• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高光催化性能的二氧化鈦納米管
    —氧化石墨烯雜化材料

    2016-06-20 02:36:40羅學(xué)萍朱世富
    新型炭材料 2016年2期
    關(guān)鍵詞:表面

    賴 奇, 羅學(xué)萍, 朱世富

    (1.攀枝花學(xué)院 材料工程學(xué)院 攀枝花石墨烯工程技術(shù)研究中心,四川 攀枝花617000;2.攀枝花學(xué)院 四川省石墨深加工高校重點(diǎn)實(shí)驗(yàn)室,四川 攀枝花617000;3.四川大學(xué) 材料科學(xué)與工程學(xué)院,四川 成都610065)

    ?

    高光催化性能的二氧化鈦納米管
    —氧化石墨烯雜化材料

    賴奇1,2,羅學(xué)萍2,朱世富3

    (1.攀枝花學(xué)院 材料工程學(xué)院 攀枝花石墨烯工程技術(shù)研究中心,四川 攀枝花617000;2.攀枝花學(xué)院 四川省石墨深加工高校重點(diǎn)實(shí)驗(yàn)室,四川 攀枝花617000;3.四川大學(xué) 材料科學(xué)與工程學(xué)院,四川 成都610065)

    摘要:以金紅石型TiO2、氧化石墨烯和氫氧化鈉為反應(yīng)劑,通過水熱合成法制備了TiO2納米管-氧化石墨烯復(fù)合材料,并研究復(fù)合材料制備過程中水熱溫度、煅燒溫度對制備材料結(jié)構(gòu)性能的影響關(guān)系。結(jié)果發(fā)現(xiàn), TiO2納米管-氧化石墨烯復(fù)合材料比純TiO2納米管具有更好的光催化性能。石墨烯有利于TiO2納米管的形成,而且存在一個(gè)優(yōu)化的加強(qiáng)光催化性性能的煅燒溫度。TiO2納米管-氧化石墨烯復(fù)合材料在煅燒過程中,氧化石墨烯的還原與逐漸損失同TiO2納米管的結(jié)晶動態(tài)平衡,可能是其中存在優(yōu)化煅燒溫度的原因。同時(shí)分析了TiO2納米管-氧化石墨烯復(fù)合新材料的復(fù)合機(jī)理。

    關(guān)鍵詞:納米結(jié)構(gòu); 表面; 電子顯微; 光電子能譜; 光學(xué)材料

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    1Introduction

    Titania (TiO2) is a wide band-gap semiconductor possessing specific chemical properties and a high stability. The band gap of anatase TiO2~3.2 eV enables it photocatalytically active under UV irradiation. Among TiO2nanoparticles[1], TiO2nanotubes (TiO2NTs) are known to be effective photocatalysts in the degradation of environmental contaminants. TiO2NTs have high specific surface areas and improved photocatalytic performances compared with bare TiO2[2, 3]. TiO2NTs can be synthesized via various methods, including electrochemical anodization, sol-gel and hydrothermal methods[4, 5]. In comparison with other techniques, hydrothermal synthesis is an inexpensive and environment-friendly method with the ability to control chemical composition and morphology of the synthesized products. The synthesis conditions affect the phase composition and morphology of hydrothermally synthesized TiO2.

    A series of strategies have been developed to synthesize TiO2NT based nanocomposites for the inhibition of high intrinsic electron-hole pair recombination as well as a further modification of the band gap of the composite, such as doping with quantum dots, semiconductors and carbon materials. In particular, there is a growing interest in the combination of carbon based materials and TiO2to enhance photocatalytic performance. Graphene is one of the carbon nanomaterials, which is unique and has been intensely studied because of its excellent conductivity and high transmittance[6,7]. Previous reports have shown that the addition of graphene improves the supercapacitor performance of MnO2[8], photocatalytic performance of ZnO[9], et al[10]. Especially, graphene improves the photocatalytic activity of TiO2[11,12], and enhances energy conversion performance in homogeneous and heterogeneous semiconductors, because of its effective electron transfer and interaction effects[13,14].

    There have been several reports highlighting the improvements in the photocatalytic activity of TiO2NT-reduced GO for the degradation of organic molecules and photocatalytic splitting of water. However, TiO2nanoparticles tend to agglomerate and have poor interfacial contact with the graphene surface because of the nanoparticle’s nearly spherical shape. And their formation process and mechanism is not well elaborated. In this paper, we present a practical hydrothermal reaction technique, in which TiO2NTs self-assemble on GO. The self-assembly of TiO2NTs on GO leads to a high interfacial contact and offers potential electron-transfer capabilities that improve the photocatalytic properties of TiO2.

    2Experimental

    2.1Synthesis of GO

    GO was synthesized from flake graphite (Pingdu BEISHU Graphite Co. Ltd., Shandong Province, China) using a modified Hummers method[15]. First, 10 g natural graphite was put in a flask (500 mL), then concentrated sulfuric acid (300 mL) was added slowly while the flask was placed in an ice water bath. After ten min, 45 g potassium permanganate was gradually added into the flask over a period of 1 h and the mixture was stirred for another 4 h in the ice water bath. Then 5 wt% H2O2(150 mL) was added within 30 min. The final suspension was filtered to collect solid product that was washed with deionized water until a pH value of 6-7 was obtained. The solid product was dried for 24 h at 80 ℃. The resulting graphite oxide product was sonicated for 20 min in distilled water, centrifuged at 4 000 r/min for 20 min to produce a GO aqueous dispersion (0.5 mg/mL). Using this method, we previously showed that the synthesized GO consists of mainly 1-4 layers[16].

    2.2Synthesis of TiO2NT-GO hybrid

    38 g NaOH was added to the GO solution (0.5 mg/mL, 62 mL) and heated until the NaOH was dissolved. Rutile-phase TiO2was added and after the solution was stirred for 5 min. The resulting solution was poured into a 100 mL Nalgene flask and stored in an oven at 130 ℃ for 40 h. The resulting dehydrated powder was put in a HCl aqueous solution (0.1 mol/L) for 10 h and washed with distilled water to a pH value of 6-7. Then the powder was dehydrated and heated at 60 ℃ for 24 h. The resulting product was named as TiO2NT-GO. TiO2NT-GO was calcined at different temperatures in a furnace for 1 h at a heating rate of 1 ℃/min. Bare TiO2NTs were prepared using the same procedure without adding the GO solution.

    2.3Characterization

    The structures of the samples were observed using a scanning electron microscope (SEM, Model S4800, Hitachi) and a high-resolution transmission electron microscope (TEM, Model Tecnai G2F20, FEI), at 15±25 kV and 200 kV acceleration voltages, respectively. For the TEM observations, the samples were ultrasonicated in ethanol and then placed on a copper grid. X-ray photoelectron spectroscopic (XPS) measurements were taken using a Quantum 2000 Scanning ESCA Microprobe (Physical Electronics) using AlKαradiation (1486.6 eV). In the XPS data analysis, peak deconvolution was performed using Gaussian components after a Shirley background subtraction. Solution absorbance was measured using a ultraviolet-visible (UV-vis) spectroscope.

    2.4Spectroscopy and photocatalytic reactions

    Photocatalytic degradation of methylene blue (MB) was carried out at ambient temperature in a homemade photocatalytic reactor. The UV-light source was a commercial 8W black-light tube with a spectral peak at 365 nm. 300 mL methylene blue solution (20 mg/L) and 0.05 g photocatalyst were fed into the reactor, then air was blown into the reactor from the bottom via a gas distributor at a flowrate of 4 L/min. After 30 min of premixing, the reactants were irradiated for 80 min. Samples (10 mL), taken before and after irradiation were centrifuged and supernatants were analyzed by recording the absorption peak of methylene blue at 666 nm. The intensity of the main absorption peak was converted to the residual dye concentration (C).

    3Results and discussion

    Fig. 1 shows the SEM images of the raw material of rutile-phase TiO2(Fig. 1(a)), intermediate product (Fig. 1(b)) obtained at 130 ℃ for 20 h through the alkali treatments and acid treatments,and TiO2NT-GO hybrid (Fig. 1(c)). The structure of intermediate product, is markedly different from that of the raw material, more specifically, the nanoparticles present in the raw material are no longer observed and became plate shaped. In Fig. 1(c) of the TiO2NT-GO hybrid, needle-shaped crystals with a length of ~2 μm were observed in a large amount, which are TiO2NTs. After calcination at 550 ℃, the TiO2NT-GO hybrid is gradually changed into granular (Fig. 1(d)). In order to compare the effect of GO on the growth of TiO2NTs, GO solution without centrifugation was used to prepare another sample (Fig. 1(e)). From SEM image, we cannot find TiO2NTs for this sample. We also find the surface of layers are cracked, this is possibly due to the fact that the graphite is too thick to curl up. This suggests that GO can facilitate the formation of TiO2NTs.

    Fig. 1 SEM images of (a) raw material, TiO2 NT-GO at various reaction time of

    The N2adsorption and desorption isotherms of the samples were determined at -196 ℃ using an adsorption apparatus. Fig. 2(a) shows the N2adsorption and desorption isotherms of the TiO2NTs calcined at 60 ℃. The sample displays isotherms of type IV according to the IUPAC classification, which is associated with capillary condensation in mesopores. And a hysteresis loop appearing atp/p0> 0.50 was most likely to be attributed to the mesopores formed by aggregation of TiO2NTs. TiO2NT-GO samples calcined at 60 ℃ and 350 ℃ in Fig. 2(b) and 2(c) show the similar isotherms to the TiO2NTs. But their hysteresis loops are different. TiO2NT sample displays a type H1 among the five types of hysteresis loop as IUPAC classification. But TiO2NT-GO sample displays a type H4 loop. And the adsorption step of TiO2NT-GO sample is shifted to a low pressure region ofp/p0< 0.45. With the temperature was increased to 550 ℃, TiO2NT-GO sample shows a hysteresis loop of type H1 in Fig. 2(d).

    The type H4 loop is given by TiO2NTs because of their mesopore structures. Due to the addition of graphene oxide, narrow slit-like pores are introduced into the hybrid. As a result, the type H4 loop appears. The BET surface area of the TiO2NT-GO hybrid calcined at 60 ℃ is increased to 356 m2/g upon the deposition of TiO2NTs (212 m2/g). With the temperature increased to 350 ℃ and 550 ℃, BET surface areas of the TiO2NT-GO were decreased to the 165 and 58 m2/g, respectively. The BET surface area of the TiO2NT-GO without centrifugation is 145 m2/g. Both GO addition and calcination changes the pore size of the TiO2NT-GO hybrid, but calcination plays a key role.

    TEM images of GO, TiO2NT-GO hybrid, and bare TiO2NTs are shown in Fig. 3. The GO image shows that its planar size is larger than 4 μm2(Fig. 3(a)). In Fig. 3(b), it is found that the TiO2NTs grow along the GO layers. The length of TiO2NTs is more than 400 nm. They are longer than the bare TiO2NTs (Fig. 3(c)). HR-TEM image of GO in TiO2NT-GO hybrid is shown in Fig. 3d. Here, the GO has the similar edge to the pure GO shown in Fig. 3(a). HR-TEM image of TiO2NTs in TiO2NT-GO hybrid is shown in Fig. 3(e). Here, the average external diameter of the TiO2NTs is 8 nm, and their wall thickness is 4 nm. And its inset of the HR-TEM image shows the (101) crystal facet and the 0.35 nm interplane distance of a typical anatase TiO2. Due to the lamellar structure, titanate has high surface energy and is unstable, so it is prone to reduce the surface energy[17].

    Fig. 2 N2 isotherms and pore size distributions of samples:

    Fig. 4 shows the powder X-ray diffraction (XRD) patterns of the TiO2NTs with and without GO. Here, the wide-angle XRD reveals that all the samples are anatase TiO2. The peak intensities of the TiO2NT-GO hybrid are slightly higher than those of the bare TiO2NTs. The degrees of crystallization in the TiO2NT-GO hybrid calcined at 60 ℃ (Fig. 4(b)) and 350 ℃ (Fig. 4(d)) are higher than the TiO2NTs without GO calcined at 60 ℃ (Fig. 4(a)) and 350 ℃ (Fig. 4(c)), respectively. Therefore, GO induces the formation of anatase TiO2NT crystal structure. The calculated crystallite size of TiO2NT-GO hybrid and the pure TiO2NTs decreases with calcination temperature. The oxygen-containing groups in free and bound states on the surface of GO can move easily and are inserted into the titania structure under hydrothermal reaction conditions, and locate at interstices or occupy some of the titanium lattice sites, forming titanium-oxide. Both of TiO2NTs and TiO2NT-GO hybrid show anatase TiO2when the temperature is increased to 550 ℃.

    Fig. 4 XRD analysis of samples at different calcination temperatures:

    Fig. 5 C 1s XPS spectra of (a) GO,

    and oxygen-containing bonds of GO and the TiO2 NT-GO hybrid at different calcination temperatures.

    The UV-vis spectra of GO, the TiO2NT-GO hybrid and the bare TiO2NTs are shown in Fig. 6. The GO shows a peak at 230 nm[16, 18], and the bare TiO2NTs show a peak at 250 nm. With increasing calcination temperature from 150 to 350 ℃, the TiO2NT-GO peak is a red-shifted[19]. This increase into the visible spectral range is favorable for the applications of TiO2NT-GO hybrid as a photocatalyst. When the calcination temperature is increased above 350 ℃, the peak is blue-shifted to 330 nm. We infer that GO decomposition, reduction of GO and formation of titania are in dynamic equilibrium and are strongly affected by temperature. There is an optimum temperature for GO to keep the TiO2NTs attached and maintain charge neutrality.

    Fig. 6 UV-vis spectra of the TiO2 NT-GO

    The physicochemical properties of samples calcined at different temperatures are shown in Fig. 7. The adsorption of the TiO2NT-GO hybrid calcined at 350 ℃ (Fig. 7(a)) for MB is better than that of bare TiO2NTs calcined at 350 ℃ after they have been stirred in dark for 120 min. The photocatalytic properties of the samples are shown in Fig. 7(b). The TiO2NT-GO hybrid calcined at 350 ℃ has the best photocatalytic activity. An optimized temperature is conducive to maintain charge neutrality of TiO2NTs, as it regulates the formation of surface hydroxyl groups, and enhances the photocatalytic activity of the titania photocatalysts.

    Second step, when the layered titanate is treated with the HCl aqueous solution and distilled water, the Ti—O—Na and Ti—OH bonds are believed to react with acid and water to form new Ti—O—Ti bonds. At this stage, the bond distance from one Ti to the next Ti on the surface decreases, resulting in the folding of the sheets and the formation of a tube structure. Due to curl property of GO layer plane, the formation process from a layered titanate structure to a tube structure can be easily finished. The both processes are closely related to the single layer structure of graphene oxide that only single-layer graphene oxide is beneficial to the formation of the titania nanotube. Titanate with a lamellar structure has a high specific surface energy and is in an unstable state. So it is prone to curl to reduce the surface energy.

    So, the layered titanate is easily converted to a tubular structure. The last process is closely related to the single layer structure of the GO/reduced GO. Therefore, only a single-layer GO-based solution is possible to prepare the TiO2NT-GO hybrid by hydrothermal synthesis.

    Fig. 7 (a) Adsorbance property and (b) photocatalytic degradation behavior of

    Scheme 1 Formation mechanism of TiO2 NTs on GO sheets.

    Scheme 2 Photocatalytic schematic diagram of TiO2 NT-GO hybrids.

    4Conclusions

    We have prepared the TiO2NT-GO hybrid by a hydrothermal self-assembly method. Flat GO is conducive to the formation of TiO2NTs. GO reduction occurs in the hydrothermal and calcination processes, and oxygen-containing groups are inserted into the titania layer structure. These processes contribute to the formation of the anatase TiO2NT crystal structure. We found the TiO2NT-GO hybrid has better photocatalytic activity than the pure TiO2NTs. We also found there is an optimal calcination temperature to achieve best photocatalytic activity for methylene blue degradation. This optimal calcination temperature is connected with the dynamic equilibrium of reduction of GO, loss of GO and formation of TiO2NTs.

    References

    [1]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5296): 666-669.

    [2]Williams JR, DiCarlo L, Marcus C M. Quantum hall effect in a gate-controlled P-N junction of grapheme[J]. Science, 2007, 317(5838): 638-641.

    [3]Park S, Lee KS, Bozoklu G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3): 572-578.

    [4]Wu Z S, Ren W C, Gao L B, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation[J]. ACS Nano, 2009, 3(2): 411-417.

    [5]Barone V, Hod O, Scuseria G E. Electronic structure and stability of semiconducting graphene nanoribbons[J]. Nano Letters, 2006, 6(12): 2748-2754.

    [6]Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. uv-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008, 2(7): 1487-1491.

    [7]Liu Y Z, Li Y F, Su F Y, et al. Easy one-step synthesis of N-doped graphene for supercapacitors[J]. Energy Storage Materials, 2016, 2: 69-75.

    [8]Guo J, Zhu S, Chen Z, et al. Sonochemical synthesis of TiO2nanoparticles on graphene for use as photocatalyst[J]. Ultrasonics Sonochemistry, 2011, 18 (5): 1082-1090.

    [9]Wang D, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced li-ion insertion[J]. ACS Nano, 2009, 3 (4): 907-914.

    [10]Choi D, Wang D, Viswanathan V V, et al. Li-ion batteries from LiFePO4cathode and anatase/graphene composite anode for stationary energy storage[J]. Electrochemistry Communications, 2010, 12 (3): 378-381.

    [11]Liu Z, Misra M. Dye-sensitized photovoltaic wires using highly ordered TiO2nanotube arrays[J]. ACS Nano, 2009, 4(4): 2196-2200.

    [12]Mun K-S, Alvarez SD, Choi W-Y, et al. A stable, label-free optical interferometric biosensor based on TiO2nanotube arrays[J]. ACS Nano, 2009, 4 (4): 2070-2076.

    [13]LoghmanKarimi, SalarZohoori, AtefehAmini. Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking[J]. New Carbon Materials, 2014, 29(5): 380-385.

    [14]Wang J, Lin Z. Anodic formation of ordered TiO2nanotube arrays: Effects of electrolyte temperature and anodization potential[J]. J Phys Chem C, 2009, 113(10): 4026-4030.

    [15]Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.

    [16]Lai Q, Zhu S F, Luo X P, et al. Ultraviolet-visible spectroscopy of graphene oxides[J]. AIP Advances, 2012, 318: 713-716.

    [17]Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing[J]. Advanced Materials, 1999, 11(15): 1307-1311.

    [18]Paredes J I, Villar-Rodil S, Martinez-Alonso A, et al. Graphene oxide dispersions in organic solvents[J]. Langmuir, 2008, 24(19): 10560-10564.

    [17]Zhou K F, Zhu Y H, Yang X L, et al. Preparation of graphene-TiO2composites with enhanced photocatalytic activity[J]. New Journal of Chemistry, 2011, 35: 353-359.

    [20]Acik M, Mattevi C, Gong C, et al. The role of intercalated water in multilayered graphene oxide[J]. ACS Nano, 2010, 4(10): 5861-5868.

    Receiveddate: 2015-12-13;Reviseddate: 2016-03-23

    Foundationitem: Project of Key Laboratory of Universities and Colleges in Sichuan Province (2013002).

    Titania nanotube-graphene oxide hybrids with excellent photocatalytic activities

    LAI Qi1, 2,LUO Xue-ping2,ZHU Shi-fu3

    (1.PanzhihuaEngineeringTechnologyResearchCenterforGraphene,CollegeofMaterialEngineering,PanzhihuaUniversity,Panzhihua617000,China;2.Deep-processingLaboratoryofGraphite,PanzhihuaUniversity,Panzhihua617000,China;3.CollegeofMaterialScienceandEngineering,SichuanUniversity,Chengdu610065,China)

    Abstract:Titania nanotube-graphene oxide(TiO2 NT-GO) hybrids were prepared by a hydrothermal reaction followed by calcination at different temperatures. Results indicate that flat sheets of GO promote the formation of the TiO2NTs. GO is reduced during the hydrothermal and calcination steps, and is inserted into the TiO2 layers by the interaction between oxygen-containing groups on both the GO and TiO2. The rates of GO decomposition, GO reduction and TiO2 NT formation are temperature dependent. The TiO2 NT-GO hybrid calcined at 350 ℃ has a high degree of crystallization, a red-shifted absorption and the highest observed photocatalytic activity for the degradation of methylene blue.

    Key words:Nanostructures; Surfaces; Electron microscopy; X-ray photo-emission spectroscopy (XPS); Optical materials

    文章編號:1007-8827(2016)02-0121-08

    中圖分類號:TB333

    文獻(xiàn)標(biāo)識碼:A

    基金項(xiàng)目:四川省高校重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(2013002).

    通訊作者:賴奇,博士,副教授. E-mail: pzhlaiqi@163.com

    Corresponding author:LAI Qi, Ph. D, Associate Professor. E-mail: pzhlaiqi@163.com

    DOI:10.1016/S1872-5805(16)60007-0

    猜你喜歡
    表面
    2022年中國鋁擠壓材表面處理方式構(gòu)成(萬t)
    太陽表面平靜嗎
    室內(nèi)表面平均氡析出率閾值探討
    氧化鋯的表面處理與粘接
    表面與背后
    雜文選刊(2015年12期)2016-01-12 16:10:21
    3.《黑洞表面》(英/美)等
    新青年(2015年2期)2015-05-26 00:08:47
    化學(xué)降解表面活性劑的開發(fā)
    神回復(fù)
    意林(2014年17期)2014-09-23 17:02:14
    月球表面長什么樣?
    鋁合金表面氧化問答
    伊人久久大香线蕉亚洲五| 91成年电影在线观看| 精品国产一区二区三区久久久樱花| 色精品久久人妻99蜜桃| 中文精品一卡2卡3卡4更新| 日日夜夜操网爽| 欧美成人午夜精品| 欧美午夜高清在线| av网站免费在线观看视频| 爱豆传媒免费全集在线观看| 一区二区三区乱码不卡18| 老司机影院成人| 国产精品久久久久久精品电影小说| av线在线观看网站| 欧美黄色片欧美黄色片| 后天国语完整版免费观看| 搡老乐熟女国产| 欧美激情久久久久久爽电影 | 久热爱精品视频在线9| 夜夜骑夜夜射夜夜干| 91精品伊人久久大香线蕉| 中国国产av一级| 正在播放国产对白刺激| 脱女人内裤的视频| 热99国产精品久久久久久7| 最近最新免费中文字幕在线| 黄色片一级片一级黄色片| www.精华液| 天天躁日日躁夜夜躁夜夜| 国产亚洲一区二区精品| 男女午夜视频在线观看| 久久亚洲国产成人精品v| 欧美日韩中文字幕国产精品一区二区三区 | 精品视频人人做人人爽| 国产不卡av网站在线观看| 一个人免费在线观看的高清视频 | 亚洲精品一卡2卡三卡4卡5卡 | e午夜精品久久久久久久| 午夜福利视频精品| 国产亚洲av片在线观看秒播厂| 黑丝袜美女国产一区| 国产成人av教育| 久久 成人 亚洲| 欧美日韩亚洲高清精品| 美女高潮喷水抽搐中文字幕| 国产黄频视频在线观看| 久久综合国产亚洲精品| 亚洲精品国产av蜜桃| 日韩,欧美,国产一区二区三区| 香蕉国产在线看| 精品一区二区三区av网在线观看 | 丝袜在线中文字幕| 国产在线免费精品| av片东京热男人的天堂| 欧美 亚洲 国产 日韩一| av在线老鸭窝| 色精品久久人妻99蜜桃| 亚洲国产精品一区三区| 久久久久久人人人人人| 99国产综合亚洲精品| 十分钟在线观看高清视频www| 天天躁日日躁夜夜躁夜夜| 新久久久久国产一级毛片| 99国产综合亚洲精品| 国产97色在线日韩免费| 99国产精品一区二区三区| 国产在线观看jvid| 久久久久国内视频| av国产精品久久久久影院| 蜜桃国产av成人99| 日本黄色日本黄色录像| 最新在线观看一区二区三区| 老司机影院成人| avwww免费| 永久免费av网站大全| 国产男女内射视频| 在线观看www视频免费| 国产精品二区激情视频| 国产一区二区在线观看av| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲成a人片在线观看| 国产有黄有色有爽视频| 法律面前人人平等表现在哪些方面 | 啦啦啦 在线观看视频| 国产极品粉嫩免费观看在线| 亚洲专区字幕在线| 亚洲国产看品久久| 亚洲美女黄色视频免费看| 免费在线观看日本一区| av在线app专区| 日韩欧美免费精品| 亚洲欧洲精品一区二区精品久久久| 欧美成人午夜精品| 久久久国产精品麻豆| 日本撒尿小便嘘嘘汇集6| 国产成+人综合+亚洲专区| 亚洲第一av免费看| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| www.自偷自拍.com| 男女下面插进去视频免费观看| 国产激情久久老熟女| av又黄又爽大尺度在线免费看| 两人在一起打扑克的视频| 一级,二级,三级黄色视频| 制服诱惑二区| 大片电影免费在线观看免费| 久久 成人 亚洲| 亚洲三区欧美一区| 久久狼人影院| 后天国语完整版免费观看| 在线观看免费高清a一片| 精品亚洲乱码少妇综合久久| 99精国产麻豆久久婷婷| 男女高潮啪啪啪动态图| 国产高清视频在线播放一区 | 国产精品久久久久成人av| 亚洲国产看品久久| 久9热在线精品视频| 国产成人免费无遮挡视频| 日本五十路高清| 国产av精品麻豆| 婷婷丁香在线五月| 亚洲精品中文字幕在线视频| 久久人妻熟女aⅴ| www.精华液| 在线观看www视频免费| av有码第一页| 爱豆传媒免费全集在线观看| 欧美国产精品va在线观看不卡| 丝瓜视频免费看黄片| 成人影院久久| 亚洲一区二区三区欧美精品| 一区二区三区精品91| 免费高清在线观看视频在线观看| 亚洲色图 男人天堂 中文字幕| 99久久精品国产亚洲精品| 欧美另类亚洲清纯唯美| 日本猛色少妇xxxxx猛交久久| 制服人妻中文乱码| 精品一区在线观看国产| 欧美久久黑人一区二区| 国产1区2区3区精品| 久久久精品区二区三区| 国产真人三级小视频在线观看| 国产有黄有色有爽视频| av网站免费在线观看视频| 桃花免费在线播放| 菩萨蛮人人尽说江南好唐韦庄| 国产精品偷伦视频观看了| 久久九九热精品免费| 中文字幕另类日韩欧美亚洲嫩草| 男女床上黄色一级片免费看| 中国美女看黄片| av网站在线播放免费| 丰满少妇做爰视频| 老司机靠b影院| 99精品欧美一区二区三区四区| 国产亚洲精品久久久久5区| 亚洲免费av在线视频| 久久国产亚洲av麻豆专区| 国产精品 欧美亚洲| 婷婷丁香在线五月| 极品人妻少妇av视频| 免费av中文字幕在线| www.熟女人妻精品国产| 丰满少妇做爰视频| 亚洲 国产 在线| 日本黄色日本黄色录像| 国产精品偷伦视频观看了| 黄色a级毛片大全视频| 秋霞在线观看毛片| 午夜福利乱码中文字幕| av视频免费观看在线观看| 巨乳人妻的诱惑在线观看| 欧美老熟妇乱子伦牲交| 久久精品人人爽人人爽视色| 欧美xxⅹ黑人| 亚洲欧美成人综合另类久久久| xxxhd国产人妻xxx| 999久久久精品免费观看国产| 1024香蕉在线观看| 久久免费观看电影| av一本久久久久| 免费在线观看视频国产中文字幕亚洲 | 免费不卡黄色视频| √禁漫天堂资源中文www| 一区二区三区四区激情视频| 亚洲精品国产av成人精品| 久久99热这里只频精品6学生| 咕卡用的链子| 嫩草影视91久久| 日韩,欧美,国产一区二区三区| 午夜精品久久久久久毛片777| 伦理电影免费视频| 一本大道久久a久久精品| 国产成人欧美| 男女无遮挡免费网站观看| 99精品欧美一区二区三区四区| 欧美精品人与动牲交sv欧美| 久久久久国产一级毛片高清牌| 9热在线视频观看99| 啦啦啦视频在线资源免费观看| 午夜福利影视在线免费观看| 妹子高潮喷水视频| 精品人妻一区二区三区麻豆| 捣出白浆h1v1| 国产一区二区激情短视频 | 欧美国产精品一级二级三级| 色婷婷久久久亚洲欧美| 国产精品久久久av美女十八| 免费观看av网站的网址| 爱豆传媒免费全集在线观看| 黄色视频,在线免费观看| 高清黄色对白视频在线免费看| 日本撒尿小便嘘嘘汇集6| 欧美少妇被猛烈插入视频| 看免费av毛片| 超碰成人久久| 美女视频免费永久观看网站| 热99久久久久精品小说推荐| 国产成人精品久久二区二区91| 欧美人与性动交α欧美精品济南到| 免费av中文字幕在线| 人人澡人人妻人| 老司机影院成人| 日韩欧美一区视频在线观看| 久久精品成人免费网站| 人妻久久中文字幕网| 成人18禁高潮啪啪吃奶动态图| 丰满迷人的少妇在线观看| 在线观看免费高清a一片| 韩国高清视频一区二区三区| 999久久久国产精品视频| 另类亚洲欧美激情| 亚洲精品国产精品久久久不卡| 1024香蕉在线观看| 日韩视频一区二区在线观看| 亚洲人成电影观看| 在线观看免费日韩欧美大片| 国产欧美日韩一区二区精品| 亚洲欧洲精品一区二区精品久久久| 我要看黄色一级片免费的| 欧美日韩亚洲高清精品| 80岁老熟妇乱子伦牲交| 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品久久久久5区| 制服诱惑二区| 久久综合国产亚洲精品| 欧美在线黄色| 18禁裸乳无遮挡动漫免费视频| 久久人人爽人人片av| 国产欧美日韩一区二区三 | 啦啦啦 在线观看视频| 久久人妻福利社区极品人妻图片| 欧美日韩视频精品一区| 久久久久久久精品精品| 中文字幕精品免费在线观看视频| 男人舔女人的私密视频| 欧美97在线视频| 天堂中文最新版在线下载| 高清av免费在线| 天天躁夜夜躁狠狠躁躁| 一区二区三区精品91| 国产免费一区二区三区四区乱码| 精品亚洲成a人片在线观看| 日韩熟女老妇一区二区性免费视频| 国产黄色免费在线视频| 国产欧美日韩综合在线一区二区| 久久影院123| 国产精品久久久久久精品电影小说| 99国产极品粉嫩在线观看| 久久女婷五月综合色啪小说| 菩萨蛮人人尽说江南好唐韦庄| 91九色精品人成在线观看| 亚洲av美国av| www.精华液| 亚洲欧美激情在线| 51午夜福利影视在线观看| e午夜精品久久久久久久| 正在播放国产对白刺激| 日韩一区二区三区影片| 男人舔女人的私密视频| 美女午夜性视频免费| 天天添夜夜摸| 一本色道久久久久久精品综合| 50天的宝宝边吃奶边哭怎么回事| 亚洲av片天天在线观看| 12—13女人毛片做爰片一| 免费黄频网站在线观看国产| 中文欧美无线码| 我要看黄色一级片免费的| 两个人免费观看高清视频| 亚洲欧美精品自产自拍| 如日韩欧美国产精品一区二区三区| 777米奇影视久久| 夜夜骑夜夜射夜夜干| 日韩中文字幕欧美一区二区| 午夜福利一区二区在线看| 天天添夜夜摸| 国产麻豆69| 久久热在线av| 侵犯人妻中文字幕一二三四区| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 在线亚洲精品国产二区图片欧美| 亚洲国产精品一区二区三区在线| 亚洲欧洲日产国产| 在线十欧美十亚洲十日本专区| 欧美av亚洲av综合av国产av| 老司机影院毛片| 黄片大片在线免费观看| 国产高清videossex| 手机成人av网站| 欧美变态另类bdsm刘玥| 免费看十八禁软件| 男女高潮啪啪啪动态图| 久久精品亚洲熟妇少妇任你| 亚洲专区中文字幕在线| 老鸭窝网址在线观看| 久久精品亚洲熟妇少妇任你| 人人妻人人澡人人爽人人夜夜| 两人在一起打扑克的视频| 99九九在线精品视频| 嫩草影视91久久| 另类亚洲欧美激情| 亚洲七黄色美女视频| 女人精品久久久久毛片| 免费在线观看日本一区| 女性被躁到高潮视频| 好男人电影高清在线观看| 99re6热这里在线精品视频| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 欧美97在线视频| 最近最新免费中文字幕在线| 免费不卡黄色视频| 久久久精品94久久精品| 亚洲国产精品成人久久小说| 91九色精品人成在线观看| 国产日韩欧美在线精品| 人成视频在线观看免费观看| 国产精品欧美亚洲77777| a级毛片黄视频| 丝袜喷水一区| 男女床上黄色一级片免费看| 亚洲天堂av无毛| 丁香六月欧美| 手机成人av网站| 午夜福利视频在线观看免费| 精品免费久久久久久久清纯 | 精品久久久精品久久久| 美女视频免费永久观看网站| 日本精品一区二区三区蜜桃| 一区二区三区精品91| 正在播放国产对白刺激| 成年人午夜在线观看视频| 成人av一区二区三区在线看 | 久久久久精品国产欧美久久久 | 久久久国产成人免费| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 国产有黄有色有爽视频| 一区二区av电影网| 国产99久久九九免费精品| 亚洲专区中文字幕在线| 免费观看av网站的网址| 大码成人一级视频| 欧美激情久久久久久爽电影 | 人人妻人人添人人爽欧美一区卜| 在线观看www视频免费| 精品视频人人做人人爽| 欧美日韩亚洲综合一区二区三区_| 中文字幕色久视频| av免费在线观看网站| 精品一品国产午夜福利视频| 视频区欧美日本亚洲| 老司机午夜十八禁免费视频| 丁香六月欧美| 国产在线一区二区三区精| 大香蕉久久成人网| 欧美 日韩 精品 国产| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁观看日本| 纵有疾风起免费观看全集完整版| 国产精品欧美亚洲77777| 亚洲国产成人一精品久久久| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 99九九在线精品视频| 国产精品香港三级国产av潘金莲| 最近最新免费中文字幕在线| 黄色怎么调成土黄色| tube8黄色片| 亚洲七黄色美女视频| 国产精品 欧美亚洲| 日韩欧美一区视频在线观看| 亚洲国产精品一区三区| 亚洲精品美女久久av网站| 亚洲综合色网址| 亚洲精品在线美女| 90打野战视频偷拍视频| 精品久久久久久电影网| 夜夜骑夜夜射夜夜干| 久久天堂一区二区三区四区| 操出白浆在线播放| 免费日韩欧美在线观看| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频精品一区| 午夜日韩欧美国产| 成人国产一区最新在线观看| 精品国产一区二区三区久久久樱花| 久久精品国产综合久久久| 十八禁网站免费在线| 精品欧美一区二区三区在线| 日韩一区二区三区影片| 色94色欧美一区二区| 久久久精品国产亚洲av高清涩受| 亚洲精品国产av成人精品| 日韩欧美一区视频在线观看| 在线观看免费午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩综合在线一区二区| 99九九在线精品视频| 欧美av亚洲av综合av国产av| 天堂中文最新版在线下载| 亚洲 欧美一区二区三区| 国产淫语在线视频| 国产成人影院久久av| 高潮久久久久久久久久久不卡| 久久久久久人人人人人| 亚洲国产欧美一区二区综合| 亚洲欧美日韩高清在线视频 | 成人手机av| 成人影院久久| 国产日韩欧美在线精品| 美女主播在线视频| 少妇 在线观看| 性色av乱码一区二区三区2| 色播在线永久视频| 最近最新中文字幕大全免费视频| 亚洲精品成人av观看孕妇| 一区在线观看完整版| 男人舔女人的私密视频| 久久久久国产一级毛片高清牌| 午夜福利一区二区在线看| 精品一区二区三区av网在线观看 | 国产日韩欧美亚洲二区| 亚洲五月婷婷丁香| 岛国在线观看网站| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 纯流量卡能插随身wifi吗| 色精品久久人妻99蜜桃| 精品久久久精品久久久| 欧美黑人欧美精品刺激| 亚洲精品国产色婷婷电影| 美女午夜性视频免费| 欧美精品av麻豆av| 美女高潮到喷水免费观看| 国产成+人综合+亚洲专区| 亚洲国产欧美一区二区综合| 亚洲国产欧美日韩在线播放| 成人国语在线视频| 国产精品久久久人人做人人爽| 正在播放国产对白刺激| 色视频在线一区二区三区| 日韩 欧美 亚洲 中文字幕| 老司机午夜福利在线观看视频 | 9色porny在线观看| 日韩 欧美 亚洲 中文字幕| 极品人妻少妇av视频| 妹子高潮喷水视频| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 亚洲精品粉嫩美女一区| 亚洲欧洲日产国产| 午夜福利视频在线观看免费| 热99re8久久精品国产| 久久久久久免费高清国产稀缺| 亚洲精华国产精华精| 下体分泌物呈黄色| 国产福利在线免费观看视频| 另类精品久久| 久久久久久亚洲精品国产蜜桃av| 久久毛片免费看一区二区三区| xxxhd国产人妻xxx| 黄频高清免费视频| 国产亚洲av高清不卡| 人人妻人人澡人人看| 男人添女人高潮全过程视频| 我的亚洲天堂| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 在线观看免费视频网站a站| 日本撒尿小便嘘嘘汇集6| 婷婷成人精品国产| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| 99re6热这里在线精品视频| 中文精品一卡2卡3卡4更新| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 久久久久国产精品人妻一区二区| 99国产精品一区二区蜜桃av | 日本a在线网址| 欧美成人午夜精品| 操美女的视频在线观看| 国产一卡二卡三卡精品| 精品国产国语对白av| 亚洲精华国产精华精| 亚洲国产成人一精品久久久| 一区二区av电影网| 新久久久久国产一级毛片| 女人精品久久久久毛片| 成人av一区二区三区在线看 | 99国产精品一区二区三区| 亚洲九九香蕉| 亚洲成人手机| 精品人妻熟女毛片av久久网站| 成人影院久久| 成年动漫av网址| 久久久久久亚洲精品国产蜜桃av| 悠悠久久av| 亚洲熟女精品中文字幕| 黄网站色视频无遮挡免费观看| 男女边摸边吃奶| 老司机在亚洲福利影院| 久久天躁狠狠躁夜夜2o2o| 亚洲国产成人一精品久久久| 国产男女内射视频| 女性生殖器流出的白浆| 九色亚洲精品在线播放| 国产精品秋霞免费鲁丝片| 亚洲国产毛片av蜜桃av| 国产亚洲午夜精品一区二区久久| 在线永久观看黄色视频| 欧美另类一区| 国产精品久久久人人做人人爽| 国产高清国产精品国产三级| 久久中文看片网| 黑人猛操日本美女一级片| h视频一区二区三区| 大码成人一级视频| 青春草视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 欧美av亚洲av综合av国产av| 夜夜夜夜夜久久久久| 成年av动漫网址| 免费不卡黄色视频| 男女午夜视频在线观看| 桃花免费在线播放| 亚洲第一av免费看| 国产精品 欧美亚洲| 考比视频在线观看| 久久综合国产亚洲精品| 国产在线视频一区二区| 久久青草综合色| 午夜福利免费观看在线| 国产成人免费无遮挡视频| 美女高潮到喷水免费观看| 啦啦啦中文免费视频观看日本| 亚洲精品粉嫩美女一区| 国产成人a∨麻豆精品| 亚洲av日韩精品久久久久久密| 国产免费视频播放在线视频| 性高湖久久久久久久久免费观看| 91精品国产国语对白视频| 狠狠狠狠99中文字幕| 纯流量卡能插随身wifi吗| 欧美另类一区| 国内毛片毛片毛片毛片毛片| 老汉色∧v一级毛片| 精品久久蜜臀av无| 国产免费av片在线观看野外av| 50天的宝宝边吃奶边哭怎么回事| 男女床上黄色一级片免费看| 日日夜夜操网爽| 亚洲精品国产精品久久久不卡| 真人做人爱边吃奶动态| 欧美日韩中文字幕国产精品一区二区三区 | 久久 成人 亚洲| 性高湖久久久久久久久免费观看| 王馨瑶露胸无遮挡在线观看| 欧美xxⅹ黑人| 亚洲熟女毛片儿| 久久久久视频综合| 日本黄色日本黄色录像| 国产精品1区2区在线观看. | 日韩欧美一区视频在线观看| 人人澡人人妻人| 黄色视频不卡| av电影中文网址| 丝袜在线中文字幕| 久9热在线精品视频| 国产精品国产三级国产专区5o| 国产黄频视频在线观看| 午夜视频精品福利| e午夜精品久久久久久久| 亚洲第一av免费看| av一本久久久久| 欧美日本中文国产一区发布| 99久久综合免费| 嫁个100分男人电影在线观看| 久久国产精品男人的天堂亚洲| 亚洲中文日韩欧美视频| 十八禁人妻一区二区| 好男人电影高清在线观看| 婷婷丁香在线五月| 黄片小视频在线播放| 丰满迷人的少妇在线观看| 性高湖久久久久久久久免费观看| 超碰成人久久| 电影成人av| 亚洲精品中文字幕在线视频|