• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    炭基體種類對炭/炭復合材料內(nèi)耗行為的影響

    2016-06-20 02:36:53羅瑞盈侯振華商海東郝名揚
    新型炭材料 2016年2期
    關鍵詞:力學性能

    楊 威, 羅瑞盈, 侯振華, 張 鈾, 商海東, 郝名揚

    (北京航空航天大學 物理科學與核能工程學院, 北京100191)

    ?

    炭基體種類對炭/炭復合材料內(nèi)耗行為的影響

    楊威,羅瑞盈,侯振華,張鈾,商海東,郝名揚

    (北京航空航天大學 物理科學與核能工程學院, 北京100191)

    摘要:通過化學氣相沉積(CVI)和化學氣相沉積與先驅體轉化結合(CVI+PIP)的方法,制備了三種不同炭基組織結構的炭/炭復合材料。三種基體分別是光滑層基體(SLC)、粗糙層基體(RLC)和混合雙基體(DMC)(過度生長錐基體+呋喃樹脂炭基體)。對這三種復合材料樣品進行微觀組織結構和動態(tài)力學性能表征。結果表明,內(nèi)耗主要來源于炭基體缺陷的運動、纖維/基體界面的滑移和炭平面的滑移。復合材料的內(nèi)耗對于溫度和振幅變化非常敏感,但頻率的變化對復合材料的的內(nèi)耗影響不大。混合雙基體具有最高的缺陷密度和最高的內(nèi)耗,粗糙層基體具備較完美的炭平面和最低的內(nèi)耗。炭基體的微觀組織結構是影響內(nèi)耗的關鍵因素,由于光滑層基體、粗糙層基體和混合雙基體的微觀結構的區(qū)別,導致在不同基體中出現(xiàn)了不同的內(nèi)耗行為。在室溫狀態(tài)下,基體中缺陷和纖維/基體的界面的運動可能是影響內(nèi)耗的主要因素,隨著溫度的升高,內(nèi)耗的貢獻可能主要來源于炭平面的滑移,而且我們還發(fā)現(xiàn)動態(tài)模量與缺陷密度存在一定關聯(lián)。

    關鍵詞:炭/炭復合材料; 致密化工藝; 力學性能; 內(nèi)耗

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    1Introduction

    Carbon/carbon (C/C) composites are considered to be potentially ideal high-temperature structural materials for advanced aero-engine applications owing to their low density, outstanding mechanical properties, high thermal conductivity and low thermal expansion coefficient (CTE)[1]. In addition, the engine weight can be effectively reduced, contributing to low fuel consumption. Especially at some engine parts, such as gasket and sealing rings, have to undergo high-speed rotational and dynamic load. Therefore, it is very essential to investigate the internal friction of C/C composites to match the requirement of engine components. Based on the research of internal friction, scientific and technological workers can design aeronautic and astronautic structural materials with satisfying internal friction to ensure that the component can be used reliability. Moreover, the internal friction analysis can be used as a non-destructive characterization method to evaluate the composite properties.

    The matrix microcracks in fiber reinforced glass matrix composites are assessed by internal friction[2]. According to the study of unidirectional C/C composites, the internal friction of C/C composites decreases with the frequency from 0.01 to 1 Hz, and then it slightly increases to 5 Hz, where the value of the internal friction reach about 0.5×10-2-10×10-2[3]. But the internal friction of C/C composites increases with the frequency from 0.01 to 2 Hz, and the value of the internal friction is very small (only 3×10-3-8×10-3)[4]. In a recent report, the internal friction of C/C composites decreases with the frequency from 0.01 to 1 Hz, and then increases obviously, and the value of the internal friction is about 1×10-2-3×10-2[5]. In the work of C/C composites at elevated temperatures, before temperature reach 2 000 K, the internal friction of C/C composites is almost constant below 2 000 K and increase with temperature above 2 000 K[6]. The internal friction of C/C composites decreases with bulk density and increases with the volume fraction of fibers[7]. There is little research literature on the issue of using internal friction to characterize the matrix microstructure of C/C composites.

    Various carbon matrices have exhibited excellent mechanical properties, however, these carbon matrices with different structures have hardly been considered in terms of internal friction behaviors of C/C composites in former studies. The aim of this work is to investigate internal friction behaviors of C/C composites with the three typical carbon matrices, and try to find the relationship between internal friction behaviors and the microstructure of carbon matrix. The C/C composites with satisfactory dynamic mechanical properties are obtained through CVI or PIP, and we can design aeronautic and astronautic structural materials with satisfying internal friction.

    2Experimental

    A quasi three dimensional needled polyacrylonitrile based carbon fiber felts were used as a preforms and the density of the preform was about 0.55 g/cm3. The size of preform wasΦ230×20 mm, and the carbon fiber preform was firstly heat-treated at 2 300 ℃ for 2 h. Chemical vapor infiltration using nitrogen-diluted propane and hydrogen-diluted methane was used to densify the preform to prepare C/C composites, named as SLC and RLC, respectively. The preform was firstly densified by chemical vapor infiltration using methane/hydrogen and carbon dioxide till the density up to 1.50-1.60 g/cm3, and then impregnated with furan resin and carbonized to yield another C/C composite, named as DMC. Finally, the three kinds of composites were heat-treated at 2 400 ℃ after the densities are about 1.72 g/cm3.

    The dynamic mechanical properties were characterized with a dynamic mechanical analyzer (DMA800) by means of three-point bending forced vibration in air. The specimens were rectangular bars with a size of 60 mm×4 mm×2 mm, cut from the fabricated composites. The span was 40 mm. Loading direction was perpendicular to the cloth layer direction. The testing frequency was ranged from 0.1 to 50 Hz, and the amplitude was from 0.004% to 0.05% of the strain. The temperature was from 25 to 450 ℃ and the heating rate was 5 ℃/min. The microstructures of the three C/C composites were characterized by polarized light microscopy (PLM, Neophot 21). Then, the polished surfaces of the C/C composites were analyzed by Raman spectrometry (LabRAM Aramis) with a laser excitation wavelength of 532 nm. The powder samples were examined by X-ray diffraction (XRD, D/M-2200) in the 2θrange of 15 and 80° with monochromatic Cu Ka radiation. According to Bragg’s law,d002was obtained from the Equation (1):

    (1)

    Whereλis the wavelength of CuKαradiation andθis the diffraction angle in radians. Crystallite sizeLcis obtained from the Scherrer Equation (2):

    (2)

    WhereBis the half maximum intensity in radians of the (002) peak. Graphitization degreegis calculated from the Maire and Mering Equation (3):

    (3)

    In addition, the matrix morphologies of the C/C composites were observed by a scanning electron microscope (SEM, JSM-6700F).

    3Results

    3.1The microstructure of the C/C composites

    Fig. 1 presents the microstructure of the three kinds of C/C composites SLC, RLC and DMC under polarized light. It can be seen that the C/C composites are composed of three parts: carbon fibers, matrix carbon and small pores. Carbon fibers are fabricated by polyacrylonitrile, exhibiting obviously optically isotropic. It is very clear that both SLC and RLC present single optical structure with regular extinction crosses, which represent smooth laminar (SL) and rough laminar (RL) pyrocarbon structure, respectively, while the DMC composite exhibits dual matrix including the pyrocarbon with the overgrowth cones, the resin carbon (RC) and the interface of pyrocarbon/RC. Both the interface of pyrocarbon/RC and the RC exhibit low anisotropy. This is because that dual matrix weakens the optical anisotropy and the uniformity of matrix.

    Fig. 1 PLM images of the C/C composites: (a) SLC, (b) RLC and (c) DMC.

    The XRD spectra of the C/C composites are shown in Fig. 2. All of the three kinds of composites exhibit a sharp (002) peak, and their physical properties are listed in Table 1. Since RL pyrocarbon is easy to be graphitized, RLC has the highestgandLcamong the three kinds of composites. In contrast, SL pyrocarbon is difficult to be graphitized, so the correspondinggandLcare rather low. Although graphitization of RC is also hard, DMC has the relatively high average values ofgandLc.

    Fig. 2 XRD patterns of the three kinds of C/C composites.

    The C/C composites with dual matrix[8]possess a highgvalue, which may be due to the fact that the interface stress of pyrocarbon/RC would thermally induce the stress graphitization of RC. This can be also confirmed by the Raman spectra of matrices for DMC as shown in Fig. 3c. The spectra exhibit two distinct peaks at approximately 1 350 and 1 580 cm-1, which correspond to theDband assigned to defects within the carbon lattice (edges, distorted graphene layers, et al.) andGband of the symmetry vibration mode for graphite, respectively. For further analyzing, the Raman spectra is fitted with Lorentzian functions forDandGbands. We primarily investigate the full width at half maximum of theDband (FWHMD) and the intensity ratio of the two bands (R=ID/IG). Because FWHMDis very sensitive to the low energy structural defects and it is recognized thatRis inversely proportional to the microcrystalline in-plane size and the ability of graphitization[9]. In DMC, the value of FWHMDis 64.69 cm-1in the case of the overgrowth cones, whereas it is only 42.67 cm-1for the interface of pyrocarbon/RC and 48.09 cm-1for RC. TheRare 1.63 for the overgrowth cones, 1.39 for the interface and 1.33 for RC. It is shown that the interface possesses the lowest defect density, theRof the pyrocarbon/RC interface is almost the same as that of the RC, which should be attributable to the stress graphitization. And it is also indicated that overgrowth cones have very high defect density and are difficult to be graphitized. For assessing the average FWHMDandRof the matrix based on the simple rule of mixture, we must use polished samples for a measurement of the fiber diameter, pyrocarbon layers thickness, the interface layer thickness and the matrix thickness, and these values are 7, 3.7, 2.3 and 12 μm, respectively. These statistic data are mean values of at least 25 measurements. The average FWHMDandRof DMC are 50.05 cm-1and 1.40, respectively. The FWHMDandRof the other composites are listed in Table 1 according to the Raman spectra shown in Fig. 3a and Fig. 3b. It is shown that the FWHMDof the composites has such a relationship: FWHMD(DMC)> FWHMD(SLC)> FWHMD(RLC), whereas theRof the composites is in the sequence ofR(SLC)>R(RLC)>R(DMC).The typical SEM images of different matrices in the composites are shown in Fig. 4.

    The remarkable laminate structure with delamination or cleavage between sub-layers in RL pyrocarbon can be seen from Fig. 4a. Those microstructures are not found in SL (Fig. 4b) and RC (Fig. 4c) as both the morphology are plate like. However, the writhed sub-layers consisted of part delamination are found in the overgrowth cones (Fig. 4d) and the interface of pyrocarbon/RC (Fig. 4c). These micrographs agree well with the results of Raman spectra of the matrices.

    Table 1 Physical properties of the composites.

    Fig. 3 Raman spectra of the matrices:

    3.2The internal friction and the dynamic modulus vs. frequency

    As the frequency increased from 0.1 to 50 Hz, the internal friction of the C/C composites decline gradually (Fig. 5a), whereas the dynamic modulus of the C/C composites is nearly unchanged as the frequency rise from 0.1 to 10 Hz, and begin to reduce sharply when the frequency is beyond 20 Hz (Fig. 5b). In these circumstances, the internal friction of the composites decreases with frequency, as shown in Fig. 5a, which may be ascribed to the long relaxation time. On the whole, DMC possesses the highest internal friction among the three kinds of composites, and the internal friction of RLC is the lowest. The dynamic modulus of DMC is the lowest among the three kinds of composites, and that of RLC is the highest.

    3.3The internal friction and the dynamic modulus vs. amplitude

    The internal friction of all of the composites is almost the same at 0.004% of the strain, and begins to rise gradually when the strain increases from 0.004% to 0.05% (Fig. 6a). The relationship of internal friction is IF(DMC)> IF(SLC)> IF(RLC), whereas dynamic modulus are obviously reversed (Fig. 6b). The dynamic modulus of RLC and DMC decline gradually, whereas that of SLC increases steeply with the strain when the strain is less than 0.01%. The dynamic modulus of SLC decreases gradually with a further increase of the strain beyond 0.01%. These phenomena indicate that the internal friction and dynamic modulus of the C/C composites are sensitive to amplitude.

    3.4The internal friction and the dynamic modulus vs. temperature

    Compared with the internal friction of the C/C composites versus frequency and amplitude, the internal friction of the C/C composites versus temperature exhibits some special responding characteristics. The internal friction of SLC increases rapidly with temperature from 25 to 100 ℃, While the internal friction decreases slowly with temperature in the temperature range of 100 to 450 ℃. Meanwhile, When the temperature increases from RT to 450 ℃, the internal friction of both RLC and DMC decreases slowly and then begins to increase, and RLC shows a minimal value at about 300 ℃ (Fig. 7a). At 375 ℃, the maximum dynamic modulus of SLC is achieved. Meanwhile, the dynamic modulus of RLC increases slightly and that of DMC is nearly unchanged with the temperature from RT to 450 ℃(Fig. 7b). In principle, SLC possesses the highest internal friction among the three kinds of composites, and the internal friction of RLC is the lowest. The dynamic modulus of DMC is the lowest among the three kinds of composites, and that of RLC is the highest. These characteristics further confirm that the carbon matrix plays an important role in the internal friction characters of the C/C composites. The values of internal friction and dynamic modulus are listed in Table 2, in order to find the relationship between the internal friction and the structural parameter of carbon matrix.

    Fig. 4 The typical SEM images of different matrices in the three kinds of C/C composites:

    Fig. 5 Dynamic mechanical properties of the three kinds of C/C composites versus frequency

    Fig. 6 Dynamic mechanical properties of the three kinds of C/C composites versus

    Fig. 7 Dynamic mechanical properties of the three kinds of C/C composites vs.

    Temperature(℃)SLCRLCDMCInternalfriction250.03750.02680.05061000.05420.02600.04712000.05030.02570.04233000.04050.01710.03824000.03730.02330.0402Dynamicmodulus(GPa)2513.313.911.810012.513.712.220012.513.712.030012.813.812.140013.113.912.0

    4Discussion

    The internal friction behaviors of the C/C composites are dominated by the properties of the carbon matrix, which dissipate energy under dynamic loading. Three kinds of carbon matrix movement under dynamic loading are sketched in Fig. 8. The graphene layers of RLC are easier to move and have low density of defects, but those of DMC are more difficult to move and have more defects that restrain the sliding of basal planes.

    Fig. 8 Three kinds of carbon matrix

    The internal friction in the C/C composites is usually explained by the dislocation mechanism (K-G-L theory)[10], which is primarily caused by reciprocating motion between movable poor pinning points or immovable strong pinning points. In the C/C composites, the graphene layers are easy to be slipped because of the weak Van der Waals forces between the layers under cyclic loading. Therefore, the increase of the basal carbon plane distance (d002) can enhance the energy dissipation by the sliding of basal planes and improve the internal friction of the C/C composites[11]. Thus, the relationship between the internal friction andd002of the composites is shown in Fig.9. There is an obvious correlation between the internal friction andd002at 100 to 300 ℃, and the internal friction of the C/C composites distinctly increases with thed002. The decrease of Van der Waals forces contribute to the sliding of carbon planes, and increase of the energy dissipation, but the correlation appears very complicated at RT due to a large difference of the internal friction of SLC and DMC. The typical laminate structure of RLC indicates a perfect graphene layer, and the complex plate like structure exists in SLC and DMC. Obviously, the carbon plane in perfect graphene structure is much easier to slide, but the existence of plate like structure restrain the sliding of carbon planes, leading to the reduction of internal friction. However, in fact, the internal friction of SLC and DMC is always higher than that of RLC since SLC and DMC have more defects than RLC, which indicate that the internal friction produced by the sliding of carbon planes only provide a low percentage to the overall internal friction.

    Fig. 9 The relationship between the internal friction and d002.

    According to the above key points, at RT, the correlation of the internal friction toLc,R-1and FWGMDare shown in Fig. 10. The correlation with the internal friction at RT toLcand R-1is not obvious (Fig. 10a), but there is an obvious correlation between the internal friction and FWGMDat RT(Fig. 10b). The internal friction of the C/C composites monotonously increases with the FWGMD, which represent the defect density of the matrix. The high defect density can form more dislocations. Under cyclic stress, the dislocations will be also dislocated to dissipate energy. The motion of the dislocations is able to increase the internal friction. Thus, the high FWGMDis able to bring more internal friction in the C/C composites. This opinion is similar to the view[12]about enhancement of internal friction of the C/C composites, by selective oxidation to increase the interface defects. These further confirm that the defect density plays a significant role in the internal friction of the C/C composites. And we also find that the dynamic modulus of the C/C composites decreases distinctly with FWGMD. It is because that the dynamic modulus of the three kinds of composites always has the opposite tend with the internal friction of the composites at RT. Therefore, the highest internal friction and highest dynamic modulus cannot be achieved simultaneously.

    Fig. 9 and Fig. 10 represent simplified correlations, the other important microstructural features, like the interface of fiber/matrix, are not taken into account. The internal friction of the C/C composites depends on the properties of the carbon matrix and the contribution of the fiber/matrix interface is negligibly small[13]. But that the major cause of frictional heating in fiber-reinforced ceramic matrix composites is energy dissipation derived from micro-frictional sliding between reinforcing fibers and matrix along the debonding interface, and the friction work of one cycle generated in fiber-reinforced ceramic matrix composites subjected to cyclic loading[14]is estimated by the following Equation (4):

    (4)

    Wheredfis the fiber diameter,Δσis the fatigue stress range,vfis the fiber volume fraction,Efis the elastic modulus of the fibers,τdis the interfacial shear stress, and C stands for (1-vf)Em/Ef,Emthe elastic modulus of the matrix.

    Fig. 10 The correlation of the internal friction at room temperature to Lc, R-1 and FWGMD.

    In Eq. (4), the interfacial shear stressτdis mainly determined by the residual stress, which is caused by the mismatch of CTE between the fibers and matrix in manufacturing process. With increasing temperature, the interfacial thermal strain is reduced and the binding between the fibers and matrix is enhanced, restraining the sliding between the fibers and matrix. Therefore, with the increase of temperature, the internal friction of the C/C composite is reduced. The microstructure of the pyrocarbon has no evident effect on the CTE, and relationships between the CTE of the C/C composites (α) and temperature (T) can be expressed[15]by the following Equation (5):

    α=b0+b1T

    (5)

    Whereb0reflects the effect of the composite porosity, structures of the pyrocarbon and performs,b1values are about 12×10-10-14×10-10/K2.

    The variation of the residual stress in the interface with temperature may be similar for different carbon matrices. Hence, there is no significant variation on the internal friction for the three kinds of composites. In this work, the internal friction of the composites is mainly attributed to the different carbon matrices. Meanwhile, the internal friction caused by the sliding of the interface is also an important part to the overall internal friction at low temperature range, but it provides the same contribution to the overall internal friction for the three kinds of composites when the temperature is increased.

    According to the above analysis, the overall internal friction is mainly originated from the motion of the dislocations, the sliding of the fiber/matrix interface and the sliding of the carbon planes. Moreover, the internal friction, which is caused by the dislocations derived from the defects in the matrix may have a large advantage over the other effects at RT. Because the internal friction of the interface with different carbon matrices have the same contribution to the overall internal friction, the internal friction produced by the sliding of carbon planes may have a large contribution to the overall internal friction when the temperature is increased. And the dynamic modulus is mainly determined by the defect density.

    5Conclusions

    Three different types of carbon matrices are obtained by three kinds of densification processes. The C/C composites with satisfactory dynamic mechanical properties were obtained through CVI or PIP. We prepare the matrix of DMC by a combination of CVI and PIP. DMC composite has the highest crystal-defect densities than the other composites. The matrix of SLC and RLC are prepared only through CVI using propane/nitrogen and methane/hydrogen, respectively. RLC indicated the perfect carbon plane and the lowest internal friction among these composites. It is found that internal friction is correlated to the microstructure of the composites. In some certain conditions, carbon matrix has mainly contribution to the internal friction in the C/C composites. We compare three kinds of C/C composites with different carbon matrices. The following conclusions are drawn from our study:

    The internal friction of the C/C composites is more sensitive to temperature and amplitude, and more insensitive to frequency. The internal friction of composites has such a relationship: IF(DMC)>IF(SLC)>IF(RLC)at RT and from 300 to 450 ℃, whereas the relationship changes to IF(SLC)>IF(DMC)>IF(RLC)when the temperature increases from 50 to 300 ℃. The overall internal friction of the C/C composites is mainly originated from the motion of the dislocations, the sliding of the fiber/matrix interfaces and the sliding of the carbon planes. At room temperature, the internal friction caused by the dislocations and the interfaces is superior to the other effects, which can be increased obviously by increasing FWGMDin matrices. When the temperature increases, the internal friction produced by the sliding of carbon planes contributes mainly to the overall internal friction, and increases distinctly with an increase ofd002.

    References

    [1]Delhaes P. Chemical vapor deposition and infiltration processes of carbon materials[J]. Carbon, 2002, 40(5): 641-657.

    [2]Boccaccini A R, Ponton C B, Chawla K K. Development and healing of matrix microcracks in fibre reinforced glass matrix composites: assessment by internal friction[J]. Materials Science and Engineering A, 1998, 241(1): 141-150.

    [3]Shengru Q, Shaorong Z, Shihong B, et al. The internal friction of unidirectional C/C composites fabricated in a magnetic field[J]. Carbon, 1997, 35(3): 389-392.

    [4]Hou Xianghui, Li Hejun, Shen Jian, et al. Effects of microstructure on the internal friction of carbon-carbon composites[J]. Materials Science and Engineering A, 2002, 286(2): 250-256.

    [5]Cheng J, Li H J, Zhang S Y, et al. Internal friction behavior of unidirectional carbon/carbon composites after different fatigue cycles[J]. Materials Science and Engineering A, 2014, 600: 129-134.

    [6]Yasuo Kogo, Yoshie Iijima, Naohiro Igata. Enhancement of internal friction of carbon-carbon composites by selective oxidation[J]. Journal of Alloys and Compounds, 2003, 355(1-2): 154-160.

    [7]Wang C, Zhu Z G, Hou X H, et al. Damping characteristics of CVI-densified carbon-carbon composites[J]. Carbon, 2000, 38(13): 1821-1824.

    [8]Yin J, Xiong X, Zhang H B, et al. Microstructure and ablation performance of dual-matrix carbon/carbon composites[J]. Carbon, 2006, 44(9): 1690-1694.

    [9]Vallerot J M, Bourrat X , Mouchon A, et al. Quantitative structural and textual assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques[J]. Carbon, 2006, 44(9): 1833-1844.

    [10]Granato A, Lücke K. Theory of mechanical damping due to dislocations[J]. Journal of Applied Physics, 1956, 27: 583-593.

    [11]Hou X H, Li H J, Wang C, et al. Internal friction behavior of carbon-carbon composites[J]. Carbon, 2000, 38(15): 2095-2101.

    [12]Yasuo Kogo, Yoshie Iijima, Naohiro Igata, et al. Internal firction of carbon-carbon composites at elevated temperatures[J]. Journal of Alloys and Compounds, 2003, 355(1-2): 148-153.

    [13]Cho C, Holmes J W, Barber, J R. Estimation of interfacial shear in ceramic composites from frictional heating measurements[J]. Journal of the American Ceramic Society, 1991, 74(11): 2802-2808.

    [14]Cho C, Choi E Y, Beom H G, et al. Micro-frictional dissipation in fiber-reinforced ceramic matrix composites and interfacial shear estimation with a consideration of uneven fiber packing[J]. Journal of Materials Processing Technology, 2005, 162-163: 9-14.

    [15]Luo R Y, Liu T, Li J S, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon, 2004,42(14): 2887-2895.

    Foundationitem: National Natural Science Foundation of China(21071011).

    Authorintroduction: YANG Wei, Ph. D Candidate. E-mail: yangwei_vip@hotmail.com

    Influence of the microstructure of the carbon matrices on the internal friction behavior of carbon/carbon composites

    YANG Wei,LUO Rui-ying,HOU Zhen-hua,ZHANG You,SHAGN Hai-dong,HAO Ming-yang

    (SchoolofPhysicsandNuclearEnergyEngineering,BeihangUniversity,Beijing100191,China)

    Abstract:Three carbon/carbon composites with rough laminar, smooth laminar and dual matrix carbon were prepared by chemical vapor infiltration (CVI) using hydrogen-diluted methane, CVI using nitrogen-diluted propane, and two-step CVI using first methane/hydrogen and carbon dioxideand then furan resin impregnation and carbonization. The influence of the microstructure of the carbon matrix on the internal friction behavior of the composites was investigated. Results indicate that the microstructure of the carbon matrix plays an important role in the internal friction. The overall internal friction is related to the motion of dislocations, the sliding of the fiber/matrix interface and the sliding of the carbon planes. The internal friction of the composite is very sensitive to temperature and amplitude, but less sensitive to frequency. Among these composites, the dual matrix carbon has the highest density of crystal-defects and the highest internal friction while the rough laminar carbon has perfect carbon planes and the lowest internal friction.

    Keywords:Carbon/carbon composites; Densification process; Mechanical characterization; Internal friction.

    文章編號:1007-8827(2016)02-0159-08

    中圖分類號:TQ342+.74

    文獻標識碼:A

    基金項目:國家自然科學基金(21071011).

    通信作者:羅瑞盈,教授. E-mail: ryluo@buaa.edu.cn

    作者簡介:楊威,博士研究生. E-mail: yangwei_vip@hotmail.com

    Corresponding author:LUO Rui-ying, Professor. E-mail: ryluo@buaa.edu.cn

    DOI:10.1016/S1872-5805(16)60009-4

    猜你喜歡
    力學性能
    反擠壓Zn-Mn二元合金的微觀組織與力學性能
    Pr對20MnSi力學性能的影響
    云南化工(2021年11期)2022-01-12 06:06:14
    Mn-Si對ZG1Cr11Ni2WMoV鋼力學性能的影響
    山東冶金(2019年3期)2019-07-10 00:54:00
    采用稀土-B復合變質劑提高ZG30MnSi力學性能
    碳纖維增強PBT/ABS—g—MAH復合材料的力學性能和流變行為
    中國塑料(2016年6期)2016-06-27 06:34:16
    紡織纖維彎曲力學性能及其應用
    MG—MUF包覆阻燃EPS泡沫及力學性能研究
    中國塑料(2015年12期)2015-10-16 00:57:14
    EHA/PE復合薄膜的力學性能和阻透性能
    中國塑料(2015年9期)2015-10-14 01:12:26
    PA6/GF/SP三元復合材料的制備及其力學性能研究
    中國塑料(2015年4期)2015-10-14 01:09:18
    INCONEL625+X65復合管的焊接組織與力學性能
    焊接(2015年9期)2015-07-18 11:03:53
    午夜激情福利司机影院| 国产真实乱freesex| av福利片在线观看| 国产一区二区三区在线臀色熟女| 国产免费男女视频| 两人在一起打扑克的视频| 大型av网站在线播放| 国产免费av片在线观看野外av| 精品高清国产在线一区| 成年免费大片在线观看| 免费搜索国产男女视频| 午夜福利免费观看在线| 午夜影院日韩av| 亚洲色图av天堂| 真人做人爱边吃奶动态| 久久精品国产99精品国产亚洲性色| 亚洲一区高清亚洲精品| 免费看美女性在线毛片视频| 黄片小视频在线播放| 国产又色又爽无遮挡免费看| 欧美三级亚洲精品| 中文字幕av在线有码专区| 成年女人毛片免费观看观看9| 精品免费久久久久久久清纯| 国内精品一区二区在线观看| 观看免费一级毛片| 国产黄色小视频在线观看| 国产av一区二区精品久久| 婷婷精品国产亚洲av| 国产激情久久老熟女| 一a级毛片在线观看| 超碰成人久久| 人妻丰满熟妇av一区二区三区| 色播亚洲综合网| 性色av乱码一区二区三区2| 黑人操中国人逼视频| 熟女电影av网| 午夜福利在线观看吧| 露出奶头的视频| 亚洲熟妇中文字幕五十中出| 中文亚洲av片在线观看爽| 免费观看精品视频网站| svipshipincom国产片| 又爽又黄无遮挡网站| 精品久久蜜臀av无| 欧美日韩亚洲国产一区二区在线观看| 1024视频免费在线观看| 免费电影在线观看免费观看| 他把我摸到了高潮在线观看| 变态另类丝袜制服| 亚洲国产精品sss在线观看| 熟女少妇亚洲综合色aaa.| 变态另类丝袜制服| 一夜夜www| 欧美成狂野欧美在线观看| 久久香蕉精品热| 91大片在线观看| 操出白浆在线播放| 国产av又大| 嫩草影视91久久| 国产精品久久久久久久电影 | 91在线观看av| 9191精品国产免费久久| 国产熟女xx| 黑人巨大精品欧美一区二区mp4| 国产亚洲精品久久久久久毛片| 国产午夜福利久久久久久| 欧美+亚洲+日韩+国产| 免费无遮挡裸体视频| av视频在线观看入口| 国产精品,欧美在线| 国产午夜精品久久久久久| 91麻豆精品激情在线观看国产| 一级a爱片免费观看的视频| 精品乱码久久久久久99久播| 久久久水蜜桃国产精品网| 淫秽高清视频在线观看| 香蕉国产在线看| 色综合亚洲欧美另类图片| 久久精品国产清高在天天线| 国产精品一及| 午夜福利免费观看在线| 久久中文字幕人妻熟女| 夜夜爽天天搞| av福利片在线| aaaaa片日本免费| 国产精品永久免费网站| 一级毛片精品| 欧美性长视频在线观看| 免费无遮挡裸体视频| 亚洲成人久久性| 好男人电影高清在线观看| 老司机靠b影院| 悠悠久久av| 午夜两性在线视频| 亚洲国产精品合色在线| 两性午夜刺激爽爽歪歪视频在线观看 | 91成年电影在线观看| 人成视频在线观看免费观看| 亚洲第一电影网av| 亚洲精品一卡2卡三卡4卡5卡| 欧美+亚洲+日韩+国产| 欧美性猛交黑人性爽| 青草久久国产| 9191精品国产免费久久| 久久这里只有精品中国| 国产黄色小视频在线观看| 午夜精品久久久久久毛片777| 欧美黑人精品巨大| 欧美黄色淫秽网站| 可以在线观看的亚洲视频| 色精品久久人妻99蜜桃| 可以在线观看的亚洲视频| 精品欧美一区二区三区在线| 级片在线观看| 色老头精品视频在线观看| 亚洲欧美精品综合一区二区三区| 五月伊人婷婷丁香| 日韩中文字幕欧美一区二区| 久热爱精品视频在线9| 777久久人妻少妇嫩草av网站| 超碰成人久久| 又黄又爽又免费观看的视频| 国产精品久久久久久久电影 | 国产黄a三级三级三级人| 亚洲男人天堂网一区| 中文字幕人妻丝袜一区二区| 欧美日韩乱码在线| 亚洲国产精品成人综合色| 两性夫妻黄色片| 国产视频内射| 熟女少妇亚洲综合色aaa.| 国产熟女xx| 国产99白浆流出| 国产蜜桃级精品一区二区三区| avwww免费| a级毛片a级免费在线| 在线观看免费午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 国产在线精品亚洲第一网站| 正在播放国产对白刺激| 亚洲午夜精品一区,二区,三区| 麻豆成人av在线观看| 亚洲欧美日韩无卡精品| 成人欧美大片| 久久午夜亚洲精品久久| 久久精品国产99精品国产亚洲性色| 亚洲人与动物交配视频| 一级毛片高清免费大全| 一区二区三区激情视频| 黄色 视频免费看| 国产91精品成人一区二区三区| 视频区欧美日本亚洲| 久久天躁狠狠躁夜夜2o2o| 久久伊人香网站| 国产精品一区二区三区四区免费观看 | 看片在线看免费视频| 超碰成人久久| av中文乱码字幕在线| 亚洲美女黄片视频| 97碰自拍视频| 午夜免费成人在线视频| 午夜影院日韩av| 久久久久久久午夜电影| 麻豆av在线久日| 成人国语在线视频| 一本精品99久久精品77| 国产激情欧美一区二区| 亚洲va日本ⅴa欧美va伊人久久| 成人欧美大片| 岛国在线观看网站| av中文乱码字幕在线| 99热只有精品国产| 亚洲九九香蕉| 无人区码免费观看不卡| 欧美极品一区二区三区四区| 两个人看的免费小视频| 免费在线观看日本一区| 成年女人毛片免费观看观看9| 国产精品亚洲av一区麻豆| 国产精品 欧美亚洲| 国产精品国产高清国产av| 一进一出好大好爽视频| 欧美人与性动交α欧美精品济南到| 一级毛片女人18水好多| 亚洲成人中文字幕在线播放| 真人一进一出gif抽搐免费| 亚洲国产欧美网| 18禁黄网站禁片免费观看直播| 日本a在线网址| 国内久久婷婷六月综合欲色啪| 白带黄色成豆腐渣| 美女高潮喷水抽搐中文字幕| e午夜精品久久久久久久| 久久久久国产精品人妻aⅴ院| 两个人免费观看高清视频| 国产真实乱freesex| 一本综合久久免费| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 97碰自拍视频| 青草久久国产| 欧美日韩精品网址| 19禁男女啪啪无遮挡网站| 特大巨黑吊av在线直播| 欧美+亚洲+日韩+国产| 久久亚洲真实| 中文字幕av在线有码专区| 亚洲精品久久成人aⅴ小说| 一级片免费观看大全| 国产精品 国内视频| 午夜精品久久久久久毛片777| 国产精华一区二区三区| 亚洲人成伊人成综合网2020| 成人高潮视频无遮挡免费网站| 国产亚洲精品av在线| 人成视频在线观看免费观看| 国产亚洲av嫩草精品影院| 成人三级做爰电影| 久久久久精品国产欧美久久久| 国产精品野战在线观看| 香蕉久久夜色| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av香蕉五月| 变态另类丝袜制服| 午夜免费激情av| 欧美大码av| 熟妇人妻久久中文字幕3abv| 欧美+亚洲+日韩+国产| 国产av不卡久久| 精品欧美国产一区二区三| 欧美国产日韩亚洲一区| 婷婷亚洲欧美| 国产在线观看jvid| 亚洲七黄色美女视频| 久久精品国产99精品国产亚洲性色| 精品高清国产在线一区| 男女午夜视频在线观看| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 国产精品久久久人人做人人爽| 真人一进一出gif抽搐免费| 在线十欧美十亚洲十日本专区| 午夜福利欧美成人| 非洲黑人性xxxx精品又粗又长| 亚洲专区字幕在线| 天堂动漫精品| 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 中国美女看黄片| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久av美女十八| 真人一进一出gif抽搐免费| 久久久久国产精品人妻aⅴ院| 日韩欧美三级三区| 久久久国产成人精品二区| 在线观看www视频免费| 国产高清有码在线观看视频 | 女人爽到高潮嗷嗷叫在线视频| av欧美777| bbb黄色大片| 麻豆成人av在线观看| 叶爱在线成人免费视频播放| 免费在线观看日本一区| 欧美午夜高清在线| 亚洲国产中文字幕在线视频| 国产野战对白在线观看| 日韩有码中文字幕| 成人特级黄色片久久久久久久| 国产一区二区激情短视频| 亚洲真实伦在线观看| 老汉色av国产亚洲站长工具| 欧美日韩乱码在线| 久久这里只有精品19| 特级一级黄色大片| 97人妻精品一区二区三区麻豆| 欧美又色又爽又黄视频| 免费av毛片视频| 在线观看免费午夜福利视频| 欧美日本视频| 全区人妻精品视频| 又紧又爽又黄一区二区| 国产男靠女视频免费网站| 在线永久观看黄色视频| 日韩高清综合在线| www.精华液| 日本熟妇午夜| 亚洲精品久久成人aⅴ小说| 18美女黄网站色大片免费观看| 国产成人啪精品午夜网站| 身体一侧抽搐| 国产一区二区激情短视频| 午夜老司机福利片| 国产99久久九九免费精品| 久久久久久人人人人人| 免费搜索国产男女视频| 一级毛片女人18水好多| 午夜激情av网站| АⅤ资源中文在线天堂| aaaaa片日本免费| 在线a可以看的网站| 中文字幕熟女人妻在线| 法律面前人人平等表现在哪些方面| 国产黄片美女视频| 美女黄网站色视频| 黄片大片在线免费观看| 精品久久久久久久人妻蜜臀av| 大型黄色视频在线免费观看| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 国产av在哪里看| 黄色视频,在线免费观看| 人妻久久中文字幕网| 亚洲av五月六月丁香网| 久久精品影院6| 国产精品永久免费网站| 婷婷精品国产亚洲av在线| av在线天堂中文字幕| e午夜精品久久久久久久| 精品不卡国产一区二区三区| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 婷婷精品国产亚洲av在线| 成年人黄色毛片网站| 少妇熟女aⅴ在线视频| videosex国产| 亚洲精品国产一区二区精华液| 变态另类成人亚洲欧美熟女| 90打野战视频偷拍视频| www国产在线视频色| 999久久久国产精品视频| 国产亚洲精品久久久久5区| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区色噜噜| 亚洲七黄色美女视频| 亚洲在线自拍视频| 男女午夜视频在线观看| 欧美色视频一区免费| av福利片在线观看| a级毛片a级免费在线| 国内精品久久久久久久电影| 变态另类成人亚洲欧美熟女| 日本精品一区二区三区蜜桃| 成年版毛片免费区| 一a级毛片在线观看| 黄色成人免费大全| 中文字幕熟女人妻在线| 淫妇啪啪啪对白视频| 国产男靠女视频免费网站| 亚洲七黄色美女视频| 日本撒尿小便嘘嘘汇集6| 国产av一区在线观看免费| 国产又色又爽无遮挡免费看| xxx96com| 日韩欧美在线乱码| 九色国产91popny在线| 久久久久久人人人人人| 亚洲最大成人中文| 国产精品综合久久久久久久免费| 久久精品国产亚洲av香蕉五月| 国产欧美日韩精品亚洲av| 国产熟女午夜一区二区三区| 欧美大码av| 国产高清视频在线播放一区| 巨乳人妻的诱惑在线观看| 欧美在线一区亚洲| 伦理电影免费视频| 村上凉子中文字幕在线| 亚洲av熟女| 亚洲精品国产一区二区精华液| 欧美乱码精品一区二区三区| 亚洲美女黄片视频| 岛国在线免费视频观看| svipshipincom国产片| 亚洲成人久久性| 亚洲精品美女久久久久99蜜臀| 在线观看免费午夜福利视频| 亚洲欧美日韩东京热| 美女黄网站色视频| 成人av在线播放网站| 欧美日韩瑟瑟在线播放| 黄频高清免费视频| 好看av亚洲va欧美ⅴa在| 91av网站免费观看| 麻豆一二三区av精品| 国产午夜精品久久久久久| 制服人妻中文乱码| 国产av一区二区精品久久| 久久这里只有精品19| 国产视频一区二区在线看| 成人午夜高清在线视频| 又黄又粗又硬又大视频| 欧美一区二区国产精品久久精品 | 久久久久久亚洲精品国产蜜桃av| 精品国产超薄肉色丝袜足j| 黄频高清免费视频| 色老头精品视频在线观看| 亚洲狠狠婷婷综合久久图片| 脱女人内裤的视频| 中文字幕人妻丝袜一区二区| 午夜久久久久精精品| 男女做爰动态图高潮gif福利片| 亚洲色图 男人天堂 中文字幕| 免费一级毛片在线播放高清视频| 久久久国产欧美日韩av| 最近在线观看免费完整版| 黄色 视频免费看| 国产精品九九99| 制服人妻中文乱码| 国产精品免费一区二区三区在线| 亚洲人成电影免费在线| 小说图片视频综合网站| 日韩大码丰满熟妇| 国内精品一区二区在线观看| 亚洲一码二码三码区别大吗| 无限看片的www在线观看| 午夜亚洲福利在线播放| 男女那种视频在线观看| 久久这里只有精品中国| svipshipincom国产片| 国产成人系列免费观看| 国产成人啪精品午夜网站| 天天躁狠狠躁夜夜躁狠狠躁| 久久香蕉激情| av天堂在线播放| 一级作爱视频免费观看| 亚洲全国av大片| 这个男人来自地球电影免费观看| 国产成+人综合+亚洲专区| 国产黄色小视频在线观看| 欧美日本视频| 99精品欧美一区二区三区四区| 国产麻豆成人av免费视频| 亚洲精品中文字幕在线视频| 欧美在线一区亚洲| 欧美不卡视频在线免费观看 | 免费人成视频x8x8入口观看| 老司机深夜福利视频在线观看| 在线免费观看的www视频| 久久草成人影院| www日本黄色视频网| xxxwww97欧美| 亚洲av成人不卡在线观看播放网| 在线观看午夜福利视频| 亚洲国产欧美网| 亚洲精品粉嫩美女一区| 一级毛片精品| 变态另类丝袜制服| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久久久久| 黄色 视频免费看| 国产真实乱freesex| 精品一区二区三区视频在线观看免费| 国产黄色小视频在线观看| 曰老女人黄片| 亚洲aⅴ乱码一区二区在线播放 | 午夜免费观看网址| 日本三级黄在线观看| 久久亚洲精品不卡| 人妻久久中文字幕网| 成人三级黄色视频| 国产精品久久电影中文字幕| 亚洲美女视频黄频| 一本精品99久久精品77| 丁香欧美五月| 欧美色视频一区免费| 亚洲精品中文字幕在线视频| 久久午夜亚洲精品久久| 神马国产精品三级电影在线观看 | 亚洲国产精品合色在线| 国产精品自产拍在线观看55亚洲| 国产精品亚洲美女久久久| 在线观看美女被高潮喷水网站 | av福利片在线观看| 国产成人精品无人区| 欧美三级亚洲精品| 午夜亚洲福利在线播放| 99久久99久久久精品蜜桃| 久久久久久久午夜电影| 99久久99久久久精品蜜桃| 日韩av在线大香蕉| 国产乱人伦免费视频| 好男人在线观看高清免费视频| 一级黄色大片毛片| 午夜福利在线观看吧| 三级国产精品欧美在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲人与动物交配视频| 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆| 国产精品久久久久久人妻精品电影| 两个人看的免费小视频| 午夜免费成人在线视频| 久久久久九九精品影院| svipshipincom国产片| 桃色一区二区三区在线观看| 成人av一区二区三区在线看| 中国美女看黄片| 亚洲最大成人中文| 精品免费久久久久久久清纯| 中文字幕久久专区| 欧美一区二区国产精品久久精品 | 美女大奶头视频| 欧美成人免费av一区二区三区| 人人妻,人人澡人人爽秒播| 老司机福利观看| 精华霜和精华液先用哪个| 中文字幕最新亚洲高清| www.999成人在线观看| 欧美日本视频| av视频在线观看入口| 亚洲国产高清在线一区二区三| 桃红色精品国产亚洲av| 男人舔奶头视频| 久久这里只有精品19| 亚洲片人在线观看| 久久人妻av系列| 舔av片在线| 亚洲自偷自拍图片 自拍| 男人的好看免费观看在线视频 | 最近视频中文字幕2019在线8| 怎么达到女性高潮| 一夜夜www| 老司机在亚洲福利影院| 成人av在线播放网站| 波多野结衣高清无吗| 精品久久久久久成人av| 亚洲激情在线av| 看片在线看免费视频| 精品国产乱码久久久久久男人| 亚洲午夜理论影院| 精品久久久久久久末码| 亚洲电影在线观看av| 亚洲欧美激情综合另类| 日本 av在线| 制服人妻中文乱码| 日本一区二区免费在线视频| 久久精品aⅴ一区二区三区四区| 老司机福利观看| 九色成人免费人妻av| 韩国av一区二区三区四区| 18禁裸乳无遮挡免费网站照片| 久久香蕉精品热| 欧美色视频一区免费| 国产真人三级小视频在线观看| 欧美3d第一页| www.999成人在线观看| 看黄色毛片网站| av超薄肉色丝袜交足视频| 国产精品亚洲一级av第二区| 美女 人体艺术 gogo| 国产成人系列免费观看| 日韩大尺度精品在线看网址| 国产精品爽爽va在线观看网站| 欧美日韩瑟瑟在线播放| 桃红色精品国产亚洲av| 少妇人妻一区二区三区视频| 国产v大片淫在线免费观看| 丰满人妻一区二区三区视频av | 90打野战视频偷拍视频| 欧美日本视频| 毛片女人毛片| 99国产极品粉嫩在线观看| 99热这里只有精品一区 | av欧美777| 久久久久久人人人人人| 丝袜美腿诱惑在线| 国产又黄又爽又无遮挡在线| 91在线观看av| 亚洲精品色激情综合| 成人18禁在线播放| 免费电影在线观看免费观看| 熟女少妇亚洲综合色aaa.| av在线播放免费不卡| 国产视频内射| 男人舔奶头视频| 国产单亲对白刺激| 又粗又爽又猛毛片免费看| 亚洲一区高清亚洲精品| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 国产伦一二天堂av在线观看| 少妇被粗大的猛进出69影院| 亚洲国产中文字幕在线视频| 欧美av亚洲av综合av国产av| av片东京热男人的天堂| 97碰自拍视频| 免费看日本二区| 亚洲自拍偷在线| 国产亚洲欧美98| 此物有八面人人有两片| 欧美日韩福利视频一区二区| 亚洲人成网站在线播放欧美日韩| 国产精品日韩av在线免费观看| 日本三级黄在线观看| 亚洲片人在线观看| 欧美久久黑人一区二区| 欧美午夜高清在线| 亚洲国产中文字幕在线视频| 日韩欧美三级三区| 国产又黄又爽又无遮挡在线| 亚洲精品国产精品久久久不卡| 最新美女视频免费是黄的| 亚洲男人天堂网一区| 国产成人av激情在线播放| 国产精品香港三级国产av潘金莲| 国产成人一区二区三区免费视频网站| 啦啦啦韩国在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av电影在线进入| 一本大道久久a久久精品| 别揉我奶头~嗯~啊~动态视频| 成人国产一区最新在线观看| 亚洲人成网站高清观看|