周蘭庭,周挺,高君凌,王偉,吳小燕,黃亞璽,夏慶友,劉仕平
1 西南大學(xué) 家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗室,重慶 4007162 湖北文理學(xué)院 醫(yī)學(xué)院,湖北 襄陽 441053
?
家蠶let-7 microRNA靶基因Bmlin-41的克隆表達(dá)與調(diào)控
周蘭庭1,2,周挺1,高君凌1,王偉1,吳小燕1,黃亞璽1,夏慶友1,劉仕平1
1 西南大學(xué) 家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗室,重慶 400716
2 湖北文理學(xué)院 醫(yī)學(xué)院,湖北 襄陽 441053
周蘭庭, 周挺, 高君凌, 等. 家蠶let-7 microRNA靶基因Bmlin-41的克隆表達(dá)與調(diào)控. 生物工程學(xué)報, 2016, 32(5): 635–647.
Zhou LT, Zhou T, Gao JL, et al. Cloning and expression profile of Bmlin-41 and its regulation by the silkworm microRNA let-7. Chin J Biotech, 2016, 32(5): 635–647.
摘 要:異時性基因調(diào)控細(xì)胞增殖和個體發(fā)育階段的轉(zhuǎn)換。家蠶異時性基因在家蠶變態(tài)發(fā)育過程中也很可能具有重要的調(diào)控作用,但它們的表達(dá)模式、生物學(xué)功能以及與microRNA之間的關(guān)系卻鮮有報道。本研究首先利用果蠅同源基因lin-41搜索家蠶基因組數(shù)據(jù)庫中相似序列,設(shè)計引物擴(kuò)增Bmlin-41的編碼序列,克隆了家蠶Bmlin-41基因CDS,其長度為2 166 bp,編碼721個氨基酸,含有B-box和NHL結(jié)構(gòu)域;隨后,利用RT-PCR、qPCR技術(shù)并結(jié)合已有的家蠶全基因組芯片數(shù)據(jù)研究了Bmlin-41在家蠶中的時空表達(dá)模式,發(fā)現(xiàn)Bmlin-41在從家蠶胚胎到成蟲的發(fā)育過程中呈逐漸遞增的表達(dá)趨勢,在五齡3 d不同組織中,于卵巢里表達(dá)量最高,精巢和中腸次之,而其余組織中低量表達(dá)或不表達(dá);最后,利用3′RACE克隆了Bmlin-41基因的3′UTR,全長1 434 bp,用在線軟件RNAhybrid預(yù)測發(fā)現(xiàn)Bmlin-41的3′UTR上存在bmo-let-7靶位點(diǎn),構(gòu)建了含Bmlin-41 3′UTR的雙熒光素酶報告基因載體,在S2細(xì)胞上共轉(zhuǎn)染Bmlin-41 3′UTR和bmo-let-7的模擬物 (Mimics) 和拮抗劑(Antagomir),bmo-let-7 mimics顯著下調(diào)Bmlin-41,bmo-let-7 antagomir顯著上調(diào)Bmlin-41,證實(shí)了Bmlin-41 是bmo-let-7的靶基因。以上研究結(jié)果為深入研究let-7 miRNA和Bmlin-41的功能,揭示Bmlin-41和bmo-let-7在家蠶變態(tài)發(fā)育過程中的調(diào)控關(guān)系提供了新的線索。
關(guān)鍵詞:家蠶,異時性基因,家蠶let-7 miRNA,Bmlin-41,表達(dá)模式,靶基因
Received: October 15, 2015; Accepted: December 16, 2015
Supported by: National Basic Research Program of China (973 Program) (No. 2012CB114602); National Natural Science Foundation of China (Nos. 31071136, 31571334), Fundamental and Advanced Research Projects of Chongqing (No. cstc2014jcyjA00025).
國家重點(diǎn)基礎(chǔ)研究發(fā)展計劃 (973 計劃) (No. 2012CB114602);國家自然科學(xué)基金 (Nos. 31071136, 31571334),重慶市基礎(chǔ)與前沿研究計劃 (No. cstc2014jcyjA00025) 資助。
網(wǎng)絡(luò)出版時間:2016-03-07 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20160307.0957.002.html
生長和發(fā)育具有嚴(yán)格的時序性,時序性發(fā)育是由異時性基因 (Heterochronic gene) 調(diào)控的細(xì)胞有序增殖和分化的結(jié)果[1]。異時性基因lin-4、lin-14、lin-28、lin-42和lin-29共同調(diào)控線蟲不同發(fā)育階段特定細(xì)胞的分裂和分化,以控制線蟲的正常發(fā)育[2-6]。異時性基因lin-41在線蟲幼齡末期下調(diào)表達(dá),受其負(fù)調(diào)控的成蟲特異轉(zhuǎn)錄因子lin-29上調(diào)表達(dá),促使幼蟲向成蟲轉(zhuǎn)化[7]。當(dāng)lin-41缺失突變時,幼蟲期縮短,成蟲表型提前出現(xiàn),而當(dāng)lin-41過表達(dá)時,幼蟲期延長[7]。LIN-41蛋白屬于TRIM-NHL家族,通常含有由RING 鋅指結(jié)構(gòu)、B-BOX 基序、卷曲螺旋結(jié)構(gòu) (Coiled-coil) 組成的TRIM基序和NHL結(jié)構(gòu)域,RING 鋅指結(jié)構(gòu)具有泛素化連接酶的活性,B-BOX是一種鋅指結(jié)構(gòu),具有結(jié)合DNA、RNA和蛋白質(zhì)的能力,NHL形成β螺旋結(jié)構(gòu)域,可與蛋白質(zhì)和RNA相結(jié)合,不同結(jié)構(gòu)域使lin-41的功能多樣化[8-9]。lin-41在生物體內(nèi)有多種生物學(xué)功能,如促進(jìn)細(xì)胞增殖和抑制細(xì)胞分化,是細(xì)胞全能性和自我更新的調(diào)控因子[10-14]。
MicroRNA (MiRNA) 是一類長約22 nt的非編碼RNA,以互補(bǔ)配對方式和靶基因的3′UTR結(jié)合誘導(dǎo)沉默復(fù)合體 (RNA-induced silencing complex, RISC),清除靶基因mRNA或抑制靶基因mRNA的翻譯,參與調(diào)節(jié)新陳代謝、信號傳導(dǎo)、細(xì)胞增殖、細(xì)胞凋亡和細(xì)胞分化等各項生命活動[15]。lin-4是第一個被發(fā)現(xiàn)的時序性小分子RNA (Small temporal RNA,stRNA) 和miRNA奠基成員[16],是異時性基因lin-14的負(fù)調(diào)控子[17],通過與lin-14 的3′UTR 上7個反向互補(bǔ)位點(diǎn)相結(jié)合來實(shí)現(xiàn)調(diào)控作用[18]。let-7是第二個小分子時序RNA和奠基性miRNA[19,20],通過與靶基因lin-14、lin-28、lin-41、lin-42和daf-12的3′UTR反向互補(bǔ)結(jié)合來調(diào)控線蟲晚期幼蟲和成蟲的發(fā)育[7,19,21]。let-7和lin-41在不同物種間具有高度保守性,它們之間的調(diào)控關(guān)系也存在于果蠅[10]和高等動物中[11-12, 22-23]。let-7與細(xì)胞增殖、組織形成、器官分化以及細(xì)胞凋亡等有關(guān)[24-26],還抑制某些腫瘤細(xì)胞的生長[27-30]。
家蠶let-7在三齡前期低量表達(dá)或不表達(dá),三齡晚期開始高量表達(dá)[31],調(diào)控家蠶從幼蟲到成蟲的發(fā)育[32]。然而,家蠶let-7是否調(diào)節(jié)Bmlin-41以及它們?nèi)绾慰刂萍倚Q變態(tài)發(fā)育一直未見報道。本研究克隆了家蠶lin-41基因的編碼區(qū)序列,通過3′RACE技術(shù)獲得其全長3′UTR,利用共轉(zhuǎn)染和雙熒光素酶報告基因載體系統(tǒng)在果蠅細(xì)胞S2中證明了bmo-let-7負(fù)調(diào)控Bmlin-41,為深入研究家蠶變態(tài)發(fā)育的分子調(diào)控機(jī)理奠定了基礎(chǔ)。
1.1材料
家蠶品種為華系二化性大造品種,由家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗室提供。家蠶幼蟲是在25 ℃的人工氣候箱中用桑葉飼養(yǎng)。
1.2主要試劑
pEASY-T1和pEASY-T5載體購于北京全式金生物技術(shù) (TransGen Biotech) 有限公司。Trizol購于Invitrogen公司。限制性內(nèi)切酶PstⅠ、XhoⅠ、NotⅠ和Taq DNA聚合酶以及3′-Full RACE Core Set Ver.2.0試劑盒和實(shí)時熒光定量相關(guān)試劑均購于TaKaRa公司。細(xì)胞轉(zhuǎn)染試劑(X-tremeGENE HP DNA Transfection Reagent)購于Roche公司。超純質(zhì)粒提取試劑盒購于Qiagen公司。RNase抑制劑、M-MLV反轉(zhuǎn)錄試劑盒、雙熒光素酶報告基因載體psi-CHECKTM-2 Vector和雙熒光素酶報告基因檢測試劑盒(Dual-Glo?Luciferase Assay System) 均購于Promega公司。bmo-let-7模擬物 (Mimic)、模擬物陰性對照 (Negative control mimic) 和bmo-let-7拮抗劑 (Antagomir) 購于Dharmacon公司。果蠅S2細(xì)胞和相關(guān)細(xì)胞培養(yǎng)基購自Life Technologies公司。優(yōu)質(zhì)胎牛血清 (Fetal Bocine Serum,F(xiàn)BS) 購自PAA公司。
1.3引物設(shè)計與合成
用軟件primer premier 5.0設(shè)計引物。所有引物均由上海生工生物工程技術(shù)服務(wù)有限公司合成。
1.4Bmlin-41基因的克隆和序列分析
1.4.1Bmli n-41基因的克隆
從NCBI (http://www.ncbi.nlm.nih.gov) 下載果蠅LIN-41的蛋白質(zhì)序列作為源序列,在家蠶基因組數(shù)據(jù)庫SilkDB (http://silkworm. genomics.org.cn/) 進(jìn)行BLAST比對。在該基因編碼區(qū) (Coding sequence, CDS) 設(shè)計正向和反向引物,上下游引物分別位于起始密碼子ATG后和終止密碼子TAA附近。PCR反應(yīng)按以下程序進(jìn)行:94 ℃預(yù)變性3 min,然后94 ℃變性30 s、54 ℃退火30 s、72 ℃延伸1 min,共35個循環(huán),再72 ℃終延伸10 min。將得到的PCR產(chǎn)物連接到pEASY-T5載體,經(jīng)PCR和雙酶切(PstⅠ與NotⅠ) 篩選陽性克隆,送上海生工生物工程技術(shù)服務(wù)有限公司測序驗證。
1.4.2總RNA提取和實(shí)時定量PCR檢測
分別取家蠶發(fā)育周期的個體材料 (包括胚胎6 d、四眠、五齡3 d、預(yù)蛹、剛化的蛹和剛的化蛾)、家蠶幼蟲階段13個時間點(diǎn)材料 (一齡初、一眠初、一眠末、二齡初、二眠初、二眠末、三齡初、三眠初、三眠末、四齡初、四眠初、四眠末、五齡3 d) 和五齡3 d的組織材料 (頭、體壁、絲腺、中腸、脂肪體、精巢、卵巢、血液、馬氏管)。使用Trizol試劑參照文獻(xiàn)中的方法提取和純化總RNA[33],用M-MLV合成cDNA。根據(jù)Bmlin-41基因的CDS序列設(shè)計實(shí)時定量PCR引物Q-Bmlin-41-F和Q-Bmlin-41-R (表1),用家蠶真核翻譯起始因子eIF-4A作為內(nèi)參基因,其引物為Q-sw22934-F和Q-sw22934-R (表1)。在ABI 7500 fast real-time PCR儀上采用兩步法標(biāo)準(zhǔn)程序進(jìn)行定量PCR檢測,反應(yīng)程序如下:95 ℃預(yù)變性30 s,然后95 ℃變性30 s,60 ℃退火30 s,40個循環(huán),進(jìn)入溶解曲線階段。
1.4.3Bmlin-41基因的序列分析和LIN-41蛋白系統(tǒng)進(jìn)化樹構(gòu)建
在ExPaSy (http://www.expasy.org/tools/) 網(wǎng)站進(jìn)行Bmlin-41基因氨基酸序列的翻譯。使用Sim4在線程序 (http://pbil.univ-lyon1.fr/sim4. php) 與家蠶基因組序列比對鑒定所克隆基因的內(nèi)含子和外顯子結(jié)構(gòu)。使用SMART程序(http://smart.embl-heidelberg.de/) 預(yù)測蛋白質(zhì)結(jié)構(gòu)域。通過NCBI的BLAST程序進(jìn)行搜索,下載LIN-41同源體序列,使用Clustalx1.83[34]軟件進(jìn)行比對,用MEGA 6.0[35]構(gòu)建系統(tǒng)進(jìn)化樹。
1.5Bmlin-41基因在家蠶中的時空表達(dá)模式
下載家蠶全基因組的組織表達(dá)芯片數(shù)據(jù)[36],根據(jù)芯片中所檢測的基因序列查找到Bmlin-41的芯片數(shù)據(jù),分析Bmlin-41 的組織表達(dá)譜。利用RT-PCR和實(shí)時定量PCR方法,研究Bmlin-41在家蠶不同發(fā)育階段和五齡3 d不同組織中的表達(dá)模式。
表1 本研究所使用的引物Table 1 Primers used in this study
1.6Bmlin41基因3′UTR的克隆和bmo-let-7靶位點(diǎn)預(yù)測
以3 μg 五齡3 d卵巢的RNA為模板,利用3′-Full RACE Core Set Ver.2.0試劑盒進(jìn)行反轉(zhuǎn)錄合成cDNA。在CDS區(qū)域的終止密碼子上游600 bp和164 bp處分別設(shè)計Bmlin-41-outer和Bmlin-41-inner引物,進(jìn)行套式PCR擴(kuò)增。outer反應(yīng)程序:94 ℃預(yù)變性3 min;94 ℃變性30 s,55 ℃退火30 s,72 ℃延伸 1 min 30 s,20個循環(huán);72 ℃終延伸10 min。取1 μL outer反應(yīng)液為模板,利用引物Bmlin-41-inner和3′RACE Inner Primer進(jìn)行inner反應(yīng):94 ℃預(yù)變性3 min;94 ℃變性30 s,55 ℃退火30 s,72 ℃延伸1 min 30 s,30個循環(huán);72 ℃,10 min。膠回收主帶與pEASY-T1連接得到pEASY-T1 [Bmlin41-3′RACE]載體,轉(zhuǎn)化、篩選陽性克隆,送生工生物公司測序驗證。
從miRBase[37](http://www.mirbase.org/) 下載bmo-let-7-5p的成熟體序列UGAGGUAGUA GGUUGUAUAGU,用在線軟件RNAhybrid[38](http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/)預(yù)測Bmlin-41 3′UTR上bmo-let-7的結(jié)合位點(diǎn)。
1.7Bmlin-41基因3′UTR雙熒光素酶報告基因載體構(gòu)建和共轉(zhuǎn)染實(shí)驗
在Bmlin-41基因3′UTR起始堿基設(shè)計上游引物 (加XhoⅠ酶切位點(diǎn),見表1下劃線),在poly A前設(shè)計下游引物 (加NotⅠ酶切位點(diǎn),見表1下劃線),以測序正確的pEASY-T1[Bmlin41-3′RACE]載體質(zhì)粒為模板,擴(kuò)增3′UTR亞克隆片段,反應(yīng)條件為:94 ℃預(yù)變性3 min;94 ℃變性30 s,68 ℃退火30 s,72 ℃延伸1 min 30 s,30個循環(huán);72 ℃終延伸10 min。切膠回收后連接得到pEASY-T1[Bmlin41-3′UTR]載體。測序正確后,用XhoⅠ和NotⅠ分別酶切pEASY-T1 [Bmlin41-3′UTR]載體和psi-CHECK-2載體,膠回收后,順次進(jìn)行連接、轉(zhuǎn)化、挑斑和測序驗證,得到Bmlin-41基因3′UTR的雙熒光素酶報告基因載體psi[Bmlin41-3′UTR]。
提取psi[Bmlin41-3′UTR]載體的超純質(zhì)粒,將果蠅S2細(xì)胞接種到24孔板,待細(xì)胞長至80%時,利用轉(zhuǎn)染試劑X-tremeGENE,把1 μg Bmlin-41基因3′UTR報告基因載體psi-CHECK-2[Bmlin41-3′UTR]質(zhì)粒分別與bmo-let-7 模擬物(Mimics)、拮抗劑 (Antagomir) 和對照進(jìn)行共轉(zhuǎn)染。設(shè)計4組實(shí)驗,分別為psi[Bmlin41-3′UTR]組、psi[Bmlin41-3′UTR]+ negative control mimics(終濃度50 μmol/L) 組、psi[Bmlin41-3′UTR]+bmo-let-7 mimics (終濃度50 μmol/L) 組、psi[Bmlin41-3′UTR]+bmo-let-7 antagomir (終濃度250 μmol/L) 組,各設(shè)3個生物學(xué)重復(fù)。48 h后,收集細(xì)胞,加入適量PBS,按照Dual-Glo?Luciferase Assay System試劑盒說明書,加入熒光素酶試劑底物,10 min后,測定螢火蟲熒光值,加入終止液,10 min后,測定海腎熒光值。
1.8數(shù)據(jù)統(tǒng)計和分析
雙熒光素酶活性以海腎熒光值/螢火蟲熒光值作比較,均一化后,應(yīng)用GraphPad prism 5.0.軟件進(jìn)行統(tǒng)計分析,數(shù)據(jù)以平均值+標(biāo)準(zhǔn)誤(±s) 表示,采用Unpaired t檢驗進(jìn)行差異顯著性分析,雙尾檢驗 (Two-tailed) P<0.05表示顯著性差異,P<0.01表示極顯著性差異。
2.1Bmlin-41基因的克隆和序列分析
在家蠶基因組數(shù)據(jù)庫中,利用果蠅的LIN-41氨基酸序列 (GenBank登錄號AAM68901.1) 進(jìn)行B L A S T比對,檢索到一條編號為BGIBMGA002757的同源基因,將之命名為Bmlin-41。以家蠶五齡3 d卵巢的cDNA為模板,用引物Bmlin-41-F和Bmlin-41-R進(jìn)行PCR擴(kuò)增,得到1條約2 000 bp的目的片段 (圖1A)。用PstⅠ和NotⅠ雙酶切及質(zhì)粒PCR鑒定陽性克隆,酶切片段與PCR擴(kuò)增片段大小一致,初步說明該質(zhì)粒是重組質(zhì)粒 (圖1B)。測序驗證后,發(fā)現(xiàn)該基因序列長2 166 bp,與BGIBMGA002757基因序列一致。
圖1 Bmlin-41基因CDS的克隆Fig. 1 Cloning of Bmlin-41 coding sequence. (A) PCR product of Bmlin-41 CDS. M: DNA marker; 1: PCR product. (B) PCR and restriction digestion of positive plasmid. M: DNA marker; 1: PCR of positive plasmid; 2: recovered fragments of Bmlin-41 CDS; 3: double restriction digestion of positive plasmid by PstⅠand NotⅠ .
Bmlin-41基因位于家蠶nscaf2564上,單外顯子,預(yù)測其編碼721個氨基酸,用在線SMART程序?qū)倚QBombyx mori的LIN-41蛋白進(jìn)行結(jié)構(gòu)域分析,并與其他幾個物種包括智人Homo sapiens、小家鼠Mus Musculus、斑馬魚Danio rerio、秀麗隱桿線蟲Caenorhabditis elegans、黑腹果蠅 Drosophila melanogaster) 的LIN-41結(jié)構(gòu)域進(jìn)行比較 (圖2)。BmLIN-41蛋白結(jié)構(gòu)具有TRIM-NHL家族的典型鋅指結(jié)構(gòu)域B-BOX、卷曲螺旋結(jié)構(gòu)域 (B-Box C-terminal domain) BBC和能夠形成β螺旋結(jié)構(gòu)域的NHL。
圖2 LIN-41蛋白結(jié)構(gòu)域預(yù)測Fig. 2 Predicted domains of LIN-41. All domains were predicted by SMART online at http://smart.embl-heidelberg. de/smart[39]. RING: Ring finger; IG_FLMN: Filamin-type immunoglobulin domains; BBOX: B-box-type zinc finger domains; BBC: B-Box C-terminal domain; The NHL repeat: named after NCL-1, HT2A and Lin-41, is found largely in a large number of eukaryotic and prokaryotic proteins.
用Bmlin-41的蛋白質(zhì)氨基酸序列在NCBI 上BLAST搜索,發(fā)現(xiàn)家蠶Bmlin-41與鱗翅目Lepidoptera的小菜蛾P(guān)lutella xylostella和黑脈金斑蝶Danaus plexippus的很相似,分別有87% 和84%的一致性,其次和雙翅目Diptera的中華按蚊Anopheles sinensis和Drosophila致倦庫蚊Culex quinquefasciatus的相似度分別為63%和45%,與線蟲Caenorhabditis elegans、斑馬魚Danio rerio、和哺乳動物的相似性都低于40%。用MEGA 6.0構(gòu)建系統(tǒng)發(fā)育樹 (圖3)。由系統(tǒng)樹可見,不同科和目的動物分別聚在一起。蚊科Culicidae的5種昆蟲聚在一個進(jìn)化枝上,果蠅科Drosophilidae的12種果蠅聚在一起,與家蠅科Muscidae中的家蠅Musca domestica L.明顯分開,蚊科、果蠅科和家蠅科的昆蟲又聚在上一級的雙翅目上。家蠶和同為鱗翅目的黑脈金斑蝶與小菜蛾進(jìn)化距離最近,它們聚在一個分類枝上,與雙翅目的蚊子和果蠅分開。膜翅目中,蜜蜂科Apoidea的小蜜蜂Apis florea和大蜜蜂Apis dorsata聚在一個小分支上,熊蜂科Bombidae歐洲熊蜂Bombus terrestris和北美大黃蜂Bombus impatiens聚在另一個小分支上,蜜蜂科與熊蜂科聚在上一級的膜翅目中,膜翅目與脊椎動物之間的進(jìn)化距離要比與系統(tǒng)樹中其他目昆蟲之間的進(jìn)化距離近些。線蟲綱Nematode中,蛔蟲科Ascarididae的犬弓首蛔蟲Toxocara canis和豬蛔蟲Ascaris suum聚在一起,再與小桿科Rhabditidae的秀麗隱桿線蟲Caenorhabditis elegans聚在高一級線蟲動物門Nemathelminthes上,又與膜翅目昆蟲和脊椎動物聚在更高一級進(jìn)化支上。人科Hominidae、猩猩科Pongidae和猴科Cercopithecidae彼此分開又共同聚在上一級靈長目Primates上,與嚙齒目 Rodentia的小家鼠Mus musculus聚在哺乳綱Mammalia上。鯉目Cyprinlformes鯉科Cyprinidae中的斑馬魚Danio rerio、雞形目Galliformes雉科Phasianidae中的原雞Gallus gallus和哺乳動物Mammalia聚在脊椎動物門Vertebrata上。
圖3 LIN-41氨基酸序列系統(tǒng)進(jìn)化樹Fig. 3 Phylogenetic tree of LIN-41 based on amino acid sequences. The phylogenetic tree was constructed with the MEGA 6.0 by the neighbor-joining (NJ) method with amino acid sequences of BmLIN-41and its homologues. The bootstrap method was used in this phylogeny test and poisson model was selected for the substitution model.
圖4 家蠶Bmlin-41時空表達(dá)模式Fig. 4 Spatiotemporal expression profiles of Bmlin-41. (A) Temporal expression patterns of Bmlin-41 by RT-PCR[40]. e-IL1: early 1st instar larva; e-ML1:early 1st molt larva; l-ML1: late 1st molt larva; e-IL2: early 2nd instar larva; e-ML2: early 2nd molt larva; l-ML2: late 2nd molt larva; e-IL3: early 3rd instar larva; e-ML3: early 3rd molt larva; l-ML3: late 3rd molt larva; e-IL4: early 4th instar larva; e-ML4: early 4th molt larva; l-ML4: late 4th molt larva. D3-IL5: 3rd day of fifth instar larva. (B) Temporal expression profile of Bmlin-41 by qPCR. D6-Em: 6th day of embryo; IL4: 4th instar larva; D3-IL5: 3rd day of fifth instar larva; Ppu: prepupa; Pu: pupa; Ad: adult moth. (C) Spatial expression profile of Bmlin-41 in day-3 fifth instar larvae by RT-PCR[40]. (D) Spatial expression profile of Bmlin-41 in fifth instar larvae based on microarray assay. The microarray data were downloaded from BmMDB(http://www.silkdb.org/microarray/)[36]. (E) Spatial expression profile of Bmlin-41 in day-3 fifth instar larvae by qPCR. HD: head; BW: body wall; SG: silk gland; A/MSG: anterior/middle silk gland; PSG: posterior silk gland; MG: midgut; FB: fat body; HC: hemocyte; MT: Malpighian tubule; OV: ovary; TE: testis.
2.2家蠶Bmlin-41在家蠶中的時空表達(dá)模式
RT-PCR結(jié)果顯示Bmlin-41基因在家蠶一齡至五齡3 d都有表達(dá),但不同時期之間的表達(dá)量差異很大,一齡和四齡分別比一眠和四眠表達(dá)量高,三眠初和四眠初分別比三眠末和四眠末表達(dá)量高,一眠初至二眠初都是低量表達(dá),二眠末表達(dá)量明顯升高 (圖4A)。定量PCR檢測結(jié)果表明,Bmlin-41基因在家蠶胚胎、幼蟲(四齡和五齡3 d)、預(yù)蛹、蛹和成蟲中呈上調(diào)表達(dá),至蛾期時的表達(dá)量最高 (圖4B)。RT-PCR、芯片數(shù)據(jù)和定量PCR檢測結(jié)果表明,Bmlin-41基因在家蠶五齡3 d的生殖腺中高量表達(dá),絲腺中的表達(dá)量最低或無表達(dá) (圖4C-E)。
2.3Bmlin-41基因3′UTR的克隆及bmo-let-7靶位點(diǎn)預(yù)測
用五齡3 d卵巢的總RNA按3′RACE試劑盒操作進(jìn)行反轉(zhuǎn)錄獲得cDNA模板,使用引物Bmlin-41-outer和Bmlin-41-inner進(jìn)行套式PCR擴(kuò)增,inner反應(yīng)得到一條將近1 700 bp的片段(圖5A)。菌落PCR片段與套式PCR擴(kuò)增片段大小一致 (圖5B),說明該菌落為陽性克隆。將此克隆進(jìn)行測序驗證后,去除引物和CDS序列,得到Bmlin-41的3′UTR,大小為1 434 bp。使用RNAhybrid在線預(yù)測,發(fā)現(xiàn)在Bmlin-41基因3′UTR上有兩個bmo-let-7靶位點(diǎn),分別位于3′UTR的780位 (T1) 和919位 (T2),靶位點(diǎn)的自由能mfe分別為–17.3 kcal/mol和–20.7 kcal/mol(圖6A)。這表明家蠶Bmlin-41基因可能是bmo-let-7的靶基因。
圖5 家蠶Bmlin-41基因3′UTR克隆Fig. 5 Cloning of Bmlin-41 3′UTR. (A) The 3’RACE of Bmlin-41 3′UTR. M: DNA marker; 1: cDNA by reverse transcription PCR; 2: product of inner PCR. (B) PCR validation of pEASY-T1 [Bmlin-41-3′UTR] plasmid. M: DNA marker; 1: PCR product of 3′UTR.
2.4Bmlin-41基因3′UTR的bmo-let-7靶位點(diǎn)的實(shí)驗驗證
2.4.1雙熒光素酶報告基因載體構(gòu)建
為了在細(xì)胞水平驗證Bmlin-41基因是否受bmo-let-7調(diào)控,在Bmlin-41基因的3′UTR兩端設(shè)計引物 (加XhoⅠ /NotⅠ酶切位點(diǎn)) (表1),將其亞克隆至雙熒光素酶報告基因載體(psi-CHECK-2) 的海腎熒光素酶基因 (Renilla luciferase gene) 后面,酶切驗證陽性克隆(圖6B),測序驗證,得到psi-CHECK-2[Bmlin41-3′UTR]載體。
2.4.2雙熒光素酶信號測定與分析
共轉(zhuǎn)染果蠅S2細(xì)胞系48 h后,測定各組熒光素酶活性并計算比值 (Renilla/Firefly)。與對照相比,當(dāng)雙熒光素酶報告基因載體和let-7 mimics共轉(zhuǎn)染時,熒光素酶活性顯著下降(圖6C),說明let-7 mimic轉(zhuǎn)染入S2細(xì)胞后與3′UTR結(jié)合,抑制了靶基因的轉(zhuǎn)錄,使海腎熒光素酶活性降低;當(dāng)和bmo-let-7 antagomir共轉(zhuǎn)染時,熒光素酶活性極顯著上升 (圖6D),暗示let-7 antagomir轉(zhuǎn)染S2細(xì)胞后,競爭性的抑制了內(nèi)源性let-7,靶基因轉(zhuǎn)錄水平上升,海腎熒光素酶活性增加。這表明Bmlin-41基因是bmo-let-7的靶基因,受bmo-let-7負(fù)調(diào)控。
圖6 家蠶Bmlin-41基因3′UTR上bmo-let-7靶位點(diǎn)的預(yù)測和細(xì)胞水平驗證Fig. 6 Target site prediction and experimental validation of bmo-let-7 within 3′UTR of Bmlin-41. (A) Target site prediction by online RNAhybrid. (B) Constructing dual luciferase reporter gene vector. M: DNA marker; 1: pEASY-T1[Bmlin-41-3′UTR] digested by PstⅠ and NotⅠ ; 2: recovered fragments of 3′UTR; 3: the psi-CHECK-2 vector digested with PstⅠ and NotⅠ ; 4: the empty psi-CHECK-2 vector; 5: digestion product of psi-CHECK-2[Bmlin-41-3′UTR] by PstⅠ and NotⅠ . (C) bmo -let-7 mimics down-regulates Bmlin-41. 3′UTR-psi: psi-CHECK-2[Bmlin-41-3′UTR] vector; NC mimics: negative control mimics; let-7 mimics: bmo-let-7-5p mimics. (D) Bmo-let-7 antagomir upregulates Bmlin-41. 3′UTR-psi: psi-CHECK-2[Bmlin-41-3′UTR] vector; let-7 antagomir: bmo-let-7-5p antagomir; error bars±s . P<0.05 means significance, P<0.01 means extreme significance (student’s t test).
Bmlin-41在家蠶幼蟲階段的不同齡期和眠期有不同的表達(dá),在家蠶整個生命周期中呈上調(diào)趨勢,成蟲期的表達(dá)量最高 (圖4A, B),暗示它可能與家蠶的齡期轉(zhuǎn)化和變態(tài)發(fā)育有關(guān)。芯片數(shù)據(jù)和定量PCR結(jié)果表明,Bmlin-41在卵巢和精巢中高量表達(dá) (圖4D, E),推測其在生殖腺中具有重要功能,可能參與卵的形成與受精核的分裂和分化。芯片數(shù)據(jù)和定量PCR結(jié)果總體上看是基本一致的,但也存在不完全一致的情況。例如,在芯片數(shù)據(jù)中,Bmlin-41在中腸里低量表達(dá),但定量PCR結(jié)果顯示其在中腸里的表達(dá)量相對較高;兩種實(shí)驗結(jié)果都表明Bmlin-41在精巢和卵巢里高量表達(dá),但在卵巢里的定量PCR結(jié)果重復(fù)性并不好。這些不一致可能與不同批次所取材料之間的細(xì)微差異有關(guān),但也不能排除是由于實(shí)驗中某些不確定因素所致,有待于以后進(jìn)一步證實(shí)。
let-7是動物中最早發(fā)現(xiàn)的miRNA之一,在很多物種都含有l(wèi)et-7,具有高度的保守性[20]。let-7在幼蟲晚期開始表達(dá),成蟲時表達(dá)量達(dá)高峰,控制線蟲和果蠅晚期幼蟲到成蟲的變態(tài)轉(zhuǎn)型[19, 41]。bmo-let-7在家蠶胚胎階段和一齡期間無表達(dá),二齡幼蟲期開始低量表達(dá),三齡幼蟲至成蟲階段表達(dá)量較高[31]。bmo-let-7和Bmlin-41在家蠶發(fā)育周期中總體上都呈上調(diào)趨勢,但在某些發(fā)育階段和組織中,let-7的表達(dá)變化與Bmlin-41明顯相反。例如,let-7在四齡期的表達(dá)明顯低于四眠[31],而Bmlin-41在四齡期間的表達(dá)卻顯著高于四眠 (圖4A),let-7在卵巢中的表達(dá)量低于精巢[31],但是Bmlin-41在卵巢中表達(dá)量卻略高于精巢 (圖4C和4D),相反的表達(dá)關(guān)系暗示let-7可能在家蠶一些發(fā)育時期和特定組織中負(fù)調(diào)控Bmlin-41。然而,由于let-7與Bmlin-41在個體和器官水平的表達(dá)比較是基于不同批次的實(shí)驗,它們之間的表達(dá)關(guān)系還有必要在后續(xù)的研究中進(jìn)一步驗證。
線蟲lin-41基因的3′UTR上存在let-7的靶位點(diǎn),把lin-41基因的3′UTR連接到Escherichia coli lacZ 報告基因后,lacZ 的活性被抑制,進(jìn)一步證明了lin-41基因是let-7的靶基因[21]。在家蠶中,克隆Bmlin-41基因3′UTR序列,通過共轉(zhuǎn)染和雙熒光素酶報告基因系統(tǒng),證明了Bmlin-41是bmo-let-7的靶基因(圖5)。miRNA是通過識別與結(jié)合靶基因來實(shí)現(xiàn)其調(diào)控功能的,但截至目前,家蠶miRNA功能研究報道不多,一個重要原因是很少有靶基因被證實(shí)。我們前面用pGL3載體系統(tǒng)在家蠶胚胎細(xì)胞系BmE中證明了bmo-miR-7負(fù)調(diào)控靶基因Bmyan,為深入研究家蠶眼睛和腦的發(fā)育提供了一些依據(jù)[42]。在本研究中,我們用psi-CHECK-2載體系統(tǒng)在果蠅S2細(xì)胞系中證明了家蠶bmo-let-7 miRNA負(fù)調(diào)控靶基因Bmlin-41,將為深入研究家蠶發(fā)育變態(tài)的分子機(jī)理提供新的線索。然而,預(yù)測發(fā)現(xiàn)Bmlin-41 的mRNA 3′UTR上有兩個靶位點(diǎn),它們是否都是bmo-let-7的有效結(jié)合位點(diǎn)?所以,為了深入研究bmo-let-7對其靶基因Bmlin-41的調(diào)控,還有必要通過靶位點(diǎn)突變實(shí)驗對兩個靶位點(diǎn)的結(jié)合效率進(jìn)行比較。
本研究首次克隆和鑒定了家蠶Bmlin-41基因。它具有TRIM-NHL家族典型的B-Box、NHL結(jié)構(gòu)域。Bmlin-41的時序表達(dá)模式具有明顯的發(fā)育階段特性,總體上是齡期高于眠期,眠初高于眠末,成蟲期高于幼蟲期;在五齡3 d的生殖腺中高量表達(dá),其他組織中低量表達(dá)或不表達(dá)。通過3′RACE得到Bmlin-41基因3′UTR,預(yù)測Bmlin-41基因的3′UTR上存在bmo-let-7靶位點(diǎn),用雙熒光素酶報告基因系統(tǒng),在細(xì)胞水平證明了Bmlin-41基因是bmo-let-7的靶基因,被bmo-let-7負(fù)調(diào)控。該研究為進(jìn)一步研究家蠶let-7和Bmlin-41的功能以及家蠶變態(tài)發(fā)育的分子機(jī)理提供了一些參考。
REFERENCES
[1] Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch inC. elegans. Cell, 1989, 57(1): 49–57.
[2] Ambros V, Horvitz HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science, 1984, 226(4673): 409–416.
[3] Ambros V, Horvitz HR. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev, 1987, 1(4): 398–414.
[4] Ambros V, Moss EG. Heterochronic genes and the temporal control of C. elegans development. Trends Genet, 1994, 10(4): 123–127.
[5] Slack F, Ruvkun G. Temporal pattern formation by heterochronic genes. Annu Rev Genet, 1997, 31: 611–634.
[6] Bettinger JC, Lee K, Rougvie AE. Stage-specific accumulation of the terminal differentiation factor LIN-29 during Caenorhabditis elegans development. Development, 1996, 122(8): 2517–2527.
[7] Slack FJ, Basson M, Liu ZC, et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell, 2000, 5(4): 659–669.
[8] Loedige I, Gaidatzis D, Sack R, et al. The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function. Nucleic Acids Res, 2013, 41(1): 518-532.
[9] Ecsedi M, Gro?hans H. LIN-41/TRIM71: emancipation of a miRNA target. Genes Dev, 2013, 27(6): 581–589.
[10] O'Farrell F, Esfahani SS, Engstr?m Y, et al. Regulation of the Drosophila lin-41 homologue dappled by let-7 reveals conservation of a regulatory mechanism within the LIN-41 subclade. Dev Dyn, 2008, 237(1): 196–208.
[11] Spike, C. A, Coetzee, D, Eichten, C, et al. The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of Caenorhabditis elegans oocytes. Genetics , 2014, 198(4): 1535-1558.
[12] Rybak A, Fuchs H, Hadian K, et al. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat Cell Biol, 2009, 11(12): 1411–1420.
[13] Tocchini C, Keusch JJ, Miller SB, et al. The TRIM-NHL protein LIN-41 controls the onset of developmental plasticity in Caenorhabditis elegans. PLoS Genet, 2014, 10(8): e1004533.
[14] Ecsedi M, Rausch M, Gro?hans H. The let-7 microRNA directs vulval development through a single target. Dev Cell, 2015, 32(3): 335–344.
[15] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297.
[16] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843–854.
[17] Arasu P, Wightman B, Ruvkun G. Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev, 1991, 5(10): 1825–1833.
[18] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75(5): 855–862.
[19] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901–906.
[20] Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808): 86–89.
[21] Vella MC, Choi EY, Lin SY, et al. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes Dev, 2004, 18(2): 132–137.
[22] Kloosterman WP, Wienholds E, Ketting RF, et al. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res, 2004, 32(21): 6284–6291.
[23] Kanamoto T, Terada K, Yoshikawa H, et al. Cloning and regulation of the vertebrate homologue of lin-41 that functions as aheterochronic gene in Caenorhabditis elegans. Dev Dyn, 2006, 235(4): 1142–1149.
[24] Abbott AL, Alvarez-Saavedra E, Miska EA, et al. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell, 2005, 9(3): 403–414.
[25] Esquela-Kerscher A, Johnson SM, Bai L, et al. Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system. Dev Dyn, 2005, 234(4): 868–877.
[26] Gro?hans H, Johnson T, Reinert KL, et al. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell, 2005, 8(3): 321–330.
[27] Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development, 2005, 132(21): 4653–4662.
[28] Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350–355.
[29] Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res, 2007, 67(4): 1424–1429.
[30] Brueckner B, Stresemann C, Kuner R, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res, 2007, 67(4): 1419–1423.
[31] Liu SP, Xia QY, Zhao P, et al. Characterization and expression patterns of let-7 microRNA in the silkworm (Bombyx mori). BMC Dev Biol, 2007, 7(1): 88.
[32] Ling L, Ge X, Li ZQ, et al. MicroRNA Let-7 regulates molting and metamorphosis in the silkworm, Bombyx mori. Insect Biochem Mol Biol, 2014, 53: 13–21.
[33] Liu SP, Xia QY. Protocol of Northern blotting hybridization for microRNA detection of silkworm (Bombyx mori). Sci Sericul, 2014, 40(4): 724–729 (in Chinese).劉仕平, 夏慶友. Northern雜交檢測家蠶microRNA 的技術(shù)流程. 蠶業(yè)科學(xué), 2014, 40(4): 724–729.
[34] Higgins DG, Thompson JD, Gibson TJ. Using CLUSTAL for multiple sequence alignments. Methods Enzymol, 1996, 266: 383–402.
[35] Tamura K, Stecher G, Peterson D, et al. MEGA 6.0: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30(12): 2725–2729.
[36] Xia QY, Cheng DJ, Duan J, et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol, 2007, 8(8): R162.
[37] Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 2014, 42: D68–D73.
[38] Rehmsmeier M, Steffen P, H?chsmann M, et al. Fast and effective prediction of microRNA/target duplexes. RNA, 2004, 10(10): 1507–1517.
[39] Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res, 2015, 43: D257–D260.
[40] Zhou T. Cloning of let-7 target genes and inducing of ecdysone on bmo-let-7 miRNA in silkworm cell lines[D]. Chongqing: Southwest University, 2009 (in Chinese).周挺. 家蠶let-7 miRNA的靶基因克隆和激素誘導(dǎo)[D]. 重慶: 西南大學(xué), 2009.
[41] Sempere LF, Dubrovsky EB, Dubrovskaya VA, et al. The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev Biol, 2002, 244(1): 170–179.
[42] Liu SP, Huang YX, Yin JY, et al. Cloning and expression profile of Bmyan in the silkworm (Bombyx mori) and experimental validation as one target of microRNA 7. Chin J Biotech, 2015, 31(11): 1612–1622 (in Chinese).劉仕平, 黃亞璽, 尹紀(jì)云, 等. 家蠶Bmyan基因的克隆表達(dá)和作為microRNA 7靶基因的驗證.生物工程學(xué)報, 2015, 31(11): 1612–1622.
(本文責(zé)編 陳宏宇)
食品生物技術(shù)
Cloning and expression profile of Bmlin-41 and its regulation by the silkworm microRNA let-7
Lanting Zhou1,2, Ting Zhou1, Junling Gao1, Wei Wang1, Xiaoyan Wu1, Yaxi Huang1, Qingyou Xia1, and Shiping Liu1
1 State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
2 Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
Abstract:The heterochronic genes regulate cell proliferation and switch development stage transitions. Heterochronic genes might also play important roles in regulating the development of silkworm, but very few of their expression profiles, functions and their relationship with microRNAs are available so far. Firstly, in this work, the primers for cloning Bmlin-41 were designed based on the homologous sequence of known Drosophila melanogaster lin-41, which was used as the query to blast against SilkDB. The obtained full CDS (2 166 bp) of Bmlin-41 encodes 721 amino acids and contains B-box and NHL domains. Then, the spatiotemporal expression patterns of Bmlin-41 were characterized by RT-PCR, quantitative real time PCR as well as our lab’s previous silkworm genome microarray data. Bmlin-41 was increasingly expressed from embryonic to adult stage. In diverse tissues of day-3 fifth instar, Bmlin-41 showed the highest accumulation in ovary, secondly in testis and midgut, but very low expression was observed in other tissues. Finally, 3′UTR of Bmlin-41 1 434 bp was cloned by rapid-amplification of cDNA ends (3'RACE) and was predicted to bare two binding sites of bmo-let-7 by using online RNAhybrid. To verify the binding effect, 3′UTR was cloned into psi-CHECK-2 vector and submitted to dual luciferase assay in the S2 cells in vitro. The dual luciferase assay demonstrated that Bmlin-41 was down-regulated by bmo-let-7 mimics and upregulated by bmo-let-7 antagomir, thus confirming the Bmlin-41 is negatively regulated by bmo-let-7. Our work might help further study on the roles of Bmlin-41 and bmo-let-7 and their regulation relationship involved in controlling metamorphosis of silkworm.
Keywords:silkworm (Bombyx mori), heterochronic gene, bmo-let-7 miRNA, Bmlin-41, expression profile, target gene
Corresponding author:Shiping Liu. Tel: +86-23-68251569; E-mail: lsp98668@163.com