• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微波法制備硫/膨脹石墨復(fù)合材料及其鋰硫電池性能

    2016-06-20 02:38:32朱福良趙金平
    新型炭材料 2016年2期
    關(guān)鍵詞:微波

    朱福良, 楊 志,, 趙金平, 趙 薪

    (1.蘭州理工大學(xué) 材料科學(xué)與工程學(xué)院,甘肅 蘭州730050;2.中國(guó)科學(xué)院蘭州化學(xué)物理研究所 清潔能源化學(xué)與材料實(shí)驗(yàn)室, 甘肅 蘭州730050)

    ?

    微波法制備硫/膨脹石墨復(fù)合材料及其鋰硫電池性能

    朱福良1,楊志1,2,趙金平2,趙薪1

    (1.蘭州理工大學(xué) 材料科學(xué)與工程學(xué)院,甘肅 蘭州730050;2.中國(guó)科學(xué)院蘭州化學(xué)物理研究所 清潔能源化學(xué)與材料實(shí)驗(yàn)室, 甘肅 蘭州730050)

    摘要:采用簡(jiǎn)單的微波輔助的方法成功制備了硫/膨脹石墨復(fù)合材料。膨脹石墨可以用作鋰硫電池中陰極的微型容器及集流體。通過(guò)控制硫與膨脹石墨的配比成功控制了復(fù)合材料中硫顆粒的大小。當(dāng)硫與膨脹石墨的比例為10∶1時(shí),可以得到相對(duì)較均勻的硫顆粒。同時(shí)研究了不同條件下所制樣品的鋰硫電池性能。結(jié)果表明,硫的含量與硫顆粒的大小對(duì)鋰硫電池的容量非常重要。當(dāng)硫與膨脹石墨的比例為10∶1時(shí),在0.1 C放電速率下,復(fù)合材料具有最高的放電容量1 020 mAh·g-1。

    關(guān)鍵詞:膨脹石墨; 鋰硫電池; 微波; 硫顆粒尺寸

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    1Introduction

    Lithium-sulfur (Li-S) battery is a very attractive battery. Compared with the traditional lithium ion batteries, it has many merits[1]. For example, the battery has a high theoretical specific capacity of 1 672 mAh/g and a high theoretical specific energy of 2 600 Wh/kg based on the reaction between lithium and sulfur[2]. Moreover, sulfur is easily available and environmental friendly[3-4]. However, Li-S battery has obvious two drawbacks. On one hand, the low electronic/ionic conductivity of sulfur would limit the operating current of the battery[5]. On the other hand, sulfur as the active materials would easily dissolve into the liquid electrolyte during the discharge process and then transform into insoluble Li2S and Li2S2[6,7]. Li2S and Li2S2will finally adhere onto the surface of cathode materials, which will occur in every charge/discharge cycle, restrict the reaction of the inner sulfur[1], and lead to the loss of the capacity.

    To overcome these problems, several technological contributions are attempted, such as the optimization of the organic electrolyte via introducing room temperature ionic liquid or fabrication of the sulfur composites with the electronic conductors[8]. The electronic conductors include nano metal oxides[9], solid solutions[10], transition metals[11], carbon materials[12]and conductive polymers[13]. Since the carbon materials have high specific surface area, high pore volume, extensive pore structure and good conductivity, they are proved to be effective and facile candidates to improve the sulfur utilization and restrain the solubility of lithium polysulfides[8]. Lots of carbon materials are used to modify the sulfur cathode, such as mesoporous carbon[9], carbon nanotubes[13], carbon nanofibers[14], and graphene[15], all of which have shown improved performance. Among these, graphene sheets, one-atom-thick layers of sp2-hybridized carbon atoms packed in a honeycomb lattice, are advantageous for wrapping sulfur owing to their large lateral size, good conductivity and the flexible structure[16]. And some graphene-based material is more suitable for improving the performance. But the preparation for some carbon-sulfur materials includes complicated multi-steps with strict synthetic conditions[17]. Li et al[18]have prepared a graphene-wrapped carbon/sulfur composite for lithium-sulfur battery by changing the hydrophilicity of graphene oxide during reduction, in which the hydrophobic graphene closely wraps around the hydrophobic carbon surface. And the first discharge capacity is about 1 578.3 mAh·g-1(0.15 A·g-1), higher than the pure carbon/sulfur composite. Li[19]have prepared a graphene/sulfur composite by chemical deposition sulfur on the graphene oxide. And the first discharge capacity is 1 320 mAh·g-1(0.02 C). Tang[20]have prepared a nitrogen-doped carbon nanotube/graphene-sulfur composite, by the chemical vapor deposition for the nitrogen-doped carbon nanotube/graphene followed by a melt-diffusion infiltration strategy. The initial discharge capacity is 1 152 mAh·g-1and nearly 76% capacity is retained after 80 cycles. Above all the composites show excellent performance, but the materials preparation involves complicated multi-steps with strict synthetic conditions.

    Expanded graphite which has a hierarchical pore structure is low in cost and easily to obtain, so it can be used as the cathode material for Li-S batteries. Expanded graphite is prepared by expanding intercalated graphite, which is an exothermic process. So it is beneficial for the preparation sulfur/expanded graphite (S/EG) composites. In this paper, a facile method is successfully used to prepare the S/EG composites assisted with microwave. The sulfur and expanded graphite is mixed and the S/EG composites is easily obtained during the graphite expanding process by microwave irradiation. The S/EG composite as a Li-S battery cathode has a high discharge capacity. This method provides an experimental basis for the subsequent preparation of sulfur/carbon composites.

    2Experimental

    2.1Preparation of S/EG composite

    Firstly, the EG was prepared by expanding the graphite intercalated compound through rapid thermal expansion at 800C in a muffle furnace. In brief, the natural flake graphite was mixed with concentrated sulfuric acid (98%) and concentrated nitric acid (65%) (4∶1, v/v), then the mixture was vigorously stirred for 12 h to ensure the formation of expandable graphite intercalation compound. After that the intercalated graphite was washed with deionized water to neutral and then dried. The dried expandable graphite intercalation compound was rapidly expanded at 800C for 20 s in a muffle furnace. Then the expanded graphite and sulfur was mixed together with different mass ratios (S∶EG=4∶1,6∶1,8∶1,10∶1,12∶1, m/m), and the mixture was put into a microwave oven and irradiated for 2 min at about 400 W. In this process, expanded graphite was used as the heat producer and the heat transfer medium. And the heat can be transferred to the sulfur surface, leading to the sublimation of sulfur that was loaded into the pore of the expanded graphite when the sulfur was cooled.

    2.2Characterization

    The morphology and microstructure of the S/EG composite was characterized by scanning electron microscopy (FESEM, JSM 6701F). The microstructure of the S/EG material was also analyzed by powder X-ray diffraction (XRD, CuKαradiation, Panalytical X’ Pert Pro). The thermal gravimetry (STA 449F3) was used to analyze the quantity of loaded sulfur from 25 to 500 ℃ at a heating rate of 10 ℃/min under the protection of nitrogen.

    2.3Electrochemical measurements

    The S/EG composite and acetylene black (electrical conductor) with polyvinylidene fiuoride binder (8∶1∶1, weight ratio) were grinded with a mortar into N-methyl-2-pyrrolidone (NMP) to form a slurry. In this process, the NMP and polyvinylidene fiuoride are used as a diluent and binder, respectively. The S/EG composite could be ground to form a uniform slurry. Then the slurry was coated onto aluminum foil and dried under vacuum to form the working electrode at 60 ℃ for 12 h. 2032-type coin cells were assembled in an argon-filled glove box using lithium foil as the counter electrode. The electrolyte was 1 M bis(trifiuoromethane) sulfonimide lithium salt (LiTFSI) dissolved in a mixture of 1,3-Dioxolane (DOL) and Dimethoxyethane (DME) (1∶1 v/v) containing LiNO3(1 wt%). The cathode, separator, and anode were pressed by a sealing machine to ensure a tight contact. The batteries were cycled between 1.5 and 3.0 V with a battery test instrument Land CT2001A battery test system at 0.1 C (1 C=1 672 mA·g-1) at room temperature. CV tests were performed on a CHI660D electrochemical workstation at a scan rate of 0.2 mV·s-1from 1.5 to 3.0 V. The calculation of specific discharge capacities was based on the mass of elemental sulfur.

    3Results and discussion

    The microstructure of the S/EG composites after microwave at different mass ratios of sulfur to EG is characterized by SEM. As illustrated in Fig. 1, the SEM images indicate that all the S/EG composites possess an ideal layer-by-layer structure with a hierarchical pore structure. There are some particles embedded into the layers or pores of expanded graphite. When the ratios of sulfur to expanded graphite is 4∶1, 6∶1, 8∶1 and 10∶1, no large sulfur particles are found and the particles are about tens to hundreds of nanometers as shown in the red rectangle. Lots of large sulfur particles about 1 μm are found when the ratio is 12∶1.

    The temperature of EG is increased by absorbing microwave energy when it is irradiated by microwave. The sulfur is sublimed when it is heated by EG. When the mixture is cooled down the sulfur vapor enter into the pores of the particles and deposited on EG. The higher is the content of sulfur, the more are the sulfur particles formed, but when the sulfur content increases to a limit, the sulfur can not sublime completely, so the particle size increases.So the size of sulfur particles is controlled by controlling the amount of sulfur.

    To further obtain the particle size distribution, we randomly select one hundred sulfur particles in the red rectangle in Fig. 1. The result is shown in Fig. 2. It is found that the percentage of sulfur particles between 20 and 50 nm reaches a maximum of 79% at the S/EG mass ratio of 10∶1. While the particles between 50-100 nm and 100-150 nm are found in all the samples, but their percentages in the sample at 10∶1 is the lowest.

    Fig. 1 SEM images of the S/EG composites with different mass ratios of

    Fig. 2 The particle size distribution of

    Fig. 3 XRD patterns of the S/EG composites

    To investigate the state of the sulfur in the S/EG composite after microwave irradiation XRD patterns are recorded. Firstly, the pure sulfur displays sharp diffraction peaks that agree well with the characteristic pattern of S8[21]. Compared with the pure sulfur sample, all of the S/EG composites at different ratios of S/EG after microwave irradiation show the diffraction peaks of bulk crystal sulfur in the form of S8. This is also consistent with the SEM images.

    Fig. 4 Thermo gravimetric analysis (TGA) curves of the S/EG

    The thermal decomposition characteristic of the S/EG composites at different ratios of S/EG after microwave irradiation under nitrogen atmosphere is investigated by TGA. The expanded graphite is prepared at 800C, so here, the weight loss of the composites is caused by sulfur. The TGA curves in Fig. 4 show that the weight loss of the S/EG composites after microwave irradiation is about 50, 55, 64, 71 and 76% at the S/EG ratios of 4∶1, 6∶1, 8∶1, 10∶1 and 12∶1, respectively. This result indicates that in the composites, the quantity of sulfur increase with the S/EG ratio. For testing the electrochemical properties of the S/EG composites, the batteries assembled were investigated by galvanostatic charge-discharge measurement. Fig. 5a shows the cyclic performance of the S/EG cathodes with different S/EG ratios. The initial discharge capacity increases from 347 to 950 mAh·g-1with the S/EG ratios from 4∶1 to 10∶1. With a further increase of the S/EG ratio to 12∶1, the capacity is decreased to 556 mAh·g-1.

    From the results of Fig. 2 and Fig. 3, it is found that both the sulfur content and the sulfur particle sizes are the main factors for capacity. The S/EG composite with a S/EG ratio of 10∶1 is the best, so we choose this ratio for the next discussion. To identify all the electrochemical reactions in the S/EG composite, the CV and galvanostatic discharge-charge curves are shown in Fig. 5b and 5c, respectively. As shown in Fig. 5b, one oxidation peak and two reduction peaks are observed, which are attributed to the multistep reaction of sulfur with lithium[3]. The transformation of sulfur to lithium polysulfide (Li2Sn, 2 2)[22]. The charge-discharge curves of the S/EG composite is shown in Fig. 5c. Two typical plateaus at 2.3 V and 2.1 V are observed in the discharge process, which can be assigned to the two-step reaction of sulfur with lithium in the discharge process, only one plateau is observed in the charge process at about 2.47 V. The positions of the plateaus agree well with the results of the CV curves (Fig. 5b). Next, the rate performance of the S/EG cathode is shown in Fig. 5d. The capacity and C rates are based on the mass of sulfur (1 C=1 672 mAh·g-1). The initial discharge capacity is as high as 1 020 mAh·g-1at 0.1 C.

    Yang[23]prepared composites using a conductive polymer as coating to improve the performance of lithium-sulfur batteries, and the results show that the performance of the composites with the conductive polymer coating is better than the composites without the coating. Based on this observation, we are going to coat conductive coating on the material to restrain the solubility of lithium polysulfides to improve the performance.

    Fig. 5 (a) The cyclic performance of the S/EG composites at different S/EG ratios; (b) Cyclic voltammogram of the S/EG cathode

    4Conclusions

    We successfully prepared the S/EG composites by microwave irradiation method. The size of sulfur particles loaded in the composites can be easily controlled by the S/EG mass ratio. When the ratio is 10∶1, relatively uniform sulfur particles are obtained. Both the S/EG ratio and the sulfur particle size play an important role for capacity in Li-S battery. It has been confirmed that the cathode with the ratio of 10∶1 shows the highest capacity (1 020 mAh·g-1) at 0.1 C rate. Such facile method is a promising means for preparing the cathode of Li-S batteries.

    References

    [1]R Elazari G, Salitra A, Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011, 23: 5641-5644.

    [2]Li S, Xie M, Liu J B, et al. Layer structured sulfur/expanded graphite composite as cathode for lithium battery[J]. Electrochemical and Solid-State Letters, 2011, 14: 105-107.

    [3]Yamin H, Gorenshtein A, Penciner J, et al. Lithium sulfur battery oxidation/reduction mechanisms of polysulfides in THF solutions[J]. Journal of The Electrochemical Society, 1988, 135: 1045-1048.

    [4]Wang J L, Yang J, Xie J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4: 499-502.

    [5]Liang C, Dudney N J, Howe J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21: 4724-4730.

    [6]Lai C, Gao X P, Zhang B, et al. Synthesis and electrochemical performance of sulfur/highly porous carbon composites[J]. Journal of Physical Chemistry C, 113 (2009): 4712-4716.

    [7]Wang Y, Huang Y, Wang W, et al. Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge[J]. Electrochimica Acta, 2009, 54: 4062-4066.

    [8]Zhang B, Qin X, Lia G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3: 1531- 1537.

    [9]Choi Y J, Jung B S, Lee D J, et al. Electrochemical properties of sulfur electrode containing nano Al2O3for lithium/sulfur cell[J]. Physica Scripta, 2007, T129: 62-65.

    [10]Songa M S, Hana S C, Kima H S, et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries[J]. Journal of The Electrochemical Society, 2004, 151: A791-A795.

    [11]Wu F, Wu S X, Chen R J, et al. Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries[J]. Chinese Chemical Letters, 2009, 20: 1255-1258.

    [12]Wang J L, Yang Y, Xie J Y. A novel conductive Polymer-Sulfur composite cathode material for rechargeable Lithium batteries[J]. Advanced Materials, 2002, 14: 963-965.

    [13]Ryu H S, Guo Z, Ahn H J, et al. Investigation of discharge reaction mechanism of lithium-liquid electrolyte-sulfur battery[J]. Journal of Power Sources, 2009, 189: 1179-1183.

    [14]Ji X L, Lee K T, Linda F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8: 500-506.

    [15]Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable Lithium-Sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11: 2644-2647.

    [16]Wang D W, Zeng Q C, Zhou G M, et al. Carbon-sulfur composites for Li-S batteries: status and prospects[J]. Journal of Materials Chemistry A, 2013, 1: 9382-9394.

    [17]Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie, 2008, 120: 379-382.

    [18]李芳菲, 呂偉, 牛樹章, 等. 石墨烯包覆炭硫復(fù)合物正極材料的制備及其電化學(xué)性能[J]. 新型炭材料, 2014, 29: 309-315.

    (LI Fang-fei, LU Wei, NIU Shu-zhang, et al. Preparation and electrochemical performance of a graphene-wrapped carbon/sulphur composite cathode[J]. New Carbon Materials, 2014, 29: 309-315.)

    [19]Li W J, Rao M M, Zhang Y G, et al, Graphene oxide as a sulfur immobiliaer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133: 18522-18525.

    [20]Tang C, Zhang Q, Zhao M Q, et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate Lithium-Sulfur batteries[J]. Advanced Materials, 2014, 26: 6100-6105.

    [21]Zheng W, Wong S C. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites[J]. Composites Science and Technology, 2003, 63: 225-235.

    [22]Yamin H, Penciner J, Gorenshtain A, et al. The electrochemical behavior of polysulfides in tetrahydrofuran[J]. Journal of Power Sources, 1985, 14: 129-134.

    [23]Yang Y, Yu G H, Wu H, et al. Improving the performance of lithium-sulfur batteries by conductive polymer coating[J]. ACS Nano, 2011, 5: 9187-9193.

    作者介紹:楊志,碩士研究生. E-mail: yzqms_127@163.com

    Receiveddate: 2016-01-31;Reviseddate: 2016-04-02

    Foundationitem: National Natural Science Foundation of China (21303234,51364024); China Postdoctoral Science Foundation(2013M530437).

    Authorintroduction: YANG Zhi, Master Student. E-mail: yzqms_127@163.com

    Microwave assisted preparation of expanded graphite/sulfur composites as cathodes for Li-S batteries

    ZHU Fu-liang1,YANG Zhi1,2,ZHAO Jin-ping2,ZHAO Xin1

    (1.SchoolofMaterialsScienceandEngineering,LanzhouUniversityofTechnology,Lanzhou730050,China;2.LaboratoryofCleanEnergyChemistryandMaterials,LanzhouInstituteofChemicalPhysics,ChineseAcademyofScience,Lanzhou730000,China)

    Abstract:Expanded graphite/sulfur(EG/S) composites were prepared by microwave irradiation of mixtures of sulfur and expanded graphite with S/EG ratios from 4∶1 to 12∶1. Sulfur was sublimed and entered the EG pores when the mixtures were heated and was condensed to form particles within the pores during cooling. The pores of the EG acted as microcontainers to host the sulfur, and the material, with its interconnected and conductive pore walls, acted as a current collector for the cathode of the Li-S battery. The size of sulfur particles in the EG pores could be controlled by the S/EG mass ratio. When the ratio is 10∶1, relatively uniform size sulfur particles could be obtained. Both the S/EG ratio and the sulfur particle size have an important effect on the capacity increase of the Li-S battery. Using a composite with a S/EG ratio of 10∶1 as the cathode gives the highest capacity of 1 020 mAhg-1at a rate of 0.1 C.

    Key words:Expanded graphite; Lithium-sulfur batteries; Microwave; Sulfur particles size

    文章編號(hào):1007-8827(2016)02-0199-06

    中圖分類號(hào):TB333

    文獻(xiàn)標(biāo)識(shí)碼:A

    基金項(xiàng)目:國(guó)家自然科學(xué)基金青年基金(21303234,51364024);中國(guó)博士后科學(xué)基金(2013M530437).

    通訊作者:朱福良,教授. E-mail: chzfl@126.com

    Corresponding author:ZHU Fu-liang, Professor. E-mail: chzfl@126.com

    DOI:10.1016/S1872-5805(16)60011-2

    猜你喜歡
    微波
    微波水云間
    保健與生活(2023年6期)2023-03-17 08:39:54
    中法海洋衛(wèi)星微波散射計(jì)在軌性能驗(yàn)證
    微波感應(yīng)器的原理和應(yīng)用
    電子制作(2018年10期)2018-08-04 03:24:30
    為什么
    一種USB 接口的微波開(kāi)關(guān)控制器設(shè)計(jì)
    電子制作(2017年13期)2017-12-15 09:00:09
    微波冷笑話
    金色年華(2017年12期)2017-07-18 11:11:20
    PM10中Pb,Cd元素的微波消解提取方案比較
    超聲引導(dǎo)微波消融治療老年肝癌及并發(fā)癥防范
    肝腫瘤的微波消融治療
    微波消解一ICP-AES法測(cè)定蜂蜜中Pb、Hg
    河南科技(2014年5期)2014-02-27 14:08:47
    99热6这里只有精品| 国产精品一区www在线观看 | 伦理电影大哥的女人| 12—13女人毛片做爰片一| 久久婷婷人人爽人人干人人爱| or卡值多少钱| 韩国av在线不卡| 啦啦啦观看免费观看视频高清| 欧美激情久久久久久爽电影| 男女啪啪激烈高潮av片| 亚洲狠狠婷婷综合久久图片| 亚洲一区高清亚洲精品| 不卡视频在线观看欧美| 日韩中字成人| 毛片一级片免费看久久久久 | 一区二区三区激情视频| 天堂动漫精品| 国产淫片久久久久久久久| 真实男女啪啪啪动态图| 国产一区二区三区视频了| 日日撸夜夜添| 男人和女人高潮做爰伦理| 99久久成人亚洲精品观看| 亚洲欧美日韩东京热| 人人妻人人澡欧美一区二区| 少妇裸体淫交视频免费看高清| 熟女人妻精品中文字幕| 色综合婷婷激情| 国产一级毛片七仙女欲春2| 久久精品国产清高在天天线| 国产亚洲精品久久久com| 国产av一区在线观看免费| 色综合色国产| 久久久久久久久大av| 99久久无色码亚洲精品果冻| 欧美高清性xxxxhd video| 亚洲国产精品合色在线| 婷婷六月久久综合丁香| 午夜免费激情av| 精品人妻一区二区三区麻豆 | 国产乱人视频| 国产精品自产拍在线观看55亚洲| 欧美3d第一页| 少妇高潮的动态图| 亚洲精品一区av在线观看| 狂野欧美激情性xxxx在线观看| 久99久视频精品免费| 日日夜夜操网爽| 免费在线观看影片大全网站| 国产精品人妻久久久影院| 禁无遮挡网站| 亚洲av中文字字幕乱码综合| 免费看a级黄色片| 听说在线观看完整版免费高清| 午夜激情福利司机影院| 老司机深夜福利视频在线观看| 欧美日本亚洲视频在线播放| 夜夜爽天天搞| 十八禁国产超污无遮挡网站| 国产爱豆传媒在线观看| 国产精品精品国产色婷婷| x7x7x7水蜜桃| 国产亚洲精品综合一区在线观看| 亚洲成人中文字幕在线播放| 在线观看午夜福利视频| 精品一区二区三区av网在线观看| 国产三级中文精品| 亚洲av一区综合| 非洲黑人性xxxx精品又粗又长| 午夜免费男女啪啪视频观看 | 99九九线精品视频在线观看视频| 女的被弄到高潮叫床怎么办 | 久久午夜亚洲精品久久| 中文字幕高清在线视频| 久久国产乱子免费精品| 69人妻影院| 人妻久久中文字幕网| 久久久久国产精品人妻aⅴ院| 日韩中字成人| 国产亚洲精品久久久com| 天堂网av新在线| 国产免费一级a男人的天堂| 亚洲熟妇中文字幕五十中出| 午夜激情福利司机影院| 黄色配什么色好看| 国产91精品成人一区二区三区| 99riav亚洲国产免费| 国产色爽女视频免费观看| 夜夜看夜夜爽夜夜摸| 波多野结衣高清作品| 亚洲国产色片| av在线亚洲专区| 搡老岳熟女国产| 色播亚洲综合网| 九九爱精品视频在线观看| 变态另类成人亚洲欧美熟女| 精品久久国产蜜桃| 欧美3d第一页| 亚洲人成网站在线播放欧美日韩| 国产一区二区在线av高清观看| 18禁黄网站禁片午夜丰满| 18+在线观看网站| 亚洲精品一区av在线观看| 校园人妻丝袜中文字幕| 欧美日韩亚洲国产一区二区在线观看| 日本成人三级电影网站| 亚洲精品粉嫩美女一区| 亚洲人成伊人成综合网2020| 久久久久国产精品人妻aⅴ院| 久久婷婷人人爽人人干人人爱| 桃红色精品国产亚洲av| 国产欧美日韩精品一区二区| 日本色播在线视频| 给我免费播放毛片高清在线观看| 国产av麻豆久久久久久久| 日本黄大片高清| 国产蜜桃级精品一区二区三区| 国产伦精品一区二区三区视频9| 欧美绝顶高潮抽搐喷水| 国产精品亚洲一级av第二区| 中文亚洲av片在线观看爽| 精品99又大又爽又粗少妇毛片 | 日韩国内少妇激情av| 久久久久久九九精品二区国产| 他把我摸到了高潮在线观看| 亚洲精品粉嫩美女一区| 99在线视频只有这里精品首页| 成人美女网站在线观看视频| 精品一区二区三区人妻视频| 日韩一区二区视频免费看| 天堂av国产一区二区熟女人妻| 成年女人看的毛片在线观看| 草草在线视频免费看| 日韩强制内射视频| 亚洲最大成人手机在线| 一级av片app| 久久久久久久久久成人| 国产精品久久久久久亚洲av鲁大| 哪里可以看免费的av片| 一本一本综合久久| 国产综合懂色| 窝窝影院91人妻| 亚洲av二区三区四区| 国产伦精品一区二区三区视频9| 黄色视频,在线免费观看| 给我免费播放毛片高清在线观看| 最近最新中文字幕大全电影3| 欧美绝顶高潮抽搐喷水| 成人av一区二区三区在线看| 搡女人真爽免费视频火全软件 | 两个人的视频大全免费| 成人特级黄色片久久久久久久| 国内少妇人妻偷人精品xxx网站| 他把我摸到了高潮在线观看| 日本爱情动作片www.在线观看 | 色av中文字幕| 中文字幕久久专区| h日本视频在线播放| 国产女主播在线喷水免费视频网站 | 久久草成人影院| 午夜日韩欧美国产| 国产精品av视频在线免费观看| 亚洲最大成人手机在线| 欧美精品啪啪一区二区三区| 亚洲精品粉嫩美女一区| 国内久久婷婷六月综合欲色啪| 国产免费一级a男人的天堂| 免费看美女性在线毛片视频| 国产成人a区在线观看| 人人妻,人人澡人人爽秒播| 欧美在线一区亚洲| 中文字幕av在线有码专区| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 欧美精品国产亚洲| 午夜福利成人在线免费观看| 久久热精品热| 久久午夜福利片| 日韩一区二区视频免费看| 搡老岳熟女国产| 给我免费播放毛片高清在线观看| 久久久久国产精品人妻aⅴ院| 亚洲精品色激情综合| 最近最新免费中文字幕在线| 日本三级黄在线观看| 亚洲图色成人| 中文字幕免费在线视频6| 国语自产精品视频在线第100页| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 中文字幕久久专区| 亚洲美女黄片视频| 国产精品自产拍在线观看55亚洲| 国产单亲对白刺激| 国产亚洲精品综合一区在线观看| 国产精品福利在线免费观看| 久久6这里有精品| 高清在线国产一区| 免费在线观看影片大全网站| 一级毛片久久久久久久久女| 一卡2卡三卡四卡精品乱码亚洲| 欧美激情国产日韩精品一区| 久久亚洲精品不卡| 免费观看的影片在线观看| 窝窝影院91人妻| 人人妻人人澡欧美一区二区| 两个人视频免费观看高清| 如何舔出高潮| 日韩,欧美,国产一区二区三区 | 亚洲精品日韩av片在线观看| 最近视频中文字幕2019在线8| 99在线视频只有这里精品首页| 十八禁国产超污无遮挡网站| 亚洲专区国产一区二区| 少妇人妻一区二区三区视频| 国产一区二区三区在线臀色熟女| 三级毛片av免费| 中文字幕av在线有码专区| 老熟妇仑乱视频hdxx| 国产欧美日韩精品亚洲av| 毛片女人毛片| 亚洲在线自拍视频| 免费在线观看影片大全网站| 国产成人一区二区在线| 国产精品亚洲一级av第二区| 精品乱码久久久久久99久播| 日韩欧美精品免费久久| 性欧美人与动物交配| 一个人看视频在线观看www免费| 搡老岳熟女国产| 成人午夜高清在线视频| 91麻豆av在线| 国产精品不卡视频一区二区| 色噜噜av男人的天堂激情| 99久久精品国产国产毛片| 九色国产91popny在线| 国产爱豆传媒在线观看| 最近中文字幕高清免费大全6 | 色综合婷婷激情| 国产午夜精品久久久久久一区二区三区 | av福利片在线观看| 99热只有精品国产| 美女 人体艺术 gogo| 亚洲va日本ⅴa欧美va伊人久久| 婷婷色综合大香蕉| 制服丝袜大香蕉在线| 一级av片app| 久久久久久久久久成人| 黄片wwwwww| 欧美成人性av电影在线观看| 白带黄色成豆腐渣| 欧美bdsm另类| 啪啪无遮挡十八禁网站| 91麻豆av在线| 色5月婷婷丁香| 18禁黄网站禁片免费观看直播| а√天堂www在线а√下载| 国内精品久久久久久久电影| 欧美绝顶高潮抽搐喷水| 精华霜和精华液先用哪个| 亚洲五月天丁香| 观看免费一级毛片| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久久电影| 亚洲精品影视一区二区三区av| av在线亚洲专区| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 神马国产精品三级电影在线观看| 在现免费观看毛片| 中文字幕av在线有码专区| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩国产亚洲二区| 国产一区二区三区av在线 | 国产高清三级在线| 精品一区二区三区视频在线观看免费| 深夜精品福利| 国产亚洲av嫩草精品影院| 成人美女网站在线观看视频| 一进一出抽搐gif免费好疼| 精品久久久久久久久av| 久久国内精品自在自线图片| 黄色欧美视频在线观看| 不卡一级毛片| 有码 亚洲区| 精品无人区乱码1区二区| 内射极品少妇av片p| 亚洲综合色惰| 日本欧美国产在线视频| 免费av观看视频| 久久久久免费精品人妻一区二区| 成人高潮视频无遮挡免费网站| 99久久精品热视频| 精品欧美国产一区二区三| 直男gayav资源| 亚洲色图av天堂| 免费电影在线观看免费观看| 日韩强制内射视频| 久久九九热精品免费| 国产aⅴ精品一区二区三区波| 少妇高潮的动态图| 亚洲成人中文字幕在线播放| 乱人视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 91精品国产九色| 亚洲经典国产精华液单| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 色尼玛亚洲综合影院| 成人永久免费在线观看视频| 一区二区三区激情视频| 美女高潮喷水抽搐中文字幕| av在线天堂中文字幕| 日本一二三区视频观看| 人人妻人人看人人澡| 国产精品av视频在线免费观看| 乱系列少妇在线播放| 亚洲欧美日韩东京热| 国产私拍福利视频在线观看| 亚洲最大成人手机在线| 欧美日韩亚洲国产一区二区在线观看| netflix在线观看网站| 老熟妇仑乱视频hdxx| 狂野欧美激情性xxxx在线观看| 极品教师在线视频| 少妇熟女aⅴ在线视频| 黄片wwwwww| 69人妻影院| 国内久久婷婷六月综合欲色啪| 天天一区二区日本电影三级| 欧美一区二区精品小视频在线| or卡值多少钱| 午夜激情福利司机影院| 亚洲精华国产精华液的使用体验 | 国产单亲对白刺激| 在线播放无遮挡| av.在线天堂| 变态另类丝袜制服| 给我免费播放毛片高清在线观看| 亚洲欧美日韩高清在线视频| 成人av一区二区三区在线看| 国产一区二区激情短视频| 日本欧美国产在线视频| 美女被艹到高潮喷水动态| 亚洲第一区二区三区不卡| 久久精品夜夜夜夜夜久久蜜豆| 嫩草影院入口| 国内精品久久久久精免费| 国产乱人视频| 亚洲aⅴ乱码一区二区在线播放| aaaaa片日本免费| 久久久久免费精品人妻一区二区| 欧美日本亚洲视频在线播放| 男女之事视频高清在线观看| 成人亚洲精品av一区二区| 亚洲,欧美,日韩| 国产男靠女视频免费网站| а√天堂www在线а√下载| 精品久久久久久成人av| 999久久久精品免费观看国产| 中文字幕熟女人妻在线| 亚洲欧美精品综合久久99| 白带黄色成豆腐渣| 日本 av在线| 久久久国产成人免费| 国产 一区 欧美 日韩| 成人毛片a级毛片在线播放| 欧美性猛交黑人性爽| 一级黄片播放器| 啦啦啦观看免费观看视频高清| eeuss影院久久| 欧美黑人巨大hd| 老师上课跳d突然被开到最大视频| 日本免费一区二区三区高清不卡| 国产国拍精品亚洲av在线观看| 亚洲av不卡在线观看| 12—13女人毛片做爰片一| 变态另类丝袜制服| 啦啦啦啦在线视频资源| 日本-黄色视频高清免费观看| 精品午夜福利在线看| 亚洲av熟女| 精品一区二区三区av网在线观看| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 免费看av在线观看网站| 女同久久另类99精品国产91| 丰满的人妻完整版| 日本欧美国产在线视频| 亚洲欧美日韩东京热| АⅤ资源中文在线天堂| 久久久久性生活片| 亚洲,欧美,日韩| 亚洲美女黄片视频| 嫁个100分男人电影在线观看| 成人综合一区亚洲| av天堂在线播放| 两个人视频免费观看高清| 亚洲av成人精品一区久久| 国产午夜精品久久久久久一区二区三区 | 在线天堂最新版资源| 久久久久久伊人网av| 狂野欧美白嫩少妇大欣赏| 亚洲电影在线观看av| 国产精品精品国产色婷婷| 亚洲av不卡在线观看| 亚洲一区二区三区色噜噜| 女生性感内裤真人,穿戴方法视频| 人妻久久中文字幕网| 久久欧美精品欧美久久欧美| 日韩欧美免费精品| 成人亚洲精品av一区二区| 精品一区二区三区视频在线观看免费| a级毛片免费高清观看在线播放| 午夜福利成人在线免费观看| 人人妻,人人澡人人爽秒播| 成人无遮挡网站| 国产欧美日韩精品一区二区| www日本黄色视频网| 国产精品久久视频播放| 日日摸夜夜添夜夜添小说| 亚洲成人中文字幕在线播放| 99riav亚洲国产免费| 一级黄片播放器| 日本一本二区三区精品| 波多野结衣高清无吗| 最近最新免费中文字幕在线| 久久久久久久久久久丰满 | 成人三级黄色视频| 麻豆成人午夜福利视频| 一级黄色大片毛片| 免费观看人在逋| 日本一本二区三区精品| 亚洲精品一区av在线观看| 国产精品久久视频播放| 欧美+日韩+精品| 欧美一区二区国产精品久久精品| 精品久久久噜噜| 国产精品,欧美在线| 麻豆国产av国片精品| 一个人看视频在线观看www免费| 亚洲av免费在线观看| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 亚洲黑人精品在线| 国内精品久久久久精免费| 91麻豆精品激情在线观看国产| 久久99热6这里只有精品| 日韩中文字幕欧美一区二区| 两个人视频免费观看高清| 国产亚洲精品av在线| 丰满的人妻完整版| 国产精品嫩草影院av在线观看 | 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 国产真实伦视频高清在线观看 | 日本与韩国留学比较| bbb黄色大片| 一区二区三区高清视频在线| 嫁个100分男人电影在线观看| 波野结衣二区三区在线| 69av精品久久久久久| 免费看光身美女| 婷婷六月久久综合丁香| 99久国产av精品| 村上凉子中文字幕在线| aaaaa片日本免费| 此物有八面人人有两片| 毛片女人毛片| 国产精品久久久久久久电影| 国模一区二区三区四区视频| 国产黄片美女视频| 久久久久久久精品吃奶| 亚洲国产精品合色在线| 狠狠狠狠99中文字幕| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 在线观看舔阴道视频| 欧美性猛交黑人性爽| 国产高清三级在线| 丰满的人妻完整版| 两人在一起打扑克的视频| 22中文网久久字幕| a在线观看视频网站| 欧美激情久久久久久爽电影| 日本免费a在线| 免费av观看视频| 国产成人福利小说| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| 色视频www国产| 国产高清三级在线| 日韩中字成人| 校园春色视频在线观看| 欧美日韩精品成人综合77777| 麻豆av噜噜一区二区三区| 能在线免费观看的黄片| 亚洲精华国产精华液的使用体验 | 久久久久久久亚洲中文字幕| 欧美日韩精品成人综合77777| 欧美国产日韩亚洲一区| 高清日韩中文字幕在线| 国产精品一区二区免费欧美| 国产亚洲91精品色在线| 国产欧美日韩精品一区二区| 极品教师在线免费播放| 亚洲va日本ⅴa欧美va伊人久久| 日日干狠狠操夜夜爽| 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看| 亚洲色图av天堂| 一区二区三区免费毛片| 亚洲专区国产一区二区| 久久午夜福利片| 国语自产精品视频在线第100页| 91在线精品国自产拍蜜月| 欧美日韩国产亚洲二区| 男女之事视频高清在线观看| 人人妻人人看人人澡| netflix在线观看网站| 国产av不卡久久| 国产在线男女| 久久久精品欧美日韩精品| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| h日本视频在线播放| 最后的刺客免费高清国语| 免费在线观看影片大全网站| 欧美xxxx性猛交bbbb| 此物有八面人人有两片| 99热6这里只有精品| 久久精品人妻少妇| 日本撒尿小便嘘嘘汇集6| 国产一区二区三区av在线 | 偷拍熟女少妇极品色| 久久久久久久久久成人| av视频在线观看入口| av福利片在线观看| 美女cb高潮喷水在线观看| 免费在线观看影片大全网站| 一级黄片播放器| 深夜a级毛片| 精品久久久久久成人av| 黄色女人牲交| 久久精品国产鲁丝片午夜精品 | 男女那种视频在线观看| 免费电影在线观看免费观看| 精品久久久久久久久久免费视频| 亚洲国产欧洲综合997久久,| 国产色婷婷99| 免费高清视频大片| 可以在线观看毛片的网站| 国产精品日韩av在线免费观看| 亚洲成av人片在线播放无| 国产伦人伦偷精品视频| 免费无遮挡裸体视频| 俺也久久电影网| 亚洲成人久久性| 午夜激情福利司机影院| 亚洲欧美日韩无卡精品| 免费黄网站久久成人精品| 国产精品一及| 窝窝影院91人妻| 免费看美女性在线毛片视频| 亚洲av五月六月丁香网| 成人无遮挡网站| 麻豆久久精品国产亚洲av| 美女 人体艺术 gogo| 成人三级黄色视频| 欧美国产日韩亚洲一区| 亚洲18禁久久av| 午夜免费男女啪啪视频观看 | 午夜福利视频1000在线观看| 日韩欧美 国产精品| 很黄的视频免费| 一级a爱片免费观看的视频| 国产av一区在线观看免费| 亚洲av成人av| 尾随美女入室| 免费搜索国产男女视频| 动漫黄色视频在线观看| 国产精品一区www在线观看 | 极品教师在线视频| 一进一出好大好爽视频| 国产精品三级大全| 午夜免费男女啪啪视频观看 | 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩精品成人综合77777| 日本三级黄在线观看| 亚洲av美国av| 国产激情偷乱视频一区二区| 极品教师在线免费播放| 欧美不卡视频在线免费观看| 国产欧美日韩一区二区精品| 深夜a级毛片| 老女人水多毛片| 狂野欧美激情性xxxx在线观看| 网址你懂的国产日韩在线| 在线免费十八禁| 婷婷色综合大香蕉| 成人综合一区亚洲| 制服丝袜大香蕉在线| 国产老妇女一区| 亚洲人成伊人成综合网2020| 一a级毛片在线观看| 国产探花在线观看一区二区| 日本爱情动作片www.在线观看 | 自拍偷自拍亚洲精品老妇| 国产av一区在线观看免费| 亚洲国产欧美人成| 欧美不卡视频在线免费观看| 国产欧美日韩一区二区精品| 18禁黄网站禁片免费观看直播| 淫妇啪啪啪对白视频|