劉 進(jìn), 孫 菁
復(fù)旦大學(xué)附屬中山醫(yī)院放療科, 上?!?00032
?
·論著·
四維CT確定肝癌放療內(nèi)靶區(qū)的臨床應(yīng)用
劉進(jìn), 孫菁*
復(fù)旦大學(xué)附屬中山醫(yī)院放療科, 上海200032
[摘要]目的: 探討四維CT(four-dimensional computed tomography, 4DCT)掃描的勾畫方法,以及其在快速確定肝臟腫瘤內(nèi)靶區(qū)(internal target volume, ITV)中的作用。方法: 2011年1月至2013年8月,便利抽樣選擇復(fù)旦大學(xué)附屬腫瘤醫(yī)院接受放療的17例肝癌患者為研究對(duì)象,對(duì)其進(jìn)行4DCT掃描。采用5種方法確定內(nèi)靶區(qū),即ITVAllPhase、ITV2Phase、ITVMIP、ITVMinIP和ITV2M。將ITVAllPhase作為參考標(biāo)準(zhǔn)計(jì)算靶區(qū),其他4種方法生成的 ITV與之比較,得出體積的百分比、適形指數(shù)(matching index, MI)、低估的體積百分比。同時(shí)評(píng)估了腫瘤大小/呼吸幅度比值對(duì)4種ITVs的影響。結(jié)果: 腫瘤的呼吸運(yùn)動(dòng)幅度在上下方向最顯著,為(8.4±3.5) mm。ITV2M的體積大小最接近參考體積(ITVAllPhase),其次是ITV2Phase,最差的是ITVMinIP和ITVMIP。ITV2M的MI為(0.93±0.03);其次是ITV2Phase,為(0.89±0.05);最差的為ITVMinIP和ITVMIP,分別為(0.81±0.10)和(0.82±0.10)。經(jīng)過(guò)分析ITV2Phase的MI和腫瘤大小與呼吸幅度的比例正相關(guān),(r=0.524,P=0.031)。ITV2M與參考體積(ITVAllPhase)低估的體積百分比最小,為(0.07±0.03);其次是ITV2Phase,為(0.12±0.06);最差的是ITVMinIP和ITVMIP,分別為(0.18±0.10)和(0.18±0.12)。腫瘤大小與呼吸幅度的比例與ITV2M的低估值無(wú)相關(guān)性(r=-0.34,P=0.18);但與ITV2Phase的低估值負(fù)相關(guān)(r=-0.539 ,P=0.024)。結(jié)論: ITV2M法可以可靠快速地確定肝癌內(nèi)靶區(qū),值得推廣。
[關(guān)鍵詞]肝癌;放療;四維CT;內(nèi)靶區(qū)
對(duì)于肝癌患者,放療被認(rèn)為是一種可選擇的、有潛在根治性腫瘤價(jià)值的治療手段。為了提高放射治療的療效,靶區(qū)定位的準(zhǔn)確性顯得十分重要。然而,肝臟受呼吸運(yùn)動(dòng)影響顯著,在各個(gè)方向上都存在腫瘤靶區(qū)的運(yùn)動(dòng),尤其在頭腳方向運(yùn)動(dòng)最大達(dá)3 cm[1]。四維CT(four-dimensional computed tomography, 4DCT),結(jié)合了呼吸運(yùn)動(dòng)與CT采集過(guò)程。以10%為時(shí)相間隔將每個(gè)呼吸周期圖像分為10個(gè)呼吸時(shí)相,在這10個(gè)時(shí)相中分別進(jìn)行大體腫瘤體積(GTV)的勾畫, 之后進(jìn)行融合就會(huì)得到腫瘤內(nèi)靶區(qū)(internal target volume, ITV)。該項(xiàng)技術(shù)已被廣泛地應(yīng)用于肺癌的診斷中,以確定肺癌的 ITV[2-3],但用于確定肝臟ITV的研究甚少[4]。同肺癌一樣,2個(gè)極端時(shí)相融合有可能遺漏靶區(qū),且根據(jù)臨床實(shí)踐經(jīng)驗(yàn)[4-6]顯示,低等、中等腫瘤運(yùn)動(dòng)幅度(< 1.6 cm)時(shí),通過(guò)兩個(gè)極端時(shí)相獲得ITV是相對(duì)安全的。
基于最大密度投影(MIP)的ITV勾畫是在單個(gè)3DCT數(shù)據(jù)集上進(jìn)行的,該數(shù)據(jù)集中每個(gè)像素代表了在全部體積4DCT數(shù)據(jù)集中相對(duì)應(yīng)的三維像素所遇到最亮的物體。相反地,基于最小密度投影(MinIP)的ITV勾畫,其數(shù)據(jù)集中每個(gè)像素代表了在全部體積數(shù)據(jù)集中最低的數(shù)據(jù)值[6]。 單獨(dú)的MIP或MinIP技術(shù)肯定會(huì)錯(cuò)失移動(dòng)腫瘤的空間信息;為此本研究假設(shè)將MIP和MinIP結(jié)合或許會(huì)改變這種情況。因此,本研究探討4DCT掃描的勾畫方法,以期為更精準(zhǔn)地測(cè)定肝臟ITV提供臨床依據(jù)。
1資料與方法
1.1病例入組2011年1月至2013年8月,復(fù)旦大學(xué)附屬腫瘤醫(yī)院為17例接受放療的肝癌患者實(shí)施了4DCT掃描。在17例患者中,有6例為原發(fā)性肝細(xì)胞性肝癌,另外11例為轉(zhuǎn)移性肝癌。腫瘤的一般特征見表1。
表1 腫瘤的一般特征
1.24DCT掃描步驟本組患者采用了如下的靜脈強(qiáng)化方案:100 mL造影劑(歐乃派克),濃度為300 mgI/mL,注入速度為2.5 mL/s。具體操作參見參照文獻(xiàn)[7],采用Philips公司生產(chǎn)的16排Brilliance Big Bore CT機(jī)器Version 2.3.5和Varian RPMTM system 1.65 軟件進(jìn)行CT掃描和重建。掃描范圍為橫膈上2~3 cm至右腎下極。4DCT圖像重建,如前所述,用10個(gè)時(shí)相的原始CT數(shù)據(jù),生成MIP和MinIP的CT圖像。MIP和MinIP都是標(biāo)準(zhǔn)的放射診斷中的體積描繪技術(shù)(volume-rendering techniques)[8-9]。
1.3ITV的確定采用以下5種方法確定ITV:(1)ITVAllPhase,即全部10個(gè)呼吸時(shí)相勾畫的靶區(qū)融合后得到;(2)ITV2Phase,即在0(吸氣末)、50%(呼氣末)2個(gè)時(shí)相的靶區(qū)融合得到;(3)ITVMIP,即在MIP的CT圖像上勾畫的靶區(qū)范圍;(4)ITVMinIP,即在MinIP的CT圖像上勾畫的靶區(qū)范圍;(5)ITV2M,是由ITVMIP與ITVMinIP融合得到的靶區(qū)范圍。1例患者采用5種方法確定的ITV見圖1。
圖1 1例原發(fā)性肝癌患者采用5種方法確定的內(nèi)靶區(qū)
A: ITVAllPhase; B: ITV2M; C: ITV2Phase; D: ITVMinIP; E: ITVMIP
1.4數(shù)據(jù)分析和比較將ITVAllPhase作為參考標(biāo)準(zhǔn)計(jì)算靶區(qū),其他4種方法生成的靶區(qū)與之比較,得出體積的百分比、適形指數(shù)(matching index, MI)、低估的體積百分比[10-11]。同時(shí)評(píng)估了腫瘤大小/呼吸幅度比值對(duì)4種ITVs的影響。
2結(jié)果
2.1腫瘤呼吸運(yùn)動(dòng)幅度和體積大小如表2所示,腫瘤的呼吸運(yùn)動(dòng)幅度在上下方向最顯著,為(8.4±3.5) mm,在左右和前后方向上分別為(1.7±0.8) mm和(3.1±2.1) mm。計(jì)算的三維矢量大小為(9.4±3.5) mm。
ITV2M、ITV2Phase、ITVMinIP和ITVMIP的體積均比ITVAllPhase小。以ITVAllPhase作為標(biāo)準(zhǔn)參考體積,ITV2M、ITV2Phase、ITVMinIP和ITVMIP作為受試體積,其體積大小占參考體積的之比分別為ITV2M/ITVAllPhase=(94.3±3.5)%;ITV2Phase/ITVAllPhase= (89.5±5.5)%;ITVMinIP/ITVAllPhase= (82.4±12.1)%;ITVMIP/ITVAllPhase=(83.0±10.3)%。合并兩種投影方式ITV2M的體積大小最接近參考體積(ITVAllPhase),其次是ITV2Phase,最差的是ITVMinIP和ITVMIP。合并兩種投影方式的ITV2M和合并2個(gè)呼吸末時(shí)相的ITV2Phase的差異有統(tǒng)計(jì)學(xué)意義(P=0.021)。
表2 腫瘤呼吸運(yùn)動(dòng)幅度 l/mm
2.2各種方式測(cè)得的適形指數(shù)(MI)由表3所示, ITV2M與ITVAllPhase的適形性最好,MI為(0.93±0.03);其次是ITV2Phase,MI為(0.89±0.05)。最差的為ITVMinIP和ITVMIP,MI分別為(0.81±0.10)和(0.82±0.10)。ITV2M和ITV2Phase的差異有統(tǒng)計(jì)學(xué)意義(P=0.001)。ITVMinIP和ITVMIP的差異無(wú)統(tǒng)計(jì)學(xué)意義(P=0.848),ITV2M與ITVMinIP和ITVMIP的差異均有統(tǒng)計(jì)學(xué)意義(P1=0.001;P2=0.000)。
腫瘤大小與呼吸幅度的比例采用腫瘤上下徑/上下呼吸幅度表示,經(jīng)過(guò)分析ITV2M的MI和腫瘤大小與呼吸幅度的比例無(wú)相關(guān)性(r=0.341,P=0.181),但I(xiàn)TV2Phase的MI和腫瘤大小與呼吸幅度的比例正相關(guān),(r=0.524,P=0.031)。
2.3低估的體積百分比圖2顯示了每個(gè)患者4種ITV與參考ITVAllPhase比較低估的百分比。ITV2M與參考體積(ITVAllPhase)低估的體積百分比最小,為(0.07±0.03),最大的低估值為0.17;其次是ITV2Phase,為(0.12±0.06),最大的低估值為0.26;最差的是ITVMinIP和ITVMIP,分別為(0.18±0.10)和(0.18±0.12),最大的低估值均為0.42。ITV2M和ITV2Phase低估的體積百分比差異有統(tǒng)計(jì)學(xué)意義(P=0.000)。ITVMinIP和ITVMIP低估的體積百分比差別無(wú)統(tǒng)計(jì)學(xué)意義(P=0. 988)。
經(jīng)分析顯示,腫瘤大小與呼吸幅度的比例與ITV2M的低估值無(wú)相關(guān)性(r=-0.34,p=0.18);但與ITV2Phase的低估值負(fù)相關(guān)(r=-0.539,P=0.024)。
表3 各種方式測(cè)得MI的比較
圖2 4種ITV與ITVAllPhase低估的體積百分比
3討論
肝臟受呼吸運(yùn)動(dòng)影響顯著,在各個(gè)方向上都存在腫瘤靶區(qū)的運(yùn)動(dòng),尤其在頭腳方向運(yùn)動(dòng)有1~3 cm[12-15]。4DCT能較好地消除呼吸運(yùn)動(dòng)偽影,反映腫瘤的運(yùn)動(dòng)規(guī)律和范圍。肺癌中腫瘤為高密度,與正常肺實(shí)質(zhì)密度對(duì)比鮮明。Underberg研究[7]表明,位于臟層胸膜以內(nèi)的肺內(nèi)孤立病灶,MIP圖像能客觀反映腫瘤運(yùn)動(dòng)信息,而在腫瘤鄰近等密度或高密度組織結(jié)構(gòu)時(shí),不同時(shí)相融合導(dǎo)致的腫瘤和鄰近組織邊緣交錯(cuò)重疊現(xiàn)象,會(huì)影響MIP技術(shù)的可靠性。
本研究采用的靜脈增強(qiáng)4DCT掃描的圖像,有較好的質(zhì)量,可以區(qū)分腫瘤和周圍正常肝實(shí)質(zhì),有利于進(jìn)行確切的靶區(qū)勾畫。目前,在肝癌上采用密度投影法確定ITV還尚未有報(bào)道。本研究結(jié)果表明,從待測(cè)ITV與標(biāo)準(zhǔn)ITV低估的百分比來(lái)看,聯(lián)合ITVMinIP及ITVMIP的ITV2M法效果最佳,其低估值為(0.07±0.03),最大的低估值為0.17。
Seppenwoolde等[16]和Boldea等[17]報(bào)道,腫瘤體積小且運(yùn)動(dòng)幅度較大時(shí),吸氣末和呼氣末2時(shí)相圖像之間位置分開較明顯,其中間呼吸狀態(tài)的信息可能會(huì)不夠全面;另外2時(shí)相融合圖像可能忽略腫瘤的滯后現(xiàn)象。ITV2M的MI與腫瘤大小與呼吸幅度的比例無(wú)相關(guān)性(r=0.341,P=0.181);但與ITV2Phase的MI與腫瘤大小與呼吸幅度的比例正相關(guān)(r=0.524,P=0.031)。ITV2M的低估值和腫瘤大小與呼吸幅度的比例無(wú)相關(guān)性(r=-0.34,P=0.18),但I(xiàn)TV2Phase的低估值和腫瘤大小與呼吸幅度的比例負(fù)相關(guān)(r=-0.539 ,P=0.024)。這表明呼吸幅度越大,2個(gè)極端呼吸時(shí)相法對(duì)較小的腫瘤確定ITV越不準(zhǔn)確,而ITV2M法更有優(yōu)勢(shì),呼吸幅度以及體積大小無(wú)明顯影響。
參考文獻(xiàn)
[1]Langen KM, Jones DT. Organ motion and its management[J]. Int J Radiat Oncol Biol Phys, 2001, 50(1): 265-278.
[2]Liu HH, Balter P, Tutt T, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer[J]. Int J Radiat Oncol Biol Phys, 2007, 68(2): 531-540.
[3]Jin JY, Ajlouni M, Chen Q, et al. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy[J]. Radiother Oncol, 2006, 78(2): 177-184.
[4]Xi M, Liu MZ, Zhang L, et al. How many sets of 4DCT images are sufficient to determine internal target volume for liver radiotherapy[J]. Radiother Oncol, 2009, 92(2): 255-259.
[5]Mageras GS, Pevsner A, Yorke ED, et al. Measurement of lung tumor motion using respiration-correlated CT[J]. Int J Radiat Oncol Biol Phys, 2004, 60(3): 933-941.
[6]Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2002, 53(4): 822-834.
[7]Underberg RW, Lagerwaard FJ, Slotman BJ, et al. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer[J]. Int J Radiat Oncol Biol Phys, 2005, 63(1): 253-260.
[8]Beddar AS, Briere TM, Balter P, et al. 4D-CT imaging with synchronized intravenous contrast injection to improve delineation of liver tumors for treatment planning[J]. Radiother Oncol, 2008, 87(3): 445-448.
[9]Gruden JF, Ouanounou S, Tigges S, et al. Incremental benefit of maximum-intensity-projection images on observer detection of small pulmonary nodules revealed by multidetector CT[J]. AJR Am J Roentgenol, 2002, 179(1): 149-157.
[10]Persson A, Dahlstrom N, Engellau L, et al. Volume rendering compared with maximum intensity projection for magnetic resonance angiography measurements of the abdominal aorta[J]. Acta Radiol, 2004, 45(4): 453-459.
[11]Barber CB, Dobkin DP, Huhdanpaa HT. The quick hull algorithm for convex hulls[J]. ACM Transactions on Mathematical Software, 1996, 22(4): 469-483.
[12]Ross CS, Hussey DH, Pennington EC, et al. Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography[J]. Int J Radiat Oncol Biol Phys, 1990, 18(3):671-677.
[13]Kubo HD, Hill BC. Respiration gated radiotherapy treatment: a technical study [J]. Phys Med Biol, 1996, 41(1): 83-91.
[14]Davies SC, Hill AL, Holmes RB, et al. Ultrasound quantitation of respiratory organ motion in the upper abdomen [J]. Br J Radiol, 1994, 67(803):1096-1102.
[15]Shimizu S, Shirato H, Aoyama H, et al. High-speed magnetic resonance imaging for four-dimensional treatment planning of conformal radiotherapy of moving body tumors[J]. Int J Radiat Oncol Biol Phys, 2000, 48(2):471-474.
[16]Seppenwoolde Y,Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2002, 53(4): 822-834.
[17]Boldea V, Sarrut D, Sharp G, et al. Study of motion in a 4D-CT Using Deformable Registration[J]. Int J Radiat Oncol Biol Phys, 2005, 63(Suppl 2):499-500.
[本文編輯]葉婷, 曉璐
[收稿日期]2016-03-22[接受日期]2016-06-08
[作者簡(jiǎn)介]劉進(jìn),碩士生. E-mail: ljdian1985@163.com *通信作者(Corresponding author). Tel:021-64041990, E-mail: sun.jing@zs-hospital.sh.cn
[中圖分類號(hào)]R 814.42
[文獻(xiàn)標(biāo)志碼]A
Use of four-dimensional computed tomography scans to determine internal target volume for hepatic malignancies
LIU Jin, SUN Jing*
Department of Radiotherapy, Zhongshan Hospital, Fudan University, Shanghai200032, China
[Abstract]Objective: To explore the methods of the four-dimensional CT scanning, and its role in the rapid determination of liver tumor in the internal target volume.Methods: From January 2011 to August 2013, 17 cases of patients with hepatocellular carcinoma who received radiotherapy in a tumor hospital were selected by convenience sampling, and the 4DCT scan was performed. Five methods are used to determine the internal target volumes, namely ITVAllPhase, ITV2Phase, ITVMIP, ITVMinIP, and ITV2M. ITVAllPhase: contouring the GTV on each of the ten respiratory phases of the 4DCT data set and combining these GTVs. ITV2Phase: contouring the GTV on the extreme respiratory phases (0% phase = peak inhalation, 50% phase = peak exhalation) and combining these GTVs. ITVMIP: contouring the GTV on the MIP of the 4DCT dataset. ITVMinIP: contouring the GTV on the MinIP of the 4DCT dataset. ITV2M: combining ITVMIPand ITVMinIP. Using ITVAllPhaseas the reference standard ITV, we compared the percentage of volumes, matching indices (MI) and the percentage of underestimated volumes of the respective ITVs generated from the other four approaches. At the same time, the effects of tumor size/respiration ratio on the four types of ITVs were also evaluated. Results: The respiratory motion amplitude was the most significant in the upper and lower direction: (8.4±3.5) mm. The volume size of ITV2Mwas closest to the reference volume (ITVAllPhase), the second was ITV2Phase, and the worst were ITVMinIPand ITVMIP. The MI of ITV2Mwas (0.93±0.03); the second was ITV2Phase, which was (0.89±0.05); the worst were ITVMinIPand ITVMIP, which were (0.81±0.1) and (0.82±0.10). After analysis we found that MI of ITV2Phasewas positively correlated with the ratio of tumor size to respiratory amplitude (r=0.524, P=0.031). Compared with the reference volume (ITVAllPhase), ITV2Mhad the lowest percentage of underestimation; the second was ITV2Phase: (0.12±0.06); the worst were ITVMinIPand ITVMIP: (0.18±0.10) and (0.18±0.12), respectively. The ratio of tumor size to respiratory rate was not correlated with the underestimated value of ITV2M(r=-0.34, P=0.18), but was negatively correlated with the underestimated value of ITV2Phase(r=-0.539, P=0.024).Conclusions: ITV2Mcan reliably and quickly determine the target area of liver cancer, and it is worth popularizing.
[Key Words]liver cancer; radiotherapy; four-dimensional CT; internal target volume