• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    炭基體種類對炭/炭復(fù)合材料內(nèi)耗行為的影響

    2016-06-20 02:36:53羅瑞盈侯振華商海東郝名揚
    新型炭材料 2016年2期
    關(guān)鍵詞:力學(xué)性能

    楊 威, 羅瑞盈, 侯振華, 張 鈾, 商海東, 郝名揚

    (北京航空航天大學(xué) 物理科學(xué)與核能工程學(xué)院, 北京100191)

    ?

    炭基體種類對炭/炭復(fù)合材料內(nèi)耗行為的影響

    楊威,羅瑞盈,侯振華,張鈾,商海東,郝名揚

    (北京航空航天大學(xué) 物理科學(xué)與核能工程學(xué)院, 北京100191)

    摘要:通過化學(xué)氣相沉積(CVI)和化學(xué)氣相沉積與先驅(qū)體轉(zhuǎn)化結(jié)合(CVI+PIP)的方法,制備了三種不同炭基組織結(jié)構(gòu)的炭/炭復(fù)合材料。三種基體分別是光滑層基體(SLC)、粗糙層基體(RLC)和混合雙基體(DMC)(過度生長錐基體+呋喃樹脂炭基體)。對這三種復(fù)合材料樣品進行微觀組織結(jié)構(gòu)和動態(tài)力學(xué)性能表征。結(jié)果表明,內(nèi)耗主要來源于炭基體缺陷的運動、纖維/基體界面的滑移和炭平面的滑移。復(fù)合材料的內(nèi)耗對于溫度和振幅變化非常敏感,但頻率的變化對復(fù)合材料的的內(nèi)耗影響不大?;旌想p基體具有最高的缺陷密度和最高的內(nèi)耗,粗糙層基體具備較完美的炭平面和最低的內(nèi)耗。炭基體的微觀組織結(jié)構(gòu)是影響內(nèi)耗的關(guān)鍵因素,由于光滑層基體、粗糙層基體和混合雙基體的微觀結(jié)構(gòu)的區(qū)別,導(dǎo)致在不同基體中出現(xiàn)了不同的內(nèi)耗行為。在室溫狀態(tài)下,基體中缺陷和纖維/基體的界面的運動可能是影響內(nèi)耗的主要因素,隨著溫度的升高,內(nèi)耗的貢獻可能主要來源于炭平面的滑移,而且我們還發(fā)現(xiàn)動態(tài)模量與缺陷密度存在一定關(guān)聯(lián)。

    關(guān)鍵詞:炭/炭復(fù)合材料; 致密化工藝; 力學(xué)性能; 內(nèi)耗

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    1Introduction

    Carbon/carbon (C/C) composites are considered to be potentially ideal high-temperature structural materials for advanced aero-engine applications owing to their low density, outstanding mechanical properties, high thermal conductivity and low thermal expansion coefficient (CTE)[1]. In addition, the engine weight can be effectively reduced, contributing to low fuel consumption. Especially at some engine parts, such as gasket and sealing rings, have to undergo high-speed rotational and dynamic load. Therefore, it is very essential to investigate the internal friction of C/C composites to match the requirement of engine components. Based on the research of internal friction, scientific and technological workers can design aeronautic and astronautic structural materials with satisfying internal friction to ensure that the component can be used reliability. Moreover, the internal friction analysis can be used as a non-destructive characterization method to evaluate the composite properties.

    The matrix microcracks in fiber reinforced glass matrix composites are assessed by internal friction[2]. According to the study of unidirectional C/C composites, the internal friction of C/C composites decreases with the frequency from 0.01 to 1 Hz, and then it slightly increases to 5 Hz, where the value of the internal friction reach about 0.5×10-2-10×10-2[3]. But the internal friction of C/C composites increases with the frequency from 0.01 to 2 Hz, and the value of the internal friction is very small (only 3×10-3-8×10-3)[4]. In a recent report, the internal friction of C/C composites decreases with the frequency from 0.01 to 1 Hz, and then increases obviously, and the value of the internal friction is about 1×10-2-3×10-2[5]. In the work of C/C composites at elevated temperatures, before temperature reach 2 000 K, the internal friction of C/C composites is almost constant below 2 000 K and increase with temperature above 2 000 K[6]. The internal friction of C/C composites decreases with bulk density and increases with the volume fraction of fibers[7]. There is little research literature on the issue of using internal friction to characterize the matrix microstructure of C/C composites.

    Various carbon matrices have exhibited excellent mechanical properties, however, these carbon matrices with different structures have hardly been considered in terms of internal friction behaviors of C/C composites in former studies. The aim of this work is to investigate internal friction behaviors of C/C composites with the three typical carbon matrices, and try to find the relationship between internal friction behaviors and the microstructure of carbon matrix. The C/C composites with satisfactory dynamic mechanical properties are obtained through CVI or PIP, and we can design aeronautic and astronautic structural materials with satisfying internal friction.

    2Experimental

    A quasi three dimensional needled polyacrylonitrile based carbon fiber felts were used as a preforms and the density of the preform was about 0.55 g/cm3. The size of preform wasΦ230×20 mm, and the carbon fiber preform was firstly heat-treated at 2 300 ℃ for 2 h. Chemical vapor infiltration using nitrogen-diluted propane and hydrogen-diluted methane was used to densify the preform to prepare C/C composites, named as SLC and RLC, respectively. The preform was firstly densified by chemical vapor infiltration using methane/hydrogen and carbon dioxide till the density up to 1.50-1.60 g/cm3, and then impregnated with furan resin and carbonized to yield another C/C composite, named as DMC. Finally, the three kinds of composites were heat-treated at 2 400 ℃ after the densities are about 1.72 g/cm3.

    The dynamic mechanical properties were characterized with a dynamic mechanical analyzer (DMA800) by means of three-point bending forced vibration in air. The specimens were rectangular bars with a size of 60 mm×4 mm×2 mm, cut from the fabricated composites. The span was 40 mm. Loading direction was perpendicular to the cloth layer direction. The testing frequency was ranged from 0.1 to 50 Hz, and the amplitude was from 0.004% to 0.05% of the strain. The temperature was from 25 to 450 ℃ and the heating rate was 5 ℃/min. The microstructures of the three C/C composites were characterized by polarized light microscopy (PLM, Neophot 21). Then, the polished surfaces of the C/C composites were analyzed by Raman spectrometry (LabRAM Aramis) with a laser excitation wavelength of 532 nm. The powder samples were examined by X-ray diffraction (XRD, D/M-2200) in the 2θrange of 15 and 80° with monochromatic Cu Ka radiation. According to Bragg’s law,d002was obtained from the Equation (1):

    (1)

    Whereλis the wavelength of CuKαradiation andθis the diffraction angle in radians. Crystallite sizeLcis obtained from the Scherrer Equation (2):

    (2)

    WhereBis the half maximum intensity in radians of the (002) peak. Graphitization degreegis calculated from the Maire and Mering Equation (3):

    (3)

    In addition, the matrix morphologies of the C/C composites were observed by a scanning electron microscope (SEM, JSM-6700F).

    3Results

    3.1The microstructure of the C/C composites

    Fig. 1 presents the microstructure of the three kinds of C/C composites SLC, RLC and DMC under polarized light. It can be seen that the C/C composites are composed of three parts: carbon fibers, matrix carbon and small pores. Carbon fibers are fabricated by polyacrylonitrile, exhibiting obviously optically isotropic. It is very clear that both SLC and RLC present single optical structure with regular extinction crosses, which represent smooth laminar (SL) and rough laminar (RL) pyrocarbon structure, respectively, while the DMC composite exhibits dual matrix including the pyrocarbon with the overgrowth cones, the resin carbon (RC) and the interface of pyrocarbon/RC. Both the interface of pyrocarbon/RC and the RC exhibit low anisotropy. This is because that dual matrix weakens the optical anisotropy and the uniformity of matrix.

    Fig. 1 PLM images of the C/C composites: (a) SLC, (b) RLC and (c) DMC.

    The XRD spectra of the C/C composites are shown in Fig. 2. All of the three kinds of composites exhibit a sharp (002) peak, and their physical properties are listed in Table 1. Since RL pyrocarbon is easy to be graphitized, RLC has the highestgandLcamong the three kinds of composites. In contrast, SL pyrocarbon is difficult to be graphitized, so the correspondinggandLcare rather low. Although graphitization of RC is also hard, DMC has the relatively high average values ofgandLc.

    Fig. 2 XRD patterns of the three kinds of C/C composites.

    The C/C composites with dual matrix[8]possess a highgvalue, which may be due to the fact that the interface stress of pyrocarbon/RC would thermally induce the stress graphitization of RC. This can be also confirmed by the Raman spectra of matrices for DMC as shown in Fig. 3c. The spectra exhibit two distinct peaks at approximately 1 350 and 1 580 cm-1, which correspond to theDband assigned to defects within the carbon lattice (edges, distorted graphene layers, et al.) andGband of the symmetry vibration mode for graphite, respectively. For further analyzing, the Raman spectra is fitted with Lorentzian functions forDandGbands. We primarily investigate the full width at half maximum of theDband (FWHMD) and the intensity ratio of the two bands (R=ID/IG). Because FWHMDis very sensitive to the low energy structural defects and it is recognized thatRis inversely proportional to the microcrystalline in-plane size and the ability of graphitization[9]. In DMC, the value of FWHMDis 64.69 cm-1in the case of the overgrowth cones, whereas it is only 42.67 cm-1for the interface of pyrocarbon/RC and 48.09 cm-1for RC. TheRare 1.63 for the overgrowth cones, 1.39 for the interface and 1.33 for RC. It is shown that the interface possesses the lowest defect density, theRof the pyrocarbon/RC interface is almost the same as that of the RC, which should be attributable to the stress graphitization. And it is also indicated that overgrowth cones have very high defect density and are difficult to be graphitized. For assessing the average FWHMDandRof the matrix based on the simple rule of mixture, we must use polished samples for a measurement of the fiber diameter, pyrocarbon layers thickness, the interface layer thickness and the matrix thickness, and these values are 7, 3.7, 2.3 and 12 μm, respectively. These statistic data are mean values of at least 25 measurements. The average FWHMDandRof DMC are 50.05 cm-1and 1.40, respectively. The FWHMDandRof the other composites are listed in Table 1 according to the Raman spectra shown in Fig. 3a and Fig. 3b. It is shown that the FWHMDof the composites has such a relationship: FWHMD(DMC)> FWHMD(SLC)> FWHMD(RLC), whereas theRof the composites is in the sequence ofR(SLC)>R(RLC)>R(DMC).The typical SEM images of different matrices in the composites are shown in Fig. 4.

    The remarkable laminate structure with delamination or cleavage between sub-layers in RL pyrocarbon can be seen from Fig. 4a. Those microstructures are not found in SL (Fig. 4b) and RC (Fig. 4c) as both the morphology are plate like. However, the writhed sub-layers consisted of part delamination are found in the overgrowth cones (Fig. 4d) and the interface of pyrocarbon/RC (Fig. 4c). These micrographs agree well with the results of Raman spectra of the matrices.

    Table 1 Physical properties of the composites.

    Fig. 3 Raman spectra of the matrices:

    3.2The internal friction and the dynamic modulus vs. frequency

    As the frequency increased from 0.1 to 50 Hz, the internal friction of the C/C composites decline gradually (Fig. 5a), whereas the dynamic modulus of the C/C composites is nearly unchanged as the frequency rise from 0.1 to 10 Hz, and begin to reduce sharply when the frequency is beyond 20 Hz (Fig. 5b). In these circumstances, the internal friction of the composites decreases with frequency, as shown in Fig. 5a, which may be ascribed to the long relaxation time. On the whole, DMC possesses the highest internal friction among the three kinds of composites, and the internal friction of RLC is the lowest. The dynamic modulus of DMC is the lowest among the three kinds of composites, and that of RLC is the highest.

    3.3The internal friction and the dynamic modulus vs. amplitude

    The internal friction of all of the composites is almost the same at 0.004% of the strain, and begins to rise gradually when the strain increases from 0.004% to 0.05% (Fig. 6a). The relationship of internal friction is IF(DMC)> IF(SLC)> IF(RLC), whereas dynamic modulus are obviously reversed (Fig. 6b). The dynamic modulus of RLC and DMC decline gradually, whereas that of SLC increases steeply with the strain when the strain is less than 0.01%. The dynamic modulus of SLC decreases gradually with a further increase of the strain beyond 0.01%. These phenomena indicate that the internal friction and dynamic modulus of the C/C composites are sensitive to amplitude.

    3.4The internal friction and the dynamic modulus vs. temperature

    Compared with the internal friction of the C/C composites versus frequency and amplitude, the internal friction of the C/C composites versus temperature exhibits some special responding characteristics. The internal friction of SLC increases rapidly with temperature from 25 to 100 ℃, While the internal friction decreases slowly with temperature in the temperature range of 100 to 450 ℃. Meanwhile, When the temperature increases from RT to 450 ℃, the internal friction of both RLC and DMC decreases slowly and then begins to increase, and RLC shows a minimal value at about 300 ℃ (Fig. 7a). At 375 ℃, the maximum dynamic modulus of SLC is achieved. Meanwhile, the dynamic modulus of RLC increases slightly and that of DMC is nearly unchanged with the temperature from RT to 450 ℃(Fig. 7b). In principle, SLC possesses the highest internal friction among the three kinds of composites, and the internal friction of RLC is the lowest. The dynamic modulus of DMC is the lowest among the three kinds of composites, and that of RLC is the highest. These characteristics further confirm that the carbon matrix plays an important role in the internal friction characters of the C/C composites. The values of internal friction and dynamic modulus are listed in Table 2, in order to find the relationship between the internal friction and the structural parameter of carbon matrix.

    Fig. 4 The typical SEM images of different matrices in the three kinds of C/C composites:

    Fig. 5 Dynamic mechanical properties of the three kinds of C/C composites versus frequency

    Fig. 6 Dynamic mechanical properties of the three kinds of C/C composites versus

    Fig. 7 Dynamic mechanical properties of the three kinds of C/C composites vs.

    Temperature(℃)SLCRLCDMCInternalfriction250.03750.02680.05061000.05420.02600.04712000.05030.02570.04233000.04050.01710.03824000.03730.02330.0402Dynamicmodulus(GPa)2513.313.911.810012.513.712.220012.513.712.030012.813.812.140013.113.912.0

    4Discussion

    The internal friction behaviors of the C/C composites are dominated by the properties of the carbon matrix, which dissipate energy under dynamic loading. Three kinds of carbon matrix movement under dynamic loading are sketched in Fig. 8. The graphene layers of RLC are easier to move and have low density of defects, but those of DMC are more difficult to move and have more defects that restrain the sliding of basal planes.

    Fig. 8 Three kinds of carbon matrix

    The internal friction in the C/C composites is usually explained by the dislocation mechanism (K-G-L theory)[10], which is primarily caused by reciprocating motion between movable poor pinning points or immovable strong pinning points. In the C/C composites, the graphene layers are easy to be slipped because of the weak Van der Waals forces between the layers under cyclic loading. Therefore, the increase of the basal carbon plane distance (d002) can enhance the energy dissipation by the sliding of basal planes and improve the internal friction of the C/C composites[11]. Thus, the relationship between the internal friction andd002of the composites is shown in Fig.9. There is an obvious correlation between the internal friction andd002at 100 to 300 ℃, and the internal friction of the C/C composites distinctly increases with thed002. The decrease of Van der Waals forces contribute to the sliding of carbon planes, and increase of the energy dissipation, but the correlation appears very complicated at RT due to a large difference of the internal friction of SLC and DMC. The typical laminate structure of RLC indicates a perfect graphene layer, and the complex plate like structure exists in SLC and DMC. Obviously, the carbon plane in perfect graphene structure is much easier to slide, but the existence of plate like structure restrain the sliding of carbon planes, leading to the reduction of internal friction. However, in fact, the internal friction of SLC and DMC is always higher than that of RLC since SLC and DMC have more defects than RLC, which indicate that the internal friction produced by the sliding of carbon planes only provide a low percentage to the overall internal friction.

    Fig. 9 The relationship between the internal friction and d002.

    According to the above key points, at RT, the correlation of the internal friction toLc,R-1and FWGMDare shown in Fig. 10. The correlation with the internal friction at RT toLcand R-1is not obvious (Fig. 10a), but there is an obvious correlation between the internal friction and FWGMDat RT(Fig. 10b). The internal friction of the C/C composites monotonously increases with the FWGMD, which represent the defect density of the matrix. The high defect density can form more dislocations. Under cyclic stress, the dislocations will be also dislocated to dissipate energy. The motion of the dislocations is able to increase the internal friction. Thus, the high FWGMDis able to bring more internal friction in the C/C composites. This opinion is similar to the view[12]about enhancement of internal friction of the C/C composites, by selective oxidation to increase the interface defects. These further confirm that the defect density plays a significant role in the internal friction of the C/C composites. And we also find that the dynamic modulus of the C/C composites decreases distinctly with FWGMD. It is because that the dynamic modulus of the three kinds of composites always has the opposite tend with the internal friction of the composites at RT. Therefore, the highest internal friction and highest dynamic modulus cannot be achieved simultaneously.

    Fig. 9 and Fig. 10 represent simplified correlations, the other important microstructural features, like the interface of fiber/matrix, are not taken into account. The internal friction of the C/C composites depends on the properties of the carbon matrix and the contribution of the fiber/matrix interface is negligibly small[13]. But that the major cause of frictional heating in fiber-reinforced ceramic matrix composites is energy dissipation derived from micro-frictional sliding between reinforcing fibers and matrix along the debonding interface, and the friction work of one cycle generated in fiber-reinforced ceramic matrix composites subjected to cyclic loading[14]is estimated by the following Equation (4):

    (4)

    Wheredfis the fiber diameter,Δσis the fatigue stress range,vfis the fiber volume fraction,Efis the elastic modulus of the fibers,τdis the interfacial shear stress, and C stands for (1-vf)Em/Ef,Emthe elastic modulus of the matrix.

    Fig. 10 The correlation of the internal friction at room temperature to Lc, R-1 and FWGMD.

    In Eq. (4), the interfacial shear stressτdis mainly determined by the residual stress, which is caused by the mismatch of CTE between the fibers and matrix in manufacturing process. With increasing temperature, the interfacial thermal strain is reduced and the binding between the fibers and matrix is enhanced, restraining the sliding between the fibers and matrix. Therefore, with the increase of temperature, the internal friction of the C/C composite is reduced. The microstructure of the pyrocarbon has no evident effect on the CTE, and relationships between the CTE of the C/C composites (α) and temperature (T) can be expressed[15]by the following Equation (5):

    α=b0+b1T

    (5)

    Whereb0reflects the effect of the composite porosity, structures of the pyrocarbon and performs,b1values are about 12×10-10-14×10-10/K2.

    The variation of the residual stress in the interface with temperature may be similar for different carbon matrices. Hence, there is no significant variation on the internal friction for the three kinds of composites. In this work, the internal friction of the composites is mainly attributed to the different carbon matrices. Meanwhile, the internal friction caused by the sliding of the interface is also an important part to the overall internal friction at low temperature range, but it provides the same contribution to the overall internal friction for the three kinds of composites when the temperature is increased.

    According to the above analysis, the overall internal friction is mainly originated from the motion of the dislocations, the sliding of the fiber/matrix interface and the sliding of the carbon planes. Moreover, the internal friction, which is caused by the dislocations derived from the defects in the matrix may have a large advantage over the other effects at RT. Because the internal friction of the interface with different carbon matrices have the same contribution to the overall internal friction, the internal friction produced by the sliding of carbon planes may have a large contribution to the overall internal friction when the temperature is increased. And the dynamic modulus is mainly determined by the defect density.

    5Conclusions

    Three different types of carbon matrices are obtained by three kinds of densification processes. The C/C composites with satisfactory dynamic mechanical properties were obtained through CVI or PIP. We prepare the matrix of DMC by a combination of CVI and PIP. DMC composite has the highest crystal-defect densities than the other composites. The matrix of SLC and RLC are prepared only through CVI using propane/nitrogen and methane/hydrogen, respectively. RLC indicated the perfect carbon plane and the lowest internal friction among these composites. It is found that internal friction is correlated to the microstructure of the composites. In some certain conditions, carbon matrix has mainly contribution to the internal friction in the C/C composites. We compare three kinds of C/C composites with different carbon matrices. The following conclusions are drawn from our study:

    The internal friction of the C/C composites is more sensitive to temperature and amplitude, and more insensitive to frequency. The internal friction of composites has such a relationship: IF(DMC)>IF(SLC)>IF(RLC)at RT and from 300 to 450 ℃, whereas the relationship changes to IF(SLC)>IF(DMC)>IF(RLC)when the temperature increases from 50 to 300 ℃. The overall internal friction of the C/C composites is mainly originated from the motion of the dislocations, the sliding of the fiber/matrix interfaces and the sliding of the carbon planes. At room temperature, the internal friction caused by the dislocations and the interfaces is superior to the other effects, which can be increased obviously by increasing FWGMDin matrices. When the temperature increases, the internal friction produced by the sliding of carbon planes contributes mainly to the overall internal friction, and increases distinctly with an increase ofd002.

    References

    [1]Delhaes P. Chemical vapor deposition and infiltration processes of carbon materials[J]. Carbon, 2002, 40(5): 641-657.

    [2]Boccaccini A R, Ponton C B, Chawla K K. Development and healing of matrix microcracks in fibre reinforced glass matrix composites: assessment by internal friction[J]. Materials Science and Engineering A, 1998, 241(1): 141-150.

    [3]Shengru Q, Shaorong Z, Shihong B, et al. The internal friction of unidirectional C/C composites fabricated in a magnetic field[J]. Carbon, 1997, 35(3): 389-392.

    [4]Hou Xianghui, Li Hejun, Shen Jian, et al. Effects of microstructure on the internal friction of carbon-carbon composites[J]. Materials Science and Engineering A, 2002, 286(2): 250-256.

    [5]Cheng J, Li H J, Zhang S Y, et al. Internal friction behavior of unidirectional carbon/carbon composites after different fatigue cycles[J]. Materials Science and Engineering A, 2014, 600: 129-134.

    [6]Yasuo Kogo, Yoshie Iijima, Naohiro Igata. Enhancement of internal friction of carbon-carbon composites by selective oxidation[J]. Journal of Alloys and Compounds, 2003, 355(1-2): 154-160.

    [7]Wang C, Zhu Z G, Hou X H, et al. Damping characteristics of CVI-densified carbon-carbon composites[J]. Carbon, 2000, 38(13): 1821-1824.

    [8]Yin J, Xiong X, Zhang H B, et al. Microstructure and ablation performance of dual-matrix carbon/carbon composites[J]. Carbon, 2006, 44(9): 1690-1694.

    [9]Vallerot J M, Bourrat X , Mouchon A, et al. Quantitative structural and textual assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques[J]. Carbon, 2006, 44(9): 1833-1844.

    [10]Granato A, Lücke K. Theory of mechanical damping due to dislocations[J]. Journal of Applied Physics, 1956, 27: 583-593.

    [11]Hou X H, Li H J, Wang C, et al. Internal friction behavior of carbon-carbon composites[J]. Carbon, 2000, 38(15): 2095-2101.

    [12]Yasuo Kogo, Yoshie Iijima, Naohiro Igata, et al. Internal firction of carbon-carbon composites at elevated temperatures[J]. Journal of Alloys and Compounds, 2003, 355(1-2): 148-153.

    [13]Cho C, Holmes J W, Barber, J R. Estimation of interfacial shear in ceramic composites from frictional heating measurements[J]. Journal of the American Ceramic Society, 1991, 74(11): 2802-2808.

    [14]Cho C, Choi E Y, Beom H G, et al. Micro-frictional dissipation in fiber-reinforced ceramic matrix composites and interfacial shear estimation with a consideration of uneven fiber packing[J]. Journal of Materials Processing Technology, 2005, 162-163: 9-14.

    [15]Luo R Y, Liu T, Li J S, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon, 2004,42(14): 2887-2895.

    Foundationitem: National Natural Science Foundation of China(21071011).

    Authorintroduction: YANG Wei, Ph. D Candidate. E-mail: yangwei_vip@hotmail.com

    Influence of the microstructure of the carbon matrices on the internal friction behavior of carbon/carbon composites

    YANG Wei,LUO Rui-ying,HOU Zhen-hua,ZHANG You,SHAGN Hai-dong,HAO Ming-yang

    (SchoolofPhysicsandNuclearEnergyEngineering,BeihangUniversity,Beijing100191,China)

    Abstract:Three carbon/carbon composites with rough laminar, smooth laminar and dual matrix carbon were prepared by chemical vapor infiltration (CVI) using hydrogen-diluted methane, CVI using nitrogen-diluted propane, and two-step CVI using first methane/hydrogen and carbon dioxideand then furan resin impregnation and carbonization. The influence of the microstructure of the carbon matrix on the internal friction behavior of the composites was investigated. Results indicate that the microstructure of the carbon matrix plays an important role in the internal friction. The overall internal friction is related to the motion of dislocations, the sliding of the fiber/matrix interface and the sliding of the carbon planes. The internal friction of the composite is very sensitive to temperature and amplitude, but less sensitive to frequency. Among these composites, the dual matrix carbon has the highest density of crystal-defects and the highest internal friction while the rough laminar carbon has perfect carbon planes and the lowest internal friction.

    Keywords:Carbon/carbon composites; Densification process; Mechanical characterization; Internal friction.

    文章編號:1007-8827(2016)02-0159-08

    中圖分類號:TQ342+.74

    文獻標識碼:A

    基金項目:國家自然科學(xué)基金(21071011).

    通信作者:羅瑞盈,教授. E-mail: ryluo@buaa.edu.cn

    作者簡介:楊威,博士研究生. E-mail: yangwei_vip@hotmail.com

    Corresponding author:LUO Rui-ying, Professor. E-mail: ryluo@buaa.edu.cn

    DOI:10.1016/S1872-5805(16)60009-4

    猜你喜歡
    力學(xué)性能
    反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
    Pr對20MnSi力學(xué)性能的影響
    云南化工(2021年11期)2022-01-12 06:06:14
    Mn-Si對ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
    山東冶金(2019年3期)2019-07-10 00:54:00
    采用稀土-B復(fù)合變質(zhì)劑提高ZG30MnSi力學(xué)性能
    碳纖維增強PBT/ABS—g—MAH復(fù)合材料的力學(xué)性能和流變行為
    中國塑料(2016年6期)2016-06-27 06:34:16
    紡織纖維彎曲力學(xué)性能及其應(yīng)用
    MG—MUF包覆阻燃EPS泡沫及力學(xué)性能研究
    中國塑料(2015年12期)2015-10-16 00:57:14
    EHA/PE復(fù)合薄膜的力學(xué)性能和阻透性能
    中國塑料(2015年9期)2015-10-14 01:12:26
    PA6/GF/SP三元復(fù)合材料的制備及其力學(xué)性能研究
    中國塑料(2015年4期)2015-10-14 01:09:18
    INCONEL625+X65復(fù)合管的焊接組織與力學(xué)性能
    焊接(2015年9期)2015-07-18 11:03:53
    精品午夜福利在线看| 国内揄拍国产精品人妻在线| 99热网站在线观看| av又黄又爽大尺度在线免费看 | 日本午夜av视频| 亚洲av成人av| 亚洲va在线va天堂va国产| 精品一区二区三区视频在线| 成人二区视频| 国产一区有黄有色的免费视频 | .国产精品久久| 成人毛片a级毛片在线播放| 午夜福利在线在线| 亚洲av.av天堂| 国产精品,欧美在线| 亚洲av成人av| videossex国产| 久99久视频精品免费| 成人鲁丝片一二三区免费| 国产在视频线精品| 成人二区视频| 国产探花在线观看一区二区| 国产精品一区二区在线观看99 | 久久久久久久亚洲中文字幕| 精品少妇黑人巨大在线播放 | eeuss影院久久| av又黄又爽大尺度在线免费看 | 亚洲一区高清亚洲精品| 精品久久久噜噜| 秋霞伦理黄片| 看十八女毛片水多多多| 久久久久久九九精品二区国产| 亚洲精品日韩av片在线观看| 亚洲av.av天堂| 国产视频首页在线观看| 丰满少妇做爰视频| 久久久国产成人精品二区| 成年av动漫网址| 日本一本二区三区精品| 不卡视频在线观看欧美| 日韩一本色道免费dvd| 看非洲黑人一级黄片| АⅤ资源中文在线天堂| 能在线免费看毛片的网站| 99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 一级毛片aaaaaa免费看小| 国产午夜精品论理片| www.av在线官网国产| 国内精品美女久久久久久| 日日啪夜夜撸| 色吧在线观看| 亚洲av熟女| 国产精华一区二区三区| 18禁在线无遮挡免费观看视频| 在线免费十八禁| 久久午夜福利片| 国产亚洲av嫩草精品影院| 国产美女午夜福利| 国产 一区 欧美 日韩| 日韩成人伦理影院| 亚洲中文字幕一区二区三区有码在线看| 亚洲自拍偷在线| 亚洲伊人久久精品综合 | 在线观看一区二区三区| 久久久久久国产a免费观看| 久久精品久久精品一区二区三区| 欧美色视频一区免费| 亚洲av不卡在线观看| 成人一区二区视频在线观看| 国内精品一区二区在线观看| 成人亚洲欧美一区二区av| 91久久精品电影网| 色吧在线观看| 水蜜桃什么品种好| 久久久久久久久久成人| 美女大奶头视频| 搡老妇女老女人老熟妇| 精品99又大又爽又粗少妇毛片| www.av在线官网国产| 国产高潮美女av| 又粗又硬又长又爽又黄的视频| 久久久久网色| 国产亚洲精品av在线| 亚洲精品,欧美精品| 一级毛片久久久久久久久女| 亚洲国产精品久久男人天堂| 亚洲av日韩在线播放| АⅤ资源中文在线天堂| 国产乱来视频区| 亚洲欧美成人精品一区二区| www日本黄色视频网| 一二三四中文在线观看免费高清| 尤物成人国产欧美一区二区三区| 99视频精品全部免费 在线| 日日撸夜夜添| 熟女人妻精品中文字幕| 日本熟妇午夜| 色综合亚洲欧美另类图片| 一边摸一边抽搐一进一小说| 精品国内亚洲2022精品成人| 午夜福利高清视频| 欧美性猛交╳xxx乱大交人| 久久久国产成人精品二区| www.av在线官网国产| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲无线观看免费| 日本色播在线视频| 久久午夜福利片| 午夜精品一区二区三区免费看| 国产女主播在线喷水免费视频网站 | 国产成人午夜福利电影在线观看| 人体艺术视频欧美日本| 日本午夜av视频| 精品久久久久久久末码| 成人综合一区亚洲| 亚洲精品,欧美精品| 精品免费久久久久久久清纯| 亚洲图色成人| 永久免费av网站大全| 色综合站精品国产| 又爽又黄无遮挡网站| 大香蕉久久网| 国产精品,欧美在线| 亚洲国产精品成人久久小说| 亚洲,欧美,日韩| 久久精品国产自在天天线| 欧美xxxx黑人xx丫x性爽| 国产一区有黄有色的免费视频 | 精品久久久久久久久亚洲| 六月丁香七月| 国产淫语在线视频| 国产 一区精品| 丝袜美腿在线中文| 亚洲在线观看片| 国产乱人视频| 日日干狠狠操夜夜爽| 日韩欧美国产在线观看| 日本与韩国留学比较| 91久久精品国产一区二区成人| 国产av一区在线观看免费| 午夜福利在线观看免费完整高清在| 成年女人永久免费观看视频| 亚洲国产成人一精品久久久| 亚洲电影在线观看av| 国产一区二区在线av高清观看| 精品无人区乱码1区二区| 国产探花极品一区二区| 亚州av有码| 亚洲欧美一区二区三区国产| 99久久九九国产精品国产免费| 我的女老师完整版在线观看| 韩国av在线不卡| 久久久久国产网址| 精品午夜福利在线看| 日韩一区二区三区影片| 亚洲av二区三区四区| 黑人高潮一二区| 狂野欧美白嫩少妇大欣赏| 天天一区二区日本电影三级| 九色成人免费人妻av| 在线免费观看不下载黄p国产| 18+在线观看网站| 五月伊人婷婷丁香| 国产美女午夜福利| www.av在线官网国产| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 成人亚洲欧美一区二区av| 欧美精品国产亚洲| 能在线免费观看的黄片| 老司机影院毛片| 精品久久久久久久久av| 久久精品国产鲁丝片午夜精品| 1000部很黄的大片| 欧美激情在线99| 亚洲在线观看片| 村上凉子中文字幕在线| 99久久精品国产国产毛片| 人人妻人人看人人澡| 3wmmmm亚洲av在线观看| 最近的中文字幕免费完整| 九草在线视频观看| 国产精品日韩av在线免费观看| 91精品国产九色| 夜夜看夜夜爽夜夜摸| 一级毛片电影观看 | 日本与韩国留学比较| 欧美成人a在线观看| 久久久久久久亚洲中文字幕| 日本午夜av视频| 国内精品宾馆在线| 色综合色国产| 精品久久久久久久久av| 亚洲图色成人| 少妇人妻一区二区三区视频| 禁无遮挡网站| 色综合色国产| 成年女人永久免费观看视频| 中文在线观看免费www的网站| 神马国产精品三级电影在线观看| 18禁在线无遮挡免费观看视频| 精品久久久久久久人妻蜜臀av| 3wmmmm亚洲av在线观看| 亚洲人与动物交配视频| 欧美日韩一区二区视频在线观看视频在线 | 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 99久国产av精品国产电影| 日韩在线高清观看一区二区三区| 亚洲怡红院男人天堂| 51国产日韩欧美| 一个人看的www免费观看视频| 一边亲一边摸免费视频| 啦啦啦啦在线视频资源| 国产精品一区二区性色av| 中国国产av一级| 51国产日韩欧美| 日韩成人伦理影院| 只有这里有精品99| eeuss影院久久| 久久热精品热| 女人被狂操c到高潮| 如何舔出高潮| 尾随美女入室| 久久精品国产自在天天线| 国语对白做爰xxxⅹ性视频网站| 亚洲在线自拍视频| 免费观看在线日韩| 日韩精品有码人妻一区| 我要搜黄色片| 色播亚洲综合网| 国产单亲对白刺激| 国产探花极品一区二区| 精品国产一区二区三区久久久樱花 | 免费搜索国产男女视频| 婷婷色麻豆天堂久久 | 日韩成人av中文字幕在线观看| 热99re8久久精品国产| 熟妇人妻久久中文字幕3abv| 只有这里有精品99| 美女xxoo啪啪120秒动态图| 2021少妇久久久久久久久久久| 18禁裸乳无遮挡免费网站照片| 高清在线视频一区二区三区 | 看非洲黑人一级黄片| 性插视频无遮挡在线免费观看| a级毛色黄片| 高清毛片免费看| 亚洲三级黄色毛片| 免费看光身美女| 国产爱豆传媒在线观看| 亚洲av男天堂| 一区二区三区免费毛片| 婷婷色av中文字幕| 天堂av国产一区二区熟女人妻| 看片在线看免费视频| 永久网站在线| 高清日韩中文字幕在线| 国产免费视频播放在线视频 | 亚洲人成网站在线播| 国产伦理片在线播放av一区| 日韩av在线免费看完整版不卡| 男女国产视频网站| 国内精品宾馆在线| 免费一级毛片在线播放高清视频| 午夜福利在线在线| 国产高清有码在线观看视频| 人人妻人人看人人澡| 草草在线视频免费看| 中文字幕精品亚洲无线码一区| 久久精品91蜜桃| 搡老妇女老女人老熟妇| 日韩视频在线欧美| 日韩欧美三级三区| 老师上课跳d突然被开到最大视频| 日本与韩国留学比较| 简卡轻食公司| 亚洲精品aⅴ在线观看| 99九九线精品视频在线观看视频| 国产精品久久久久久精品电影小说 | 五月伊人婷婷丁香| 日日摸夜夜添夜夜爱| 日本一本二区三区精品| 2022亚洲国产成人精品| 搡老妇女老女人老熟妇| av在线老鸭窝| ponron亚洲| 久久久久久国产a免费观看| 久久精品夜色国产| 99热精品在线国产| 国产乱人视频| 黑人高潮一二区| 国产亚洲精品久久久com| av黄色大香蕉| 伊人久久精品亚洲午夜| 天堂中文最新版在线下载 | 最后的刺客免费高清国语| 老师上课跳d突然被开到最大视频| 精品不卡国产一区二区三区| 我的女老师完整版在线观看| 久久久国产成人免费| 赤兔流量卡办理| eeuss影院久久| 简卡轻食公司| 国产精品综合久久久久久久免费| 亚洲国产色片| 国产女主播在线喷水免费视频网站 | 中文乱码字字幕精品一区二区三区 | 日韩国内少妇激情av| 成年女人永久免费观看视频| 国产精品野战在线观看| 亚州av有码| 精品久久久久久久久久久久久| 哪个播放器可以免费观看大片| 国产乱来视频区| 91午夜精品亚洲一区二区三区| 99久久精品国产国产毛片| av福利片在线观看| 亚洲国产最新在线播放| 小说图片视频综合网站| 美女内射精品一级片tv| 国产精品一区二区在线观看99 | 一级毛片久久久久久久久女| 亚洲精华国产精华液的使用体验| 国产黄a三级三级三级人| 老女人水多毛片| 久久亚洲精品不卡| 国产精品永久免费网站| 亚洲综合色惰| 午夜久久久久精精品| 成人国产麻豆网| 极品教师在线视频| 国产一区二区在线观看日韩| 国产精品一二三区在线看| 国产免费一级a男人的天堂| 男人的好看免费观看在线视频| 99久久九九国产精品国产免费| АⅤ资源中文在线天堂| 亚洲天堂国产精品一区在线| 国产成人免费观看mmmm| 九九爱精品视频在线观看| 成人三级黄色视频| 亚洲精品456在线播放app| 国产午夜精品久久久久久一区二区三区| 乱系列少妇在线播放| av在线蜜桃| 久久国内精品自在自线图片| 亚洲国产高清在线一区二区三| 美女内射精品一级片tv| 熟女电影av网| 亚洲国产精品专区欧美| 九九爱精品视频在线观看| 最新中文字幕久久久久| 在线播放国产精品三级| 亚洲国产精品专区欧美| 亚洲国产成人一精品久久久| 26uuu在线亚洲综合色| 超碰97精品在线观看| 国产精品无大码| 美女高潮的动态| 欧美日本亚洲视频在线播放| 蜜桃亚洲精品一区二区三区| 3wmmmm亚洲av在线观看| 精品久久久久久成人av| 亚洲综合色惰| 天堂网av新在线| 日韩三级伦理在线观看| 天堂网av新在线| 国产欧美另类精品又又久久亚洲欧美| 在线播放国产精品三级| 黑人高潮一二区| 丝袜喷水一区| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 亚洲精品,欧美精品| 国产亚洲一区二区精品| 日韩中字成人| 成年av动漫网址| 99久久精品热视频| 国产大屁股一区二区在线视频| 久久久成人免费电影| 久久精品国产亚洲av天美| 久久这里只有精品中国| 国产色爽女视频免费观看| 日韩三级伦理在线观看| 99久久精品一区二区三区| 国产一区二区亚洲精品在线观看| 亚洲欧美成人精品一区二区| 爱豆传媒免费全集在线观看| 中文字幕久久专区| 亚洲最大成人av| 色5月婷婷丁香| 激情 狠狠 欧美| 一级毛片aaaaaa免费看小| 在线观看一区二区三区| 久久久亚洲精品成人影院| 国产精品爽爽va在线观看网站| 91精品国产九色| 国产免费一级a男人的天堂| 久久久精品欧美日韩精品| 亚洲三级黄色毛片| 久久久久久伊人网av| 久久久久性生活片| 精品国产一区二区三区久久久樱花 | 天堂网av新在线| 成年女人看的毛片在线观看| 欧美性猛交╳xxx乱大交人| 99热精品在线国产| 我要看日韩黄色一级片| 久久久久国产网址| 97热精品久久久久久| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 亚洲成人精品中文字幕电影| 亚洲美女搞黄在线观看| av又黄又爽大尺度在线免费看 | 五月伊人婷婷丁香| 精品久久久久久久久久久久久| 亚洲精品乱久久久久久| 国产精品野战在线观看| 综合色丁香网| 一级黄色大片毛片| 2021少妇久久久久久久久久久| 一区二区三区高清视频在线| 99热6这里只有精品| 国产一区二区三区av在线| 欧美极品一区二区三区四区| 在线免费观看的www视频| 精品国内亚洲2022精品成人| 欧美性猛交╳xxx乱大交人| 午夜视频国产福利| 91在线精品国自产拍蜜月| 欧美最新免费一区二区三区| 亚洲精品国产av成人精品| 国产免费一级a男人的天堂| av卡一久久| 欧美日韩综合久久久久久| 最近手机中文字幕大全| 日本免费一区二区三区高清不卡| a级毛色黄片| 3wmmmm亚洲av在线观看| 十八禁国产超污无遮挡网站| 国产精品三级大全| 日韩国内少妇激情av| 久久午夜福利片| av在线蜜桃| 99热全是精品| 国内揄拍国产精品人妻在线| 十八禁国产超污无遮挡网站| 淫秽高清视频在线观看| 国产毛片a区久久久久| av国产久精品久网站免费入址| 看十八女毛片水多多多| av在线播放精品| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 51国产日韩欧美| 亚洲欧美日韩东京热| 国国产精品蜜臀av免费| 欧美一级a爱片免费观看看| 男女国产视频网站| 岛国毛片在线播放| 久久久久九九精品影院| 在线观看av片永久免费下载| 亚洲成人久久爱视频| 精品一区二区三区人妻视频| 卡戴珊不雅视频在线播放| 超碰av人人做人人爽久久| 人妻系列 视频| 中文字幕av成人在线电影| 国产精品久久久久久精品电影小说 | 国产乱人偷精品视频| 91av网一区二区| 热99re8久久精品国产| 国产精品一区二区性色av| 亚洲aⅴ乱码一区二区在线播放| 秋霞伦理黄片| 亚洲怡红院男人天堂| 老司机影院成人| 色5月婷婷丁香| 美女黄网站色视频| 蜜桃久久精品国产亚洲av| 少妇人妻一区二区三区视频| 日韩一区二区三区影片| 国产三级中文精品| 国产精品美女特级片免费视频播放器| 日本黄色视频三级网站网址| 日韩av在线大香蕉| 国产精品国产高清国产av| 最近中文字幕高清免费大全6| 国产激情偷乱视频一区二区| 欧美精品国产亚洲| av线在线观看网站| 久久亚洲精品不卡| 中文字幕亚洲精品专区| 欧美日韩在线观看h| 成人鲁丝片一二三区免费| 只有这里有精品99| 国产亚洲一区二区精品| 久久99蜜桃精品久久| 少妇人妻精品综合一区二区| 99视频精品全部免费 在线| 成人午夜高清在线视频| 成人欧美大片| 国产精品av视频在线免费观看| 三级国产精品片| 久久久亚洲精品成人影院| 国产真实乱freesex| 成年女人看的毛片在线观看| av国产久精品久网站免费入址| 在线观看66精品国产| 一边摸一边抽搐一进一小说| 老司机影院毛片| 日日摸夜夜添夜夜爱| 国产精品.久久久| 国产精品爽爽va在线观看网站| 老女人水多毛片| av国产免费在线观看| 麻豆精品久久久久久蜜桃| 国产一级毛片七仙女欲春2| 日本欧美国产在线视频| 免费观看在线日韩| 亚洲最大成人手机在线| 日韩欧美 国产精品| 国产亚洲精品久久久com| 国产av码专区亚洲av| 亚洲婷婷狠狠爱综合网| av天堂中文字幕网| 2021少妇久久久久久久久久久| 国产爱豆传媒在线观看| 亚洲成人久久爱视频| 神马国产精品三级电影在线观看| 成人二区视频| 久久婷婷人人爽人人干人人爱| 国产大屁股一区二区在线视频| 亚洲精品色激情综合| 99久久精品一区二区三区| 亚洲精品国产成人久久av| 国产伦精品一区二区三区四那| 听说在线观看完整版免费高清| 精品酒店卫生间| 一本久久精品| av在线蜜桃| 亚洲人与动物交配视频| 国产亚洲5aaaaa淫片| 男人狂女人下面高潮的视频| av免费观看日本| 高清毛片免费看| 国产精品人妻久久久影院| 亚洲人成网站在线观看播放| 18禁在线播放成人免费| 亚洲色图av天堂| 日本一二三区视频观看| 日本-黄色视频高清免费观看| 成人av在线播放网站| 中文欧美无线码| 日本三级黄在线观看| 国产高清视频在线观看网站| 看黄色毛片网站| 成人漫画全彩无遮挡| 91狼人影院| 听说在线观看完整版免费高清| 日韩国内少妇激情av| 丝袜美腿在线中文| 亚洲中文字幕日韩| 亚洲精品国产av成人精品| 日本黄大片高清| 简卡轻食公司| 久久欧美精品欧美久久欧美| 99热这里只有是精品在线观看| 村上凉子中文字幕在线| 欧美成人精品欧美一级黄| 国内揄拍国产精品人妻在线| 日韩欧美国产在线观看| 国产欧美另类精品又又久久亚洲欧美| 成人欧美大片| 听说在线观看完整版免费高清| 岛国毛片在线播放| 99久国产av精品国产电影| 成人毛片a级毛片在线播放| 人妻少妇偷人精品九色| 国产三级中文精品| 啦啦啦啦在线视频资源| 男人舔女人下体高潮全视频| 天堂影院成人在线观看| 国产精品国产三级国产av玫瑰| 大又大粗又爽又黄少妇毛片口| 麻豆国产97在线/欧美| 少妇的逼水好多| 日韩成人av中文字幕在线观看| 国产精品一区二区三区四区免费观看| 少妇猛男粗大的猛烈进出视频 | videossex国产| 91久久精品电影网| 99热全是精品| 亚洲欧美成人综合另类久久久 | 亚洲av免费在线观看| 久久这里有精品视频免费| 最近视频中文字幕2019在线8| 人妻制服诱惑在线中文字幕| 最后的刺客免费高清国语| 国产高潮美女av| 又爽又黄无遮挡网站| 亚洲伊人久久精品综合 | 91午夜精品亚洲一区二区三区| 国产精品国产三级国产专区5o | 亚洲久久久久久中文字幕| 亚州av有码| 国产亚洲精品av在线| 天天躁日日操中文字幕| 99视频精品全部免费 在线| 日韩亚洲欧美综合| av在线观看视频网站免费| 老司机福利观看|