| 精品国产乱码久久久久久小说| 人妻少妇偷人精品九色| 成年美女黄网站色视频大全免费 | 丰满饥渴人妻一区二区三| 欧美三级亚洲精品| 成人无遮挡网站| 午夜福利,免费看| 国产精品人妻久久久影院| 欧美日韩亚洲高清精品| 91aial.com中文字幕在线观看| 一本一本综合久久| 国产高清不卡午夜福利| 久久韩国三级中文字幕| 人妻制服诱惑在线中文字幕| 欧美性感艳星| 亚洲人成网站在线观看播放| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久久丰满| 欧美日韩在线观看h| 精品一区二区三区视频在线| 久久人妻熟女aⅴ| 亚洲欧美日韩卡通动漫| 亚洲国产精品999| 高清av免费在线| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看日韩| 超碰97精品在线观看| av网站免费在线观看视频| 精品国产国语对白av| 在线精品无人区一区二区三| 狂野欧美激情性xxxx在线观看| 老女人水多毛片| 少妇人妻一区二区三区视频| 韩国av在线不卡| 国产成人精品无人区| 欧美日韩国产mv在线观看视频| 免费看光身美女| 一级毛片电影观看| 日韩欧美一区视频在线观看 | 久久毛片免费看一区二区三区| 亚洲av.av天堂| 91精品国产九色| 国产女主播在线喷水免费视频网站| 亚洲内射少妇av| 午夜激情福利司机影院| 成人无遮挡网站| 久久久久久久久久久丰满| 制服丝袜香蕉在线| 日日爽夜夜爽网站| 日韩电影二区| 午夜av观看不卡| 久久6这里有精品| 欧美精品高潮呻吟av久久| 亚洲精品视频女| 91精品伊人久久大香线蕉| 成年女人在线观看亚洲视频| 日韩不卡一区二区三区视频在线| 插阴视频在线观看视频| 国产日韩欧美在线精品| 日韩中字成人| 亚洲精品国产av成人精品| 亚洲第一av免费看| 3wmmmm亚洲av在线观看| av女优亚洲男人天堂| 岛国毛片在线播放| 一级a做视频免费观看| 亚洲精品456在线播放app| 久久久国产精品麻豆| 日韩精品有码人妻一区| 日韩欧美精品免费久久| 精品一品国产午夜福利视频| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| 国产亚洲av片在线观看秒播厂| 久久久亚洲精品成人影院| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| 交换朋友夫妻互换小说| 综合色丁香网| 丝袜喷水一区| 2022亚洲国产成人精品| 精品国产国语对白av| 日韩在线高清观看一区二区三区| 成人特级av手机在线观看| 免费人成在线观看视频色| 亚州av有码| 十八禁高潮呻吟视频 | 晚上一个人看的免费电影| 国产精品成人在线| 色视频www国产| 国产黄色免费在线视频| 97精品久久久久久久久久精品| 纵有疾风起免费观看全集完整版| 国产老妇伦熟女老妇高清| 国产熟女欧美一区二区| 欧美 亚洲 国产 日韩一| 国产有黄有色有爽视频| 中文字幕精品免费在线观看视频 | 久久鲁丝午夜福利片| 天堂8中文在线网| 日日摸夜夜添夜夜添av毛片| 国产综合精华液| 亚洲欧美成人精品一区二区| 一级毛片久久久久久久久女| 亚洲在久久综合| 午夜免费鲁丝| 精品酒店卫生间| 一区二区三区四区激情视频| 久久久国产精品麻豆| 免费观看无遮挡的男女| 看十八女毛片水多多多| 丰满少妇做爰视频| 亚洲第一区二区三区不卡| 人妻人人澡人人爽人人| 免费观看av网站的网址| av女优亚洲男人天堂| 午夜福利网站1000一区二区三区| 国产精品久久久久成人av| 亚洲电影在线观看av| 日韩免费高清中文字幕av| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 肉色欧美久久久久久久蜜桃| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 欧美 亚洲 国产 日韩一| av天堂中文字幕网| 免费观看的影片在线观看| 一级毛片黄色毛片免费观看视频| 日本欧美国产在线视频| 久久热精品热| 国产精品一二三区在线看| 欧美亚洲 丝袜 人妻 在线| 青春草国产在线视频| 国产黄频视频在线观看| 久久久久久久大尺度免费视频| 日本av免费视频播放| 亚洲av综合色区一区| 中文欧美无线码| 国产亚洲一区二区精品| 欧美亚洲 丝袜 人妻 在线| 亚洲精品成人av观看孕妇| 天天操日日干夜夜撸| 麻豆成人午夜福利视频| 亚洲精品日韩在线中文字幕| 成人二区视频| 视频区图区小说| 久久精品国产亚洲av天美| 亚洲国产精品专区欧美| 丝袜喷水一区| 精品久久国产蜜桃| 国产伦理片在线播放av一区| 啦啦啦视频在线资源免费观看| 看十八女毛片水多多多| 亚洲精品国产av成人精品| 国产免费福利视频在线观看| 最近的中文字幕免费完整| 亚洲精品亚洲一区二区| 成人二区视频| 亚洲国产av新网站| 国产一区有黄有色的免费视频| 国产男人的电影天堂91| 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| 欧美最新免费一区二区三区| 99久久精品国产国产毛片| 国产成人精品无人区| 2021少妇久久久久久久久久久| 成人毛片60女人毛片免费| 国内精品宾馆在线| 亚洲精品视频女| 热re99久久精品国产66热6| 日本色播在线视频| 97在线人人人人妻| 欧美3d第一页| 日韩精品有码人妻一区| av在线老鸭窝| 一级a做视频免费观看| 国产成人午夜福利电影在线观看| 久久精品久久精品一区二区三区| 三级经典国产精品| 免费观看性生交大片5| 另类亚洲欧美激情| 一级毛片久久久久久久久女| 国产在线视频一区二区| 一级二级三级毛片免费看| 午夜免费观看性视频| 国产精品一区二区在线不卡| 看免费成人av毛片| 午夜福利影视在线免费观看| 在线观看av片永久免费下载| 日本黄色片子视频| 国产精品秋霞免费鲁丝片| 乱码一卡2卡4卡精品| 高清av免费在线| kizo精华| 在线观看免费高清a一片| 国产av精品麻豆| 亚洲国产精品成人久久小说| 免费人妻精品一区二区三区视频| 亚洲国产成人一精品久久久| 亚洲一级一片aⅴ在线观看| 久久狼人影院| 少妇裸体淫交视频免费看高清| 国产白丝娇喘喷水9色精品| 一区二区三区乱码不卡18| 亚洲国产精品一区二区三区在线| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 国产精品人妻久久久影院| 国产亚洲av片在线观看秒播厂| 日韩人妻高清精品专区| 国产亚洲精品久久久com| 久久久国产精品麻豆| 久久人人爽av亚洲精品天堂| 国产淫语在线视频| 国产成人免费观看mmmm| 韩国高清视频一区二区三区| 边亲边吃奶的免费视频| 亚洲欧美清纯卡通| 看免费成人av毛片| 久久综合国产亚洲精品| 久久毛片免费看一区二区三区| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 亚洲欧美成人综合另类久久久| 亚洲精品456在线播放app| a级毛片在线看网站| 五月天丁香电影| 在线天堂最新版资源| 99九九在线精品视频 | av国产精品久久久久影院| 18+在线观看网站| 久久久精品94久久精品| 99国产精品免费福利视频| 亚洲高清免费不卡视频| 国产永久视频网站| 国产亚洲一区二区精品| 国产成人免费观看mmmm| 国产又色又爽无遮挡免| 午夜福利视频精品| 中文天堂在线官网| 晚上一个人看的免费电影| 中国三级夫妇交换| 日韩成人伦理影院| 欧美日韩国产mv在线观看视频| 欧美精品人与动牲交sv欧美| 美女视频免费永久观看网站| 日韩三级伦理在线观看| 国产成人一区二区在线| 最后的刺客免费高清国语| 永久网站在线| 在线观看www视频免费| 亚洲国产av新网站| 赤兔流量卡办理| 一区二区三区四区激情视频| 国产精品一区二区性色av| av福利片在线| 十八禁高潮呻吟视频 | 国产精品.久久久| 国内精品宾馆在线| 深夜a级毛片| 国产精品久久久久久久久免| 少妇丰满av| videos熟女内射| 大片电影免费在线观看免费| 午夜免费观看性视频| 久久ye,这里只有精品| 夜夜骑夜夜射夜夜干| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 在线观看一区二区三区激情| 成人国产av品久久久| 欧美日韩一区二区视频在线观看视频在线| 国模一区二区三区四区视频| 成人亚洲欧美一区二区av| 亚洲婷婷狠狠爱综合网| 插逼视频在线观看| 插阴视频在线观看视频| 国产熟女欧美一区二区| 中文字幕精品免费在线观看视频 | 极品教师在线视频| 成人黄色视频免费在线看| 丝袜在线中文字幕| 日韩中字成人| 97在线人人人人妻| 亚洲自偷自拍三级| 日韩一区二区视频免费看| 丰满乱子伦码专区| 久久久精品免费免费高清| 97在线视频观看| 赤兔流量卡办理| 久久影院123| 亚洲,欧美,日韩| 亚洲欧洲精品一区二区精品久久久 | 狂野欧美激情性bbbbbb| 亚洲激情五月婷婷啪啪| 国产精品伦人一区二区| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 国内揄拍国产精品人妻在线| 亚洲精品一区蜜桃| 最近最新中文字幕免费大全7| 老女人水多毛片| 一本—道久久a久久精品蜜桃钙片| 夜夜爽夜夜爽视频| 精品久久国产蜜桃| 国产精品不卡视频一区二区| 综合色丁香网| 日韩欧美一区视频在线观看 | 亚洲国产精品国产精品| 精品久久久久久电影网| 久久精品国产亚洲av天美| 国产一区二区在线观看av| 99热这里只有精品一区| 日韩中字成人| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 新久久久久国产一级毛片| 色吧在线观看| 亚洲国产毛片av蜜桃av| 在线观看三级黄色| 日韩一区二区视频免费看| 免费av中文字幕在线| 久久久欧美国产精品| 在线观看美女被高潮喷水网站| 国产成人精品福利久久| 国产免费一区二区三区四区乱码| 欧美日韩一区二区视频在线观看视频在线| 中文乱码字字幕精品一区二区三区| 在线观看av片永久免费下载| 久久精品国产亚洲网站| 久久国产乱子免费精品| 欧美成人午夜免费资源| 18禁裸乳无遮挡动漫免费视频| 精品视频人人做人人爽| av天堂久久9| 黄色配什么色好看| 精品久久久精品久久久| 欧美精品一区二区大全| 国产精品国产三级国产专区5o| 制服丝袜香蕉在线| 国产成人aa在线观看| 国产精品偷伦视频观看了| 免费黄网站久久成人精品| 各种免费的搞黄视频| 午夜视频国产福利| 最近中文字幕高清免费大全6| 国产男女超爽视频在线观看| 亚洲四区av| 汤姆久久久久久久影院中文字幕| 极品教师在线视频| www.色视频.com| 丝袜喷水一区| 久久ye,这里只有精品| 成人免费观看视频高清| 亚洲精品国产av成人精品| 久久热精品热| 国产免费一区二区三区四区乱码| 中文字幕免费在线视频6| 69精品国产乱码久久久| 自线自在国产av| 亚洲综合色惰| 国产色爽女视频免费观看| 免费不卡的大黄色大毛片视频在线观看| 夜夜爽夜夜爽视频| 狂野欧美激情性xxxx在线观看| 九草在线视频观看| 9色porny在线观看| 一本大道久久a久久精品| 欧美日韩一区二区视频在线观看视频在线| 曰老女人黄片| 自拍偷自拍亚洲精品老妇|