裴麗麗,章緯菁,盧佳,黃芳,曹倩倩,任文華
1 南京師范大學(xué) 生命科學(xué)學(xué)院 江蘇省分子醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 2100462 南京醫(yī)科大學(xué) 康達(dá)學(xué)院,江蘇 連云港 222000
?
長(zhǎng)江江豚TRAIL基因的克隆、體外表達(dá)及生物學(xué)功能分析
裴麗麗1,2,章緯菁1,盧佳1,黃芳1,曹倩倩1,任文華1
1 南京師范大學(xué) 生命科學(xué)學(xué)院 江蘇省分子醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210046
2 南京醫(yī)科大學(xué) 康達(dá)學(xué)院,江蘇 連云港 222000
裴麗麗, 章緯菁, 盧佳, 等. 長(zhǎng)江江豚TRAIL基因的克隆、體外表達(dá)及生物學(xué)功能分析. 生物工程學(xué)報(bào), 2016, 32(5): 610–620.
Pei LL, Zhang WJ, Lu J, et al. Molecular cloning, in vitro expression and bioactivity of TRAIL (TNFSF10) gene from finless porpoises. Chin J Biotech, 2016, 32(5): 610–620.
摘 要:構(gòu)建可溶性腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體 (TRAIL) 基因的表達(dá)體系,研究其蛋白表達(dá)產(chǎn)物對(duì)腫瘤細(xì)胞凋亡的影響,為以后江豚免疫系統(tǒng)的研究奠定基礎(chǔ)。通過RT-PCR技術(shù)從江豚Neophocaena phoconoides血液總RNA中反轉(zhuǎn)錄擴(kuò)增出腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體 (簡(jiǎn)稱fTRAIL) 的全長(zhǎng)cDNA序列,并將fTRAIL的胞外可溶性 (簡(jiǎn)稱fsTRAIL) 片段連接入表達(dá)載體pET43.1a中,在大腸桿菌BL21 (DE3) 中表達(dá)并純化,Western blotting對(duì)產(chǎn)物Nus-His-fsTRAIL蛋白進(jìn)行鑒定。體外用MTT法、臺(tái)盼藍(lán)拒染法及流式細(xì)胞術(shù)檢測(cè)Nus-His-fsTRAIL蛋白對(duì)Jurkat細(xì)胞和HeLa細(xì)胞的影響。成功構(gòu)建了fTRAIL胞外可溶性片段 (簡(jiǎn)稱fsTRAIL) 與pET43.1a組成的表達(dá)載體,并獲得Nus-His-fsTRAIL蛋白。體外實(shí)驗(yàn)表明,Nus-His-fsTRAIL蛋白能夠以劑量依賴的方式抑制Jurkat和HeLa細(xì)胞的增殖并誘導(dǎo)其凋亡。Nus-His-fsTRAIL表達(dá)產(chǎn)物具有對(duì)Jurkat和HeLa細(xì)胞體外抗腫瘤活性的作用。
關(guān)鍵詞:TRAIL,江豚,細(xì)胞凋亡,Jurkat細(xì)胞,HeLa細(xì)胞
Received: October 10, 2015; Accepted: March 14, 2016
Supported by: National Natural Science Foundation of China (No. 31370401).
國家自然科學(xué)基金 (No. 31370401) 資助。
腫瘤壞死因子 (TNF) 是1975年Carswell等發(fā)現(xiàn)的一種能使腫瘤細(xì)胞凋亡、壞死的細(xì)胞因子。細(xì)胞凋亡是一個(gè)內(nèi)在基本的細(xì)胞程序化死亡過程,在多細(xì)胞有機(jī)體的發(fā)展和組織穩(wěn)態(tài)的維持中起著關(guān)鍵的作用[1]。TRAIL是在其序列同源性的基礎(chǔ)上,于1995年由Wiley首次發(fā)現(xiàn)[2],與腫瘤壞死因子配體家族的其他成員一樣,TRAIL對(duì)體外的細(xì)胞系包括一些腫瘤細(xì)胞系具有誘導(dǎo)細(xì)胞凋亡的作用。與其他TNF家族成員相比,TRAIL具有兩個(gè)特性:一是TRAIL在大多數(shù)組織中都能表達(dá),而其他TNF家族成員的表達(dá)受到嚴(yán)格調(diào)控并在活化的細(xì)胞中暫時(shí)表達(dá)[3]。第二,TRAIL是一個(gè)促凋亡配體,目前發(fā)現(xiàn)在一些腫瘤和炎癥細(xì)胞中能夠高表達(dá),如小兒惡性腫瘤[4]、腎臟疾病[5]、類風(fēng)濕關(guān)節(jié)炎、骨關(guān)節(jié)炎和脊柱關(guān)節(jié)病等[6],但其對(duì)正常細(xì)胞無明顯毒性[7],這意味著,TRAIL在癌癥治療中具有潛在的治療作用[8-11]。TRAIL在與其受體結(jié)合時(shí)形成三聚體,并誘導(dǎo)其受體也形成三聚體而相互結(jié)合,從而選擇性地誘導(dǎo)腫瘤細(xì)胞發(fā)生凋亡。這些特性預(yù)示著TRAIL在治療腫瘤方面有著廣泛的應(yīng)用前景。
1.1材料
1.1.1實(shí)驗(yàn)動(dòng)物、細(xì)胞和宿主菌
江豚新鮮外周血從安徽銅陵繁育中心淡水長(zhǎng)江江豚體檢期間獲得;實(shí)驗(yàn)用細(xì)胞系Jurkat細(xì)胞與HeLa細(xì)胞由本實(shí)驗(yàn)室保存;大腸桿菌E. coli Top10、DH5α、BL21和pET-43.1a由本實(shí)驗(yàn)室保存;pMD19-T載體購于TaKaRa公司。
1.1.2試劑
動(dòng)物血液RNA提取試劑盒、PrimeScriptTM1st Strand cDNA合成試劑盒、pMD19-T載體試劑盒、Taq DNA聚合酶、感受態(tài)細(xì)胞制備試劑盒、蛋白Marker、熒光定量PCR試劑盒、rTaq酶和限制性內(nèi)切酶等均購自TaKaRa公司;割膠回收試劑盒及質(zhì)粒小提試劑盒均購自Axygen公司;T4 DNA連接酶、堿性磷酸酶、磷酸激酶和預(yù)染蛋白Marker等均購自Fermentas公司;鼠His6一抗和辣根過氧化酶標(biāo)記的山羊抗鼠IgG購自TIANGEN公司;FITC標(biāo)記的羊抗鼠IgG抗體 (R&D Systems Inc.,USA) 和IPTG購自Promega公司;所有引物合成及測(cè)序由上海英駿公司完成;其他試劑均為國產(chǎn)分析純。
1.2方法
1.2.1江豚外周血總RNA的提取
使用動(dòng)物血液RNA提取試劑盒 (RNeasy Mini Kit, Qiagen) 提取江豚外周血總RNA,實(shí)驗(yàn)方法步驟按照試劑盒中的說明書進(jìn)行。
1.2.2江豚TRAIL (fTRAIL) 基因的克隆
通過BLAST,在NCBI數(shù)據(jù)庫中獲得牛(GenBank Accession No. AC_000158.1)、羊(GenBank Accession No. ADL27922) 和豬(GenBank Accession No. ABV21385) 的TRAIL基因[12],根據(jù)同源性比對(duì)利用Primer 5.0軟件[13]設(shè)計(jì)一對(duì)簡(jiǎn)并引物:正義引物fTRAIL F1和反義引物fTRAIL F2 (表1)。用上述簡(jiǎn)并引物進(jìn)行RT-PCR試驗(yàn)。擴(kuò)增參數(shù):95 ℃ 5 min;35個(gè)循環(huán) (94 ℃ 30 s,56 ℃ 30 s,72 ℃ 1 min);最后72 ℃孵育7 min。RT-PCR產(chǎn)物用1%的瓊脂糖凝膠電泳分離后,觀察并記錄結(jié)果。按Axygene公司的DNA膠回收試劑盒操作說明進(jìn)行割膠回收約870 bp的DNA片段。
表1 引物序列Table 1 Primer sequences
1.2.3生物信息學(xué)分析
為克隆fTRAIL cDNA序列并對(duì)所得序列進(jìn)行生物信息學(xué)分析,使用以下軟件和網(wǎng)站:1) 從NCBI網(wǎng)站獲得TRAIL基因序列、氨基酸序列,以及fTRAIL的開放閱讀框 (Open reading frame, ORF),并對(duì)相應(yīng)的氨基酸序列進(jìn)行預(yù)測(cè);2) 使用3D-JIGSAW和SWISS-MODEL服務(wù)器預(yù)測(cè)三級(jí)結(jié)構(gòu),并用RasMol軟件查看;3) 使用Clastal W軟件[14]進(jìn)行多重比對(duì)分析;4) 在序列多重比對(duì)的基礎(chǔ)上,使用MEGA 5.0 軟件中的Maximum Likelihood法構(gòu)建系統(tǒng)樹。
1.2.4融合表達(dá)載體pET43.1a-fsTRAIL的構(gòu)建
研究表明,TRAIL的可溶型是其功能發(fā)揮的主要形式,根據(jù)fTRAIL的胞外可溶區(qū)(fsTRAIL) 設(shè)計(jì)一對(duì)含有pET43.1a酶切位點(diǎn)的基因特異性引物:fsTRAIL F1 (含EocRⅠ位點(diǎn)) 與fsTRAIL F2 (含XhoⅠ位點(diǎn)) (表1)。PCR反應(yīng)程序:94 ℃ 5 min ;35個(gè)循環(huán) (94 ℃ 30 s;56 ℃30 s;72 ℃ 1 min);最后72 ℃延伸7 min。將PCR反應(yīng)產(chǎn)物經(jīng)電泳、純化回收PCR產(chǎn)物(870 bp左右)。以EcoRⅠ、XhoⅠ酶切PCR產(chǎn)物與pET43.1a載體,然后進(jìn)行pET43.1a載體的去磷酸化與fsTRAIL目的片段的磷酸化,兩者進(jìn)行連接反應(yīng),構(gòu)建pET43.1a-fsTRAIL表達(dá)載體。
1.2.5連接產(chǎn)物的轉(zhuǎn)化、表達(dá)及純化鑒定
原核表達(dá)載體pET43.1a-fsTRAIL在大腸桿菌中的表達(dá)。首先將原核表達(dá)載體pET43.1afsTRAIL轉(zhuǎn)入大腸桿菌BL21 (DE3),挑取含表達(dá)質(zhì)粒的轉(zhuǎn)化菌株,于LB培養(yǎng)基 (含Amp+)中,37 ℃、220 r/min培養(yǎng)至A600達(dá)0.4–0.6時(shí),加入1 mol/L IPTG至終濃度為0.2 mmol/L,16 ℃、100 r/min振蕩培養(yǎng)24 h,誘導(dǎo)pET-43.1a-fsTRAIL重組蛋白可溶性的表達(dá)。培養(yǎng)液在冰上超聲破碎后,分離上清和沉淀,用SDS-PAGE檢測(cè)蛋白的表達(dá)。然后用鎳柱親和層析純化可溶性重組蛋白Nus-His-fsTRAIL,取出少量蛋白進(jìn)行SDS-PAGE電泳,將其余蛋白質(zhì)溶液放于4 ℃冰箱備用。用1× PBS (pH 8.0)對(duì)收集的蛋白液進(jìn)行透析濃縮后根據(jù)需要保存于–70 ℃。按同樣的方法純化空載體pET-43.1a的表達(dá)產(chǎn)物,即Nus-His標(biāo)簽蛋白。通過Western blotting鑒定純化的蛋白表達(dá)產(chǎn)物。
1.2.6重組可溶性蛋白生物活性測(cè)定
對(duì)純化的Nus-His-fsTRAIL蛋白進(jìn)行生物學(xué)活性檢測(cè),并以Nus-His標(biāo)簽蛋白作為對(duì)照。采用倒置顯微鏡及臺(tái)盼藍(lán)拒染法觀察不同濃度上述兩種蛋白在不同時(shí)間對(duì)白血病T細(xì)胞(Junkat細(xì)胞) 和人宮頸癌細(xì)胞 (HeLa細(xì)胞) 形態(tài)的影響;MTT法檢測(cè)在不同濃度作用下,重組蛋白對(duì)腫瘤細(xì)胞的抑制作用;經(jīng)MTT法和臺(tái)盼藍(lán)拒染法檢測(cè)后,選取適宜濃度的重組蛋白及適宜的時(shí)間梯度,使用流式細(xì)胞術(shù)檢測(cè)重組蛋白對(duì)Junkat細(xì)胞的促凋亡作用。
2.1江豚全長(zhǎng)fTRAIL cDNA和預(yù)測(cè)氨基酸序列分析
江豚TRAIL的開放閱讀框?yàn)?64 bp,編碼一個(gè)288個(gè)氨基酸的fTRAIL蛋白質(zhì)??寺∷萌L(zhǎng)cDNA序列和預(yù)測(cè)的氨基酸序列如圖1A所示。fTRAIL的cDNA序列已提交GenBank數(shù)據(jù)庫 (GenBank Accession No. KF151167)。江豚TRAIL序列含預(yù)測(cè)的細(xì)胞質(zhì)結(jié)構(gòu)域,一個(gè)跨膜結(jié)構(gòu)域 (氨基酸18–38) 和一個(gè)由250個(gè)氨基酸組成的胞外結(jié)構(gòu)域。它具有TNF結(jié)構(gòu)域、一個(gè)保守的半胱氨酸殘基和預(yù)測(cè)的糖基化位點(diǎn)。fTRAIL是典型的II型跨膜蛋白 (圖1B)。在氨基酸水平上,用Clustal軟件分析顯示,江豚和馬、人、狗及牛之間的序列同源性分別為86%、79%、82%和80% (圖1B)。
2.2江豚和人TRAIL胞外區(qū)氨基酸序列比對(duì)及其蛋白質(zhì)空間結(jié)構(gòu)分析
人TRAIL (hTRAIL) 胞外區(qū)與受體結(jié)合部位為C端的114–281位氨基酸,江豚TRAIL (fTRAIL) 胞外區(qū)與受體結(jié)合部位為C端的119–289位氨基酸,如圖2所示,hTRAIL (114–281) 與fTRAIL (119–289) 氨基酸序列比對(duì),相似度為83.3%以上。盡管二者在氨基酸水平上存在一定的差異,但預(yù)測(cè)fTRAIL的胞外功能區(qū)3D結(jié)構(gòu) (c, d) 和hTRAIL 胞外區(qū)3D結(jié)構(gòu)(a, b) 非常相似。這表明江豚的TRAIL與人TRAIL可能具有相似的生物學(xué)功能。
圖1 fTRAIL基因的cDNA序列和氨基酸序列Fig. 1 The nucleotide and deduced amino acid sequences of fTRAIL. (A) The nucleotide and deduced amino acid sequences of fTRAIL. The initiation codon and the stop codon are boxed, and the stop codon is indicated by an asterisk (*). The putative transmembrane domain is underlined. (B) Amino-acid sequence alignment of TRAIL from several species: finless porpoise, human, dog, cow, and horse were performed using Clustal W software. Identical amino acids among all sequences are indicated by “*”, whereas those with high or low similarity are indicated by “:”and “.” respectively. The putative transmembrane domain is marked by gray shadings. The TNF superfamily signature is boxed. The conserved cysteine and asparagine site are marked by red shadings.
圖2 fsTRAIL (aa119-289) 與hsTRAIL (aa 114-281) 胞外區(qū)氨基酸序列比對(duì)及其蛋白質(zhì)空間結(jié)構(gòu)比較Fig. 2 Amino acid sequence alignment and homology modelling of the fsTRAIL monomer (aa 119-289) based on the human structure (aa 114-281). (A) The amino acid sequence alignment of fsTRAIL and human sTRAIL. (B) The homology modelling of the fsTRAIL and human sTRAIL. For cartoons display and sphere display of structure models: yellow represents β strands, red represents α-helix, blue represents turns and whites represent other residues. (a) and (b) represent the cartoon display and sphere display of the 3D structure of human sTRAIL, respectively. (c) and (d) represent the cartoon and sphere displays of the 3D structure of fsTRAIL, respectively.
2.3系統(tǒng)進(jìn)化樹分析
為確定江豚TRAIL基因在進(jìn)化中的位置,運(yùn)用Maximum Likelihood法構(gòu)建了20個(gè)脊椎動(dòng)物的TRAIL序列的系統(tǒng)進(jìn)化樹。如圖3A所示,系統(tǒng)樹主要分兩個(gè)分支,一個(gè)是魚類的分支,一個(gè)是哺乳類和鳥類的分支。江豚TRAIL與哺乳動(dòng)物的偶蹄目在進(jìn)化上接近,而與其他非哺乳動(dòng)物的TRAIL序列較遠(yuǎn)。為進(jìn)一步確定江豚在進(jìn)化上的位置,我們又用GILT基因構(gòu)建了系統(tǒng)進(jìn)化樹,如圖3B所示,江豚與偶蹄目哺乳動(dòng)物在進(jìn)化上依然比較接近。以上結(jié)果表明江豚可能與偶蹄目哺乳動(dòng)物具有共同的原始祖先。
2.4重組蛋白的表達(dá)、純化和鑒定
為檢測(cè)Nus-His-fsTRAIL蛋白的生物學(xué)活性,將重組pET43.1a-fsTRAIL導(dǎo)入大腸桿菌BL21 (DE3) 中表達(dá)。經(jīng)SDS-PAGE檢測(cè) (圖4)顯示,在大約90 kDa處為目的蛋白,即Nus-HisfsTRAIL蛋白,經(jīng)IPTG誘導(dǎo)24 h達(dá)到最大表達(dá)量。經(jīng)Ni2+-NTA柱純化后,收集的蛋白經(jīng)SDS-PAGE分析和Western blotting檢測(cè),結(jié)果見圖4。
圖3 最大似然法構(gòu)建系統(tǒng)進(jìn)化樹Fig. 3 The phylogenetic tree was constructed by the Maximum Likelihood method using MEGA 5.0 packages and was bootstrapped 1 000 times. (A) Phylogenetic tree showing the relationship between fTRAIL DNA sequences and other identified TRAIL sequences. (B) The phylogenetic tree showing the relationship of GILT sequences from different species.
2.5MTT法檢測(cè)Nus-His-fsTRAIL蛋白
采用MTT法檢測(cè)Nus-His-fsTRAIL蛋白對(duì)Jurkat與HeLa腫瘤細(xì)胞的作用。從圖5中可以看出,以Nus-His標(biāo)簽蛋白作為對(duì)照,在不同濃度下,Nus-His-fsTRAIL蛋白表現(xiàn)出抑制細(xì)胞增殖的作用,而且這種作用呈劑量依賴性。
圖4 SDS-PAGE分析Nus-His-fsTRAIL蛋白在大腸桿菌中的表達(dá)Fig. 4 SDS-PAGE analysis of Nus-His-fsTRAIL protein expressed in E. coli BL21 (DE3). M: low molecular weight marker. Lane 1: cell lysates of bacteria transformed with pET43.1a-fsTRAIL without IPTG induction; Lane 2: induced recombinant BL21; Lane 3: the recombinant BL21 supernatant; Lane 4: the recombinant BL21 precipitation; Lane 5: the fusion protein purified by the Ni-IDA affinity chromatography; Lane 6: the secondary chromatography from Lane 5 protein by the Ni-IDA affinity chromatography; Lane 7: the Western blotting analysis of purified Nus-His-fsTRAIL fusion protein using mAb against His6-tag. The arrow represents the location of Nus-His-fsTRAIL fusion protein.
2.6Nus-His-fsTRAIL蛋白對(duì)Jurkat和HeLa細(xì)胞作用的形態(tài)觀察
采用不同濃度梯度,在光學(xué)顯微鏡下觀察Nus-His-fsTRAIL蛋白對(duì)Jurkat和HeLa細(xì)胞作用,并選擇反應(yīng)36 h后進(jìn)行臺(tái)盼藍(lán)拒染實(shí)驗(yàn)。從圖6中可以看出隨著時(shí)間和濃度的增加,細(xì)胞發(fā)生了明顯的破裂和死亡。
2.7流式細(xì)胞儀檢測(cè)Nus-His-fsTRAIL蛋白的促Jurkat細(xì)胞凋亡作用
Nus-His標(biāo)簽蛋白與Nus-His-fsTRAIL蛋白分別對(duì)Jurkat細(xì)胞作用36 h后,進(jìn)行流式細(xì)胞儀檢測(cè)。結(jié)果顯示,Nus-His標(biāo)簽蛋白對(duì)Jurkat細(xì)胞作用后,在凋亡區(qū)FITC (+)/PI(–) 檢測(cè)到少量細(xì)胞(5.67%) (圖7A);Nus-His-fsTRAIL對(duì)Jurkat細(xì)胞作用后,在早期凋亡區(qū)FITC (+)/PI(–) 檢測(cè)到少量細(xì)胞 (7.71%),在晚期凋亡區(qū)FITC (+)/PI(+) 檢測(cè)到較多的細(xì)胞 (40.97%) (圖7B)。
圖5 Nus-His-fsTRAIL蛋白對(duì)Jurkat和HeLa細(xì)胞活性的影響Fig. 5 Effect of Nus-His-fsTRAIL protein on the viability of Jurkat and HeLa cell lines by MTT assay. (A) The Jurkat cells were treated with different concentrations of the Nus-His-fsTRAIL or Nus-His tag protein at indicated amounts. (B) HeLa cells were treated with different concentrations of the Nus-His-fsTRAIL or Nus-His tag protein at indicated amounts. The cell viability was examined after treatment with MTT 24 h. Each treatment was performed in triplicate. Values ares of three independent experiments.
圖6 Nus-His-fsTRAIL蛋白對(duì)Jurkat和HeLa細(xì)胞作用后形態(tài)學(xué)的改變Fig. 6 Morphology of Jurkat and HeLa cell was visualized under a Nikon Eclipse TE2000-U inverted phase-contrast microscope (200×) equipped with digital camera. (A) and (B) The morphology of Jurkat cells and HeLa cells were photographed under an inverted microscope after treating with different concentrations and different time of the Nus-His-fsTRAIL protein or Nus-His tag protein at indicated amounts, respectively. (C) and (D) Jurkat cells and HeLa cells were stained by Trypan Blue after treating with different concentrations at 36 h of the Nus-His-fsTRAIL protein or Nus-His tag protein at indicated amounts, respectively.
圖7 流式細(xì)胞儀檢測(cè)Nus-His-fsTRAIL蛋白對(duì)Jurkat細(xì)胞的促凋亡作用Fig. 7 The apoptotic effect of fsTRAIL on the Jurkat cell was examined by flow cytometry. (A) Jurkat cells were treated with 800 ng/mL of the Nus-His tag protein. (B) Jurkat cells were treated with 800 ng/mL of the Nus-His-fsTRAIL protein.
與陸生哺乳動(dòng)物一樣,水生哺乳動(dòng)物的免疫系統(tǒng)包括天然免疫和適應(yīng)性免疫。目前,許多脊椎動(dòng)物的腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TRAIL) 的基因已成功克隆[15-16]。然而,水生哺乳動(dòng)物TRAIL仍未見報(bào)道。本實(shí)驗(yàn)成功克隆了江豚TRAIL的CDS序列并進(jìn)行了測(cè)定。這是第一個(gè)被克隆并鑒定的水生哺乳動(dòng)物TRAIL基因??寺〔呗允且罁?jù)江豚與其他哺乳動(dòng)物序列之間的同源性進(jìn)行的。
江豚TRAIL (fTRAIL) 也具有TRAIL蛋白的典型特征。首先,fTRAIL蛋白也是一個(gè)Ⅱ型跨膜蛋白,有跨膜區(qū)且沒有啟動(dòng)子;其次,fTRAIL具有N端非保守區(qū),而C端不同物種之間具有較大的保守性;第三,人TRAIL (hTRAIL)蛋白的Cys230是TRAIL發(fā)揮功能所必需的,通過形成分子間二硫鍵誘導(dǎo)凋亡[17],而fTRAIL也具有Cys230。據(jù)報(bào)道,鯨類與有蹄類動(dòng)物 (偶蹄目) 非常相似[18]。我們的研究結(jié)果表明,與其他氨基酸序列相比,江豚TRAIL與偶蹄目動(dòng)物TRAIL比如豬有88%相似、與牛相似度有80% (圖2.1b)。但fTRAIL與非洲爪蟾和巖鴿只有46%的相似性,與其他無脊椎動(dòng)物 (包括果蠅、海鞘和鮑魚) 只有15%–20%的相似性,這也預(yù)示著fTRAIL可能與偶蹄目動(dòng)物具有相同的祖先,可以為鯨類免疫進(jìn)化的研究提供一定參考。雖然氨基酸序列比對(duì)顯示fTRAIL序列與偶蹄目序列具有高度相似性,但在某些氨基酸位點(diǎn)上也存在明顯差異,這表明,與陸生哺乳動(dòng)物相比,鯨類哺乳動(dòng)物為了適應(yīng)水中的環(huán)境可能進(jìn)行了某些適應(yīng)性進(jìn)化。
通過氨基酸序列比對(duì)構(gòu)建系統(tǒng)進(jìn)化樹,獲得了江豚與其他脊椎動(dòng)物的親緣關(guān)系,結(jié)果表明江豚與偶蹄目哺乳動(dòng)物的親緣關(guān)系最近。這一觀點(diǎn)同時(shí)也被江豚同其他物種的GILT氨基酸序列比對(duì)所驗(yàn)證[19]。
人TRAIL與受體結(jié)合的胞外區(qū)為C端的114–281位氨基酸,為TRAIL的活性部分,有一個(gè) N-糖基化位點(diǎn)并有蛋白酶作用位點(diǎn),可以被蛋白酶從膜上剪切下來,形成可溶性分子sTRAIL[8]。因此,我們將人sTRAIL (114–281)與江豚的fsTRAIL (119–289) 進(jìn)行了氨基酸序列比對(duì),結(jié)果表明,它們的相似度在83.3%以上,即與受體結(jié)合部位的氨基酸序列基本一致。通過蛋白質(zhì)的3D結(jié)構(gòu)預(yù)測(cè)分析,人sTRAIL與江豚的fsTRAIL蛋白具有類似的三維結(jié)構(gòu)。重要空間結(jié)構(gòu)的氨基酸是非常保守的,這表明fsTRAIL可能也具有人sTRAIL類似的功能,能夠與人腫瘤細(xì)胞上的相應(yīng)受體相結(jié)合,這為后續(xù)對(duì)江豚TRAIL胞外可溶片段的表達(dá)產(chǎn)物的活性檢測(cè)奠定基礎(chǔ)。此外,因?yàn)槲覀兒茈y獲得江豚的新鮮組織材料,TRAIL基因在各種器官組織 (心臟、腎臟、脾臟、肝臟、肺和腸等) 的表達(dá)水平無法檢測(cè),但根據(jù)目前的研究表明,TRAIL基因的mRNA在脾、肝和腎中有高水平表達(dá)[20]。
為了研究fsTRAIL的活性,我們?cè)鴮⑵溥B接入pET28表達(dá)載體,并在BL21 (DE3) 中表達(dá)。結(jié)果蛋白存在于包涵體中,包涵體復(fù)性后沒有獲得可溶性蛋白。為了增強(qiáng)蛋白的可溶性,我們將其構(gòu)建入pET43.1a表達(dá)載體,并進(jìn)行低溫誘導(dǎo) (16 ℃),得到了較高水平的可溶性表達(dá)。
文獻(xiàn)報(bào)道人、 紅鰭東方鲀或鱖魚的sTRAIL 能夠誘導(dǎo)人腫瘤細(xì)胞系的凋亡[2,20-21],因此推測(cè)fsTRAIL也具有相似作用。為了檢測(cè)fsTRAIL誘導(dǎo)腫瘤細(xì)胞凋亡的能力,我們首先用MTT法檢測(cè)其對(duì)Jurkat和Hela細(xì)胞作用,實(shí)驗(yàn)結(jié)果表明Nus-His-fsTRAIL蛋白能以劑量依賴的方式抑制細(xì)胞增殖,不難發(fā)現(xiàn)Nus-His-fsTRAIL蛋白對(duì)Jurkat細(xì)胞的抑制能力強(qiáng)于對(duì)Hela細(xì)胞的抑制能力,這可能是由于Nus-His-fsTRAIL蛋白與兩種細(xì)胞上TRAIL受體結(jié)合能力不同所致。此外,經(jīng)Nus-His-fsTRAIL蛋白處理后,Jurkat和HeLa細(xì)胞的形態(tài)學(xué)觀察以及臺(tái)盼藍(lán)染色后的形態(tài)學(xué)觀察表明fsTRAIL可以劑量依賴的方式誘導(dǎo)Jurkat和HeLa細(xì)胞死亡。為了進(jìn)一步確定Nus-His-fsTRAIL蛋白的腫瘤細(xì)胞毒理效用,我們運(yùn)用了流式細(xì)胞術(shù)進(jìn)一步驗(yàn)證了Nus-HisfsTRAIL蛋白可以誘導(dǎo)腫瘤細(xì)胞凋亡,而對(duì)照Nus-His標(biāo)簽蛋白則未見此效應(yīng)。綜上所述,我們可以得出結(jié)論,fsTRAIL可抑制Jurkat細(xì)胞和HeLa細(xì)胞增殖及誘導(dǎo)凋亡。但fsTRAIL能否誘發(fā)其他人類腫瘤細(xì)胞株的凋亡還有待進(jìn)一步研究。
總之,本次實(shí)驗(yàn)首次對(duì)水生哺乳動(dòng)物TRAIL蛋白進(jìn)行報(bào)道,發(fā)現(xiàn)其在進(jìn)化上與偶蹄目動(dòng)物的TRAIL具有同源性,也發(fā)現(xiàn)fTRAIL能抑制Jurkat和HeLa細(xì)胞增殖并誘導(dǎo)細(xì)胞凋亡,既為水生哺乳動(dòng)物從陸生到水生的進(jìn)化研究提供了依據(jù),也為江豚甚至是水生哺乳動(dòng)物的免疫機(jī)制和物種保護(hù)的研究奠定了基礎(chǔ)。
REFERENCES
[1] Steller H. Mechanisms and genes of cellular suicide. Science, 1995, 267(5203): 1445–1449.
[2] Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 1995, 3(6): 673–682.
[3] Goetz FW, Planas JV, MacKenzie S. Tumor necrosis factors. Dev Comp Immunol, 2004, 28(5): 487–497.
[4] Gasparini C, Vecchi Brumatti L, Monasta L, et al. TRAIL-based therapeutic approaches for the treatment of pediatric malignancies. Curr Med Chem, 2013, 20(17): 2254–2271.
[5] Lorz C, Benito A, Ucero AC, et al. Trail and kidney disease. Front Biosci (Landmark Ed), 2009, 14: 3740–3749.
[6] Mustafa MA, Mohamed UK, Bastawisy A. TNF-related apoptosis-inducing ligand levels in rheumatoid arthritis, osteoarthritis, and spondyloarthritis. Egypt J Int Med, 2012, 24(3): 72–78.
[7] Yang SB, Wu XZ. Identification and functional characterization of a human sTRAIL homolog, CasTRAIL, in an invertebrate oyster Crassostrea ariakensis. Dev Comp Immunol, 2010, 34(5): 538–545.
[8] Pitti RM, Marsters SA, Ruppert S, et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem, 1996, 271(22): 12687–12690.
[9] Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer, 2009, 9(5): 361–371.
[10] Fox NL, Humphreys R, Luster TA, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-1 and receptor-2 agonists for cancer therapy. Expert Opin Biol Ther, 2010, 10(1): 1–18.
[11] Gerspach J, Pfizenmaier K, Wajant H. Therapeutic targeting of CD95 and the TRAIL death receptors. Recent Pat Anticancer Drug Discov, 2011, 6(3): 294–310.
[12] Glenney GW, Wiens GD. Early diversification of the TNF superfamily in teleosts: genomic characterization and expression analysis. JImmunol, 2007, 178(12): 7955–7973.
[13] Lalitha S. Primer premier 5. Biotech Software Internet Rep, 2000, 1(6): 270–272.
[14] Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21): 2947–2948.
[15] Allen JE, El-Deiry WS. Regulation of the human TRAIL gene. Cancer Biol Ther, 2012, 13(12): 1143–1151.
[16] Chang MX, Nie P, Xie HX, et al. Characterization and expression analysis of TNF-related apoptosis inducing ligand (TRAIL) in grass carp Ctenopharyngodon idella. Vet Immunol Immunopathol, 2006, 110(1/2): 51–63.
[17] Seol DW, Billiar TR. Cysteine 230 modulates tumor necrosis factor-related apoptosis-inducing ligand activity. Cancer Res, 2000, 60(12): 3152–3154.
[18] Gatesy J. Whales and even-toed ungulates (Cetartiodactyla)//Hedges SB, Kumar S, Eds. The Timetree of Life. Oxford, UK: Oxford University Press, 2009: 511–516.
[19] Zhou LD, Yan WL, Yang L, et al. Isolation of gamma-interferon-inducible lysosomal thiol reductase (GILT) from the Yangtze finless porpoise. Dev Comp Immunol, 2013, 41(4): 652–656.
[20] Li JF, Ai HX, Zhang J, et al. Molecular cloning, functional characterization and phylogenetic analysis of TRAIL in Japanese pufferfish Takifugu rubripes. J Fish Biol, 2011, 79(3): 747–760.
[21] Gao Y, Chang MX, Sun BJ, et al. TRAIL in the mandarin fish Siniperca chuatsi: gene and its apoptotic effect in HeLa cells. Fish Shellfish Immunol, 2008, 24(1): 55–66.
(本文責(zé)編 郝麗芳)
環(huán)境生物技術(shù)
Molecular cloning, in vitro expression and bioactivity of TRAIL (TNFSF10) gene from finless porpoises
Lili Pei1,2, Weijing Zhang1, Jia Lu1, Fang Huang1, Qianqian Cao1, and Wenhua Ren1
1 Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China
2 Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
Abstract:To construct soluble TNF related apoptosis inducing ligand (TRAIL) expression system and investigate the effect of the expression product on tumor cell. It may provide valuable information for research into the immune system of the finless porpoise. The full-length cDNA of TRAIL (designated fTRAIL) was cloned from the total RNA of the finless porpoises blood using RT–PCR techniques and then the extracellular soluble fragments of fTRAIL (designated fsTRAIL) was ligated into pET43.1a. Recombinant soluble fTRAIL (pET43.1a-fsTRAIL) fused with Nus-his tag was efficiently expressed in Escherichia coli BL21 (DE3) and the Nus-His-fsTRAIL protein was purified. The expression of Nus-His-fsTRAIL was verified by Western blotting. In vitro, the effects of the purified Nus-His-fsTRAIL protein on Jurkat and HeLa cells were etected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide (MTT) assay, TrypanBlue and Flow Cytometry analysis. The expression system pET43.1a-fsTRAIL was constructed and Nus-His-fsTRAIL protein was expressed successfully. In vitro, the Nus-His-fsTRAIL protein was able to inhibit the proliferation and induce apoptosis of Jurkat and HeLa cells in a dose-dependent manner. The Nus-His-fsTRAIL protein has anti-tumor activity against Jurkat and HeLa cells in vitro.
Keywords:TRAIL, finless porpoises (Neophocaena phoconoides), apoptosis, Jurkat cells, HeLa cells
Corresponding author:Wenhua Ren. Tel/Fax: 86-25-85891163; E-mail: spidervenom@163.com