孫蘭敏,岳亞楠(. 衡水學(xué)院 數(shù)學(xué)與計(jì)算機(jī)學(xué)院,河北 衡水 053000;. 平山縣教育局,河北 平山 050400)
積分區(qū)域關(guān)于平面對(duì)稱的三重積分的計(jì)算技巧
孫蘭敏1,岳亞楠2
(1. 衡水學(xué)院數(shù)學(xué)與計(jì)算機(jī)學(xué)院,河北衡水 053000;2. 平山縣教育局,河北平山 050400)
三重積分是數(shù)學(xué)分析的重點(diǎn)和難點(diǎn),給出并證明了積分區(qū)域關(guān)于坐標(biāo)平面對(duì)稱,被積函數(shù)關(guān)于某變量具有奇偶性的三重積分的計(jì)算技巧,進(jìn)而給出并證明了積分區(qū)域關(guān)于任一平面對(duì)稱,被積函數(shù)具有某些特性的三重積分計(jì)算技巧.
積分區(qū)域;對(duì)稱;平面;三重積分
三重積分的計(jì)算是數(shù)學(xué)分析的難點(diǎn),對(duì)稱區(qū)域上的三重積分的計(jì)算技巧性較強(qiáng).合理利用區(qū)域的對(duì)稱性及函數(shù)的奇偶性可簡(jiǎn)化計(jì)算過(guò)程;不利用區(qū)域的對(duì)稱性及函數(shù)的奇偶性,往往計(jì)算較繁瑣甚至于不能求出結(jié)果;亂用對(duì)稱性簡(jiǎn)化計(jì)算過(guò)程,會(huì)導(dǎo)致計(jì)算錯(cuò)誤.
定義1若點(diǎn)(x,y,z)∈V可推出點(diǎn)(-x,y,z)∈V,則稱區(qū)域V關(guān)于平面x=0對(duì)稱;若點(diǎn)(x,y,z)∈V可推出點(diǎn)(x,-y,z)∈V,則稱區(qū)域V關(guān)于平面y=0對(duì)稱;若點(diǎn)(x,y,z)∈V可推出點(diǎn)(x,y,-z)∈V ,則稱區(qū)域V關(guān)于平面z=0對(duì)稱.
若滿足以上兩條,則稱區(qū)域V關(guān)于其中兩個(gè)坐標(biāo)面對(duì)稱;若滿足以上三條,則稱區(qū)域V關(guān)于三個(gè)坐標(biāo)面都對(duì)稱.
證不妨設(shè)V ={(x,y,z):-Ψ(y,z)≤x≤Ψ(y,z),φ1(z)≤y≤φ2(z),a≤z≤b}.
,其中Ω為x2+y2+z2≤1.
,則有
類似可證明下面結(jié)論成立.
定理2 設(shè)積分區(qū)域V關(guān)于平面y=0對(duì)稱,函數(shù)f(x,y,z)在V上連續(xù).
定理3 設(shè)積分區(qū)域V關(guān)于平面z=0對(duì)稱,函數(shù)f(x,y,z)在V上連續(xù).
2) 若f(x,y,z)=f(x,y,-z),則,(V1為V中z≥0的部分).
由此可以給出積分區(qū)域關(guān)于兩個(gè)平面都對(duì)稱的情況.
推論1 設(shè)積分區(qū)域V關(guān)于平面x=0、y=0都對(duì)稱,函數(shù)f(x,y,z)在V上連續(xù).
推論2 設(shè)積分區(qū)域V關(guān)于平面y=0、z=0都對(duì)稱,函數(shù)f(x,y,z)在V上連續(xù).
推論3 設(shè)積分區(qū)域V關(guān)于平面x=0、z=0都對(duì)稱,函數(shù)f(x,y,z)在V上連續(xù).
推論4 設(shè)積分區(qū)域V關(guān)于三個(gè)坐標(biāo)平面都對(duì)稱,函數(shù)f(x,y,z)在V 上連續(xù).
(V1是V中第一卦限的部分).
定義2 設(shè)空間一平面π:Ax+By+Cz +D=0,若?點(diǎn)(x,y,z)∈V可推出點(diǎn)(x ′,y′,z′)∈V ,則稱區(qū)域V關(guān)于平面π對(duì)稱,其中
函數(shù)f(x,y,z)在區(qū)域V上滿足f(x,y,z)=-f(x′,y′,z′)(或f(x,y,z)=f(x′,y′,z′)),則稱函數(shù)f(x,y,z)是該區(qū)域上關(guān)于平面π的奇(或偶)函數(shù).
定理4 設(shè)積分區(qū)域V關(guān)于平面π:Ax+By+Cz+D =0對(duì)稱,f(x,y,z)在積分區(qū)域V上連續(xù).
若f(x,y,z)為V上關(guān)于平面π的奇函數(shù),則
(責(zé)任編校:李建明 英文校對(duì):李玉玲)
Calculative Skill of Triple Integral in Plane Symmertrical Region
SUN Lanmin1, YUE Yanan2
(1. College of Mathematics and Computer Science, Hengshui University, Hengshui, Hebei 053000, China;
2. Education Bureau of Pingshan County, Pingshan, Hebei 053000, China)
Triple integral is the key and difficult point in the mathematical analysis. The paper gives and proves the alculation formula of triple integral of the integral region is symmetric on the coordinate plane, and the integrand of riple integral has a parity on a variable. Then it gives and proves the calculation formula of triple integral of the ntegral region is symmetric on a random plane and the integrand functions have certain properties.
integral region; symmetry; plane; triple integral
O172.2
A
1673-2065(2016)04-0001-04
2015-09-17
孫蘭敏(1963-),女,河北深州人,衡水學(xué)院數(shù)學(xué)與計(jì)算機(jī)學(xué)院教授.
岳亞楠(1990-),女,河北平山人,平山縣教育局特崗教師.
10.3969/j.issn.1673-2065.2016.04.002