• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orientable Small Covers over a Product Space?

    2016-06-09 03:34:16DantingWANGYanyingWANGYanhongDING

    Danting WANGYanying WANGYanhong DING

    1 Introduction

    The geometry of toric varieties is one of the fascinating topics in algebraic geometry and has found applications in many branches of mathematical sciences.From a combinatorial viewpoint,it is known that there is a one-to-one correspondence between fans in Rnand toric varieties of complex dimension n.Given an n-polytope Pnwith vertices in the integer lattice Zn,a fan is generated by the set of normal vectors corresponding to faces of codimension 1 of Pn.According to the above correspondence between fans and toric varieties,there is a toric variety MPassociated to the fan.Let Tndenote a torus(S1)n.It turns out that as a topological space,MP=Tn×Pn/~for some equivalent relation~.The torus Tnnaturally acts on MP,and Pnis the orbit space.Inspired by the above identification space description of a toric variety,Davis and Januszkiewicz introduced a topological counterpart,namely,the study of small covers and quasitoric manifolds in[5].

    A small cover(see[5])is a closed manifold Mnwith a locally standard(Z2)n-action such that its orbit space is a simple convex polytope Pn,where Z2denotes the cyclic group of order 2.For instance,the real projective space RPnwith a natural(Z2)n-action is a small cover over an n-simplex.This makes the research on the equivariant topology of small covers possible through the combinatorial structure of the orbit space.

    In[7],Lü and Masuda showed that the equivariant homeomorphism class of a small cover over a simple convex polytope Pnagrees with the equivalent class of its corresponding char-acteristic functions under the action of the automorphism group of face poset(i.e.,a partially ordered set by inclusion)of Pn.This finding also holds true for orientable small covers by the orientability condition(see Theorem 2.2).However,it is a hard task to obtain general formulas for calculating the number of equivariant homeomorphism classes of(orientable)small covers over an arbitrary simple convex polytope.

    In recent years,several studies have attempted to calculate the number of equivalent classes of all small covers over a specific polytope.Garrison and Scott used a computer program to calculate the number of homeomorphism classes of all small covers over a dodecahedron(see[6]).Cai,Chen and Lü calculated the number of equivariant homeomorphism classes of small covers over prisms(see[2]).However,little is known about orientable small covers.Choi calculated the number of D-J equivalent classes of orientable small covers over cubes(see[4]).Chen and Wang calculated the number of equivariant homeomorphism classes of orientable small covers over a product of at most three simplices(see[3]).From[9],we know the existence of orientable small covers over the polytope Δn1× Δn2×P(m),where Δnidenotes a simplex of dimension niand P(m)an m-gon.The objective of this paper is to determine the number of D-J equivalent classes and equivariant homeomorphism classes of all orientable small covers over Δn1×Δn2×P(m),where n1is odd.

    This paper is organized as follows.In Section 2,we review the fundamental knowledge on small covers and list several known theorems.In Section 3,we calculate the number of D-J equivalent classes of the orientable small covers over the product space and the number of orientable characteristic functions corresponding to orientable small covers.In Section 4 we obtain a formula for calculating the number of equivariant homeomorphism classes of all orientable small covers over the product space.

    2 Preliminaries

    The standard action of(Z2)non Rnis that

    and the orbit space is={(x1,···,xn)∈ Rn|xi≥ 0,1 ≤ i≤ n}.

    A convex polytope Pnof dimension n is said to be simple if every vertex of Pnis the intersection of exactly n facets(i.e.,faces of dimension(n?1))(see[10]).An n-dimensional closed manifold Mnis said to be a small cover if it admits a(Z2)n-action such that the action is locally isomorphic to a standard action of(Z2)non Rnand the orbit space Mn/(Z2)nis a simple convex polytope of dimension n(see[5]).

    Let Pnbe a simple convex polytope of dimension n and F(Pn)={F1,···,Fl}be the set of facets of Pn.Suppose that π :Mn→Pnis a small cover over Pn.Then there are l connected submanifolds π?1(F1),···,π?1(Fl).Each submanifold π?1(Fi)is fixed pointwise by a subgroup Z2(Fi)of rank 1 in(Z2)n,so that each facet Ficorresponds to a subgroup Z2(Fi)of rank 1.Obviously,the subgroup Z2(Fi)actually agrees with an element νiin(Z2)nas a vector space.For each face F of codimension u of Pn,since Pnis simple,there are u facets Fi1,···,Fiusuch that F=Fi1∩ ···∩ Fiu.Then,the corresponding submanifolds π?1(Fi1),···,π?1(Fiu)intersect transversally in the(n ? u)-dimensional submanifold π?1(F),and the isotropy subgroup Z2(F)of π?1(F)is generated by Z2(Fi1),···,Z2(Fiu)(or is determined by νi1,···,νiuin(Z2)n),and has rank u.Thus,this gives a function(see[5]):

    which is defined by λ(Fi)= νi.This function satisfies the non-singularity condition:λ(Fi1),···,λ(Fiu)are linearly independent in(Z2)nas a vector space whenever the intersection Fi1∩ ···∩Fiuis non-empty.We call λ,which satisfies the non-singularity condition,a characteristic function on Pn.

    In fact,Davis and Januszkiewicz[5]also gave a reconstruction process of a small cover using a characteristic function λ :F(Pn)→ (Z2)n.Let Z2(Fi)be the subgroup of(Z2)ngenerated by λ(Fi).Given a point p ∈ Pn,we denote the minimal face containing p in its relative interior by F(p).Assuming that F(p)=Fi1∩ ···∩ Fiuandthen Z2(F(p))is a subgroup of rank u in(Z2)n.Let M(λ)denote Pn×(Z2)n/~,where(p,g)~ (q,h)if p=q and g?1h ∈ Z2(F(p)).The free action of(Z2)non Pn× (Z2)ndescends to an action on M(λ)with quotient Pn.Thus,M(λ)is a small cover over Pn.

    Two small covers M1and M2over Pnare said to be weakly equivariantly homeomorphic if there is an automorphism ?:(Z2)n→(Z2)nand a homeomorphism f:M1→M2such that f(t·x)= ?(t)·f(x)for every t∈ (Z2)nand x ∈ M1.If ? is an identity,then M1and M2are equivariantly homeomorphic.Following[5],two small covers M1and M2over Pnare said to be Davis-Januszkiewicz equivalent(or simply,D-J equivalent)if there is a weakly equivariant homeomorphism f:M1→M2covering the identity on Pn.

    By Λ(Pn),we denote the set of characteristic functions on Pn.We have the following result.

    Theorem 2.1(see[5])All small covers over Pnare given by{M(λ)|λ ∈ Λ(Pn)},i.e.,for each small cover Mnover Pn,there is a characteristic function λ with an equivariant homeomorphism M(λ)→ Mncovering the identity on Pn.

    Nakayama and Nishimura gave an orientability condition for a small cover in[9].

    Theorem 2.2(see[9])For a basis{e1,···,en}of(Z2)n,a homomorphism ε:(Z2)n→Z2={0,1}is defined by ε(ei)=1(i=1,···,n).A small cover M(λ)over a simple convex polytope Pnis orientable if and only if there exists a basis{e1,···,en}of(Z2)nsuch that the image of ελ is{1}.

    From Theorem 2.2,we know that a small cover M(λ)over Pnis orientable if and only if there exists a basis{e1,···,en}of(Z2)nsuch that λ(Fi)=ei1+ei2+ ···+ei2hi+1,1 ≤i1

    In order to classify orientable small covers over Pnup to D-J equivalence,by O(Pn)we denote the set of orientable characteristic functions on Pn,and consider a free action of GL(n,Z2)on O(Pn)defined by the correspondence σ × λ ?→ σ ? λ.We assume that F1,···,Fnof F(Pn)meet at one vertex p of Pn.Let e1,···,enbe the standard basis of(Z2)nand B(Pn)={λ ∈ O(Pn)|λ(Fi)=ei,i=1,···,n}.Then B(Pn)is the orbit space of O(Pn)under the action of GL(n,Z2).In fact,for λ∈B(Pn)and n+1≤i≤l,we have λ(Fi)=ei1+ei2+ ···+ei2hi+1,1 ≤ i1

    Lemma 2.1 |O(Pn)|=|B(Pn)|×|GL(n,Z2)|.

    It is easy to check that two orientable small covers M(λ1)and M(λ2)over Pnare D-J equivalent if and only if there is σ ∈ GL(n,Z2)such that λ1= σ ? λ2.Thus the number of D-J equivalent classes of orientable small covers over Pnis|B(Pn)|=|O(Pn)|/|GL(n,Z2)|.From[1],we know

    For calculating the number of equivariant homeomorphism classes of orientable small covers over a simple convex polytope Pn,we consider a poset consisting of faces of Pn(i.e.,a partially ordered set by inclusion).An automorphism of F(Pn)is a bijection from F(Pn)to itself that preserves the poset structure of all faces of Pn.By Aut(F(Pn)),we denote the group of automorphisms of F(Pn).We define a right action of Aut(F(Pn))on O(Pn)by λ ×h?→ λ ?h,where λ ∈ O(Pn)and h ∈ Aut(F(Pn)).By improving the classifying result on unoriented small covers in[7],we have the following theorem.

    Theorem 2.3 Two orientable small covers over an n-dimensional simple convex polytope Pnare equivariantly homeomorphic if and only if there is h ∈ Aut(F(Pn))such that λ1= λ2?h,where λ1and λ2are their corresponding orientable characteristic functions on Pn.

    Proof It is proven true by combining Lemma 5.4 in[7]with Theorem 2.2.

    According to Theorem 2.3,the number of equivariant homeomorphism classes of orientable small covers over Pnis equal to the number of orbits of O(Pn)under the action of Aut(F(Pn)).The famous Burnside Lemma is very useful in enumerating the number of orbits.

    Lemma 2.2(Burnside Lemma)Let G be a finite group acting on a set X.Then the number of orbits under the action of G equals

    To determine the number of the orbits of O(Pn)under the action of Aut(F(Pn)),the Burnside Lemma suggests that the structure of Aut(F(Pn))should be understood.

    Here we shall particularly be concerned with the case Pn= Δn1×Δn2×P(m),where Δnidenotes a simplex of dimension niand P(m)an m-gon.In this case,by O(n1,n2,m),B(n1,n2,m),F(n1,n2,m)and Aut(F(n1,n2,m)),we denote O(Δn1×Δn2×P(m)),B(Δn1×Δn2×P(m)),F(Δn1×Δn2×P(m))and Aut(F(Δn1×Δn2×P(m)))respectively.Then we have the following lemma.

    Lemma 2.3(see[8])The automorphism group Aut(F(n1,n2,m))is isomorphic to

    where Dmis the dihedral group of order 2m and Sn+1is the symmetric group on n+1 symbols.

    3 D-J Equivalent Classes and Orientable Characteristic Functions

    Let{a1,···,an1,an1+1}be the set of facets of Δn1×Δn2×P(m)corresponding to F(Δn1)×Δn2×P(m),{b1,···,bn2,bn2+1}the set of facets corresponding to Δn1×F(Δn2)×P(m),and{c1,c2,···,cm}the set of facets corresponding to Δn1×Δn2×F(P(m))in their general order.Then F(n1,n2,m)={a1,···,an1,an1+1}∪{b1,···,bn2,bn2+1}∪{c1,c2,···,cm}.Without loss of generality,we assume that a1,···,an1,b1,···,bn2,c1and c2are facets of Δn1×Δn2×P(m)which meet at a vertex.Let e1,e2,···,en1+n2+2be the standard basis of(Z2)n1+n2+2.By definition,

    Let fi(n1,n2,m)be the recursive functions which are listed in Appendix 1.Now we arrive at the first main result.

    Theorem 3.1 Let n1,n2and m be positive integers,with n1odd,n1≥2,n2≥1,n1≥n2and m≥3.Then the number of D-J equivalent classes of orientable small covers over Δn1×Δn2×P(m)is

    where I1={1,2,···,24}and I2={8,12,17,19}.

    Proof By the non-singularity condition of orientable characteristic functions,we have

    where εi,δj=0 or 1,i=1,···,n2+2,j=1,···,n1+2,and

    withγi,θj,μp=0 or 1.

    The calculation of|B(n1,n2,m)|is divided into eight cases.Write

    Then|B(n1,n2,m)|Now we calculate|Bi(n1,n2,m)|(1≤i≤8).

    Case 1 Calculation

    (1)

    According to the non-singularity condition and the orientability condition of characteristic functions,the number ofδi=1 is even forn2odd,the number ofδi=1 is odd forn2even,and the coefficients inλ(cm)andλ(cm?1)are listed in Table 1.

    Table 1

    Set

    Ifλthen the values ofλrestricted tocm?1have 2n1+n2?1possible choices and the values ofλrestricted tocmhave 2n1+n2possible choices.So,we obtain a recursive equation

    Ifλ∈thenλ(cm?1)has 2n1+n2?1possible values.We have|(n1,n2,m)|=2n1+n2?1|B11(n1,n2,m?1)|.So

    Sinceλ(bn2+1)has 2n1?1possible values,a direct computation shows that|B11(n1,n2,3)|=(2n1+n2?1)·2n1?1=22n1+n2?2,|B11(n1,n2,4)|=3·22n1+2n2?2·2n1?1=3·23n1+2n2?3.So

    A similar argument shows that the number ofδi=1 is odd forn2odd,the number ofδi=1 is even forn2even,and the coefficients inλ(cm)andλ(cm?1)are listed in Table 2.

    Table 2

    Similarly,we have that the number ofδi=1 is odd forn2odd and the number ofδi=1 is even forn2even.The coefficientsγiandθjappear in Table 3.

    Table 3

    The number ofδi=1 is even forn2odd and the number ofδi=1 is odd forn2even.The coefficientsγiandθjare in Table 4.

    Table 4

    Thusf4(n1,n2,m).

    Case 2 Calculation of|B2(n1,n2,m)|.

    Ifn2is even,then

    Ifn2is odd,we consider the values ofλ(cm)andλ(cm?1)listed in Table 5.

    Table 5

    We get|B21(n1,n2,m)|=2n1+n2?1|B21(n1,n2,m?1)|+22n1+2n2?1|B21(n1,n2,m?2)|,|B21(n1,n2,3)|=2n1+2n2?2?2n1+n2?1and|B21(n1,n2,4)|=3·22n1+3n2?3?3·22n1+2n2?2.Sof5(n1,n2,m)=|B21(n1,n2,m)|.

    (2)

    Ifn2is odd,then|B22(n1,n2,m)|=0.Ifn2is even,we consider the values ofλ(cm)andλ(cm?1)in Table 6.

    Table 6

    Ifn2is odd,then|B23(n1,n2,m)|=0.Ifn2is even,we consider the values ofλ(cm)andλ(cm?1)in Table 7.

    Ifn2is even,then|B24(n1,n2,m)|=0.Ifn2is odd,thenλ(cm)=en1+n2+2,λ(cm?1)=en1+n2+1.Thus|B24(n1,n2,m)|=|B24(n1,n2,m?2)|,|B24(n1,n2,3)|=0 and|B24(n1,n2,4)|=2n2?1?1.Sof8(n1,n2,m)=|B24(n1,n2,m)|.

    Thusf8(n1,n2,m).

    Case 3 Calculation of|B3(n1,n2,m)|.

    Becausen1is odd,|B3(n1,n2,m)|=0.

    Case 4 Calculation of|B4(n1,n2,m)|.

    Ifn2is even,then|B41(n1,n2,m)|=0.Ifn2is odd,thenλ(cm)andλ(cm?1)have the possible values in Table 8.

    Table 8

    Sof9(n1,n2,m)=|B41(n1,n2,m)|.

    Ifn2is odd,then|B42(n1,n2,m)|=0.Ifn2is even,thenλ(cm)andλ(cm?1)have the possible values in Table 9.

    Table 9

    We get|B42(n1,n2,m)|=2n1+n2|B42(n1,n2,m?2)|,|B42(n1,n2,3)|=2n1+2n2?2and|B42(n1,n2,4)|=2n1+2n2?1.Sof10(n1,n2,m)=|B42(n1,n2,m)|.

    Table 10

    Ifn2is odd,then|B43(n1,n2,m)|=0.Ifn2is even,thenλ(cm)andλ(cm?1)have the possible values in Table 10.

    We have|B43(n1,n2,m)|=2n2|B43(n1,n2,m?2)|,|B43(n1,n2,3)|=0 and|B43(n1,n2,4)|=22n2?1.Sof11(n1,n2,m)=|B43(n1,n2,m)|.

    Ifn2is even,then|B44(n1,n2,m)|=0.Ifn2is odd,thenλ(cm)=en1+n2+2,λ(cm?1)=en1+n2+1.We have|B44(n1,n2,m)|=|B44(n1,n2,m?2)|,|B44(n1,n2,3)|=0 and|B44(n1,n2,4)|=2n2?1.Sof12(n1,n2,m)=|B44(n1,n2,m)|.

    Thusf12(n1,n2,m).

    Case 5 Calculation of|B5(n1,n2,m)|.

    Becausen1is odd,|B5(n1,n2,m)|=0.

    Case 6 Calculation of|B6(n1,n2,m)|.

    In this case,the number ofεi=1 is odd.

    Ifn2is even,then|B61(n1,n2,m)|=0.Ifn2is odd,thenλ(cm)andλ(cm?1)have the possible values in Table 11.

    Table 11

    Leten1+n2+1+en1+n2+2(?θi?=0,1≤i≤n1),and(n1,n2,m)=B61(n1,n2,m)(n1,n2,m).We have|(n1,n2,m)|=2n1+2n2?1|B61(n1,n2,m?2)|and|(n1,n2,m)|=2n2?1|B61(n1,n2,m?1)|.Then|B61(n1,n2,m)|=2n2?1|B61(n1,n2,m?1)|+2n1+2n2?1|B61(n1,n2,m?2)|,|B61(n1,n2,3)|=22n2?2and|B61(n1,n2,4)|=2n1+3n2?2+23n2?3.Sof13(n1,n2,m)=|B61(n1,n2,m)|.

    Table 12

    (2)

    Ifn2is odd,then|B62(n1,n2,m)|=0.Ifn2is even,thenλ(cm)andλ(cm?1)have the possible values in Table 12.

    We get|B62(n1,n2,m)|=2n2|B62(n1,n2,m?2)|,|B62(n1,n2,3)|=22n2?2and|B62(n1,n2,4)|=22n2?1.Sof14(n1,n2,m)=|B62(n1,n2,m)|.

    Ifn2is odd,then|B63(n1,n2,m)|=0.Ifn2is even,thenλ(cm)andλ(cm?1)have the possible values in Table 13.

    Table 13

    We have|B63(n1,n2,m)|=2n1+n2|B63(n1,n2,m?2)|,|B63(n1,n2,3)|=0 and|B63(n1,n2,4)|=2n1+2n2?1.Sof15(n1,n2,m)=|B43(n1,n2,m)|.

    Ifn2is even,then|B64(n1,n2,m)|=0.Ifn2is odd,thenλ(cm)=en1+n2+2,λ(cm?1)=en1+n2+1.So,|B64(n1,n2,m)|=|B64(n1,n2,m?2)|,|B64(n1,n2,3)|=0 and|B64(n1,n2,4)|=2n2?1.By definition,f12(n1,n2,m)=|B64(n1,n2,m)|.

    Thus|+f12(n1,n2,m).

    Case 7 Calculation of|B7(n1,n2,m)|.

    Ifn2is even,then|B71(n1,n2,m)|=0.Ifn2is odd,thenλ(cm)andλ(cm?1)have the possible values in Table 14.

    Table 14

    Leten1+n2+2(?θi?=0,1≤i≤n1),and(n1,n2,m)=B71(n1,n2,m)(n1,n2,m).We have|(n1,n2,m)|=2n1+2n2?1|B71(n1,n2,m?2)|and|n1,n2,m)|=2n2?1|B71(n1,n2,m?1)|.Then|B71(n1,n2,m)|=2n2?1|B71(n1,n2,m?1)|+2n1+2n2?1|B71(n1,n2,m?2)|,|B71(n1,n2,3)|=2n2?1,and|B71(n1,n2,4)|=2n1+2n2?2+22n2?1.Sof16(n1,n2,m)=|B71(n1,n2,m)|.

    The number ofδi=1 is even forn2odd,and the number ofδi=1 is odd forn2even.λ(cm)=en1+n2+2,λ(cm?1)=en1+n2+1.We have|B72(n1,n2,m)|=|B72(n1,n2,m?2)|and|B72(n1,n2,3)|=0.Note that|B72(n1,n2,4)|=2n1?1?1 forn2odd,and|B72(n1,n2,4)|=2n1?1forn2even.Sof17(n1,n2,m)=|B72(n1,n2,m)|.

    Ifn2is odd,then|B73(n1,n2,m)|=0.Ifn2is even,thenλ(cm)andλ(cm?1)have the possible values in Table 15.

    Table 15

    We have|B73(n1,n2,m)|=2n2|B73(n1,n2,m?2)|,|B73(n1,n2,3)|=2n2?1and|B73(n1,n2,4)|=2n2.Sof18(n1,n2,m)=|B73(n1,n2,m)|.

    The number ofδi=1 is odd forn2odd,and the number ofδi=1 is even forn2even.λ(cm)=en1+n2+2,λ(cm?1)=en1+n2+1.So,|B74(n1,n2,m)|=|B74(n1,n2,m?2)|,and|B74(n1,n2,3)|=0.Note that|B74(n1,n2,4)|=2n1?1forn2odd,and|B74(n1,n2,4)|=2n1?1?1 forn2even.Sof19(n1,n2,m)=|B74(n1,n2,m)|.

    Ifn2is odd,then|B75(n1,n2,m)|=0.Ifn2is even,thenλ(cm)andλ(cm?1)have the possible values in Table 16.We have|B75(n1,n2,m)|=2n2|B75(n1,n2,m?2)|,|B75(n1,n2,3)|=0,and|B75(n1,n2,4)|=2n2.Sof20(n1,n2,m)=|B75(n1,n2,m)|.

    Table 16

    The number ofδi=1 is odd forn2odd,and the number ofδi=1 is even forn2even.λ(cm)=en1+n2+2,λ(cm?1)=en1+n2+1.We have|B76(n1,n2,m)|=|B76(n1,n2,m?2)|and|B76(n1,n2,3)|=0.Note that|B76(n1,n2,4)|=2n1?1forn2odd,and|B76(n1,n2,4)|=2n1?1?1 forn2even.By definition,f19(n1,n2,m)=|B76(n1,n2,m)|.

    Ifn2is even,then|B77(n1,n2,m)|=0.Ifn2is odd,thenλ(cm)=en1+n2+2,λ(cm?1)=en1+n2+1.So|B77(n1,n2,m)|=|B77(n1,n2,m?2)|,|B77(n1,n2,3)|=0,and|B77(n1,n2,4)|=1.Sof21(n1,n2,m)=|B77(n1,n2,m)|.

    The number ofδi=1 is even forn2odd,and the number ofδi=1 is odd forn2even.λ(cm)=en1+n2+2,λ(cm?1)=en1+n2+1.So,|B78(n1,n2,m)|=|B78(n1,n2,m?2)|and|B78(n1,n2,3)|=0.Note that|B78(n1,n2,4)|=2n1?1?1 forn2odd,and|B78(n1,n2,4)|=2n1?1forn2even.By definition,f17(n1,n2,m)=|B78(n1,n2,m)|.

    So,2f19(n1,n2,m)+f20(n1,n2,m)+f21(n1,n2,m).

    Case 8 Calculation of|B8(n1,n2,m)|.

    The number ofεi=1 is even.

    Ifn2is even,then|B81(n1,n2,m)|=0.Ifn2is odd,thenλ(cm)andλ(cm?1)have the possible values in Table 17.

    Table 17

    Leten1+n2+2(?θi?=0,1≤i≤n1)and(n1,n2,m)=B81(n1,n2,m)(n1,n2,m).We have(n1,n2,m)|=2n1+2n2?1|B81(n1,n2,m?2)|and|(n1,n2,m)|=2n2?1|B81(n1,n2,m?1)|.Thus|B81(n1,n2,m)|=2n2?1|B81(n1,n2,m?1)|+2n1+2n2?1|B81(n1,n2,m?2)|,|B81(n1,

    Ifn2is odd,then|B82(n1,n2,m)|=0.Ifn2is even,thenλ(cm)andλ(cm?1)have the possible values in Table 18.

    Table 18

    We have|B82(n1,n2,m)|=2n2|B82(n1,n2,m?2)|,|B82(n1,n2,3)|=22n2?2?2n2?1and|B82(n1,n2,4)|=22n2?1?2n2.Sof23(n1,n2,m)=|B82(n1,n2,m)|.

    Ifn2is odd,then|B83(n1,n2,m)|=0.Ifn2is even,thenλ(cm)andλ(cm?1)have the possible values in Table 19.

    Table 19

    Then|B83(n1,n2,m)|=2n2|B83(n1,n2,m?2)|,|B83(n1,n2,3)|=0 and|B83(n1,n2,4)|=22n2?1?2n2.Sof24(n1,n2,m)=|B83(n1,n2,m)|.

    Ifn2is even,then|B84(n1,n2,m)|=0.Ifn2is odd,thenλ(cm)=en1+n2+2,λ(cm?1)=en1+n2+1.We have|B84(n1,n2,m)|=|B84(n1,n2,m?2)|,|B84(n1,n2,3)|=0 and|B84(n1,n2,4)|=2n2?1?1.By definition,f8(n1,n2,m)=|B84(n1,n2,m)|.

    So,f8(n1,n2,m).

    whereI1={1,2,···,24}andI2={8,12,17,19}.

    The proof is completed.

    Remark 3.1 A direct calculation shows that|B(3,1,3)|=106.

    Theorem 3.2Suppose n1is odd,n1≥2,n2≥1,n1≥n2and m≥3.Then the number of orientable characteristic functions onΔn1×Δn2×P(m)is

    where I1={1,2,···,24}and I2={8,12,17,19}.

    Proof By Lemma 2.1 and Theorem 3.1,we have

    whereI1={1,2,···,24}andI2={8,12,17,19}.

    4 Equivariant Homeomorphism Classes

    In this section,we determine the number of equivariant homeomorphism classes of all orientable small covers over Δn1×Δn2×P(m),which is denoted byEo(n1,n2,m).

    Let?denote the Euler’s totient function,that is,?(1)=1 and?(N)for a positive integerN(N≥2)is the number of positive integers both less thanNand coprime toN.Recursive functions fi(n1,n2,m),gi(n1,m)and ki(n1,n2,m)are listed in the appendixes.Then we have the following theorem.

    Theorem 4.1 Suppose that n1is odd,n1≥2,n2≥1,m≥3 and n1≥n2,then the number of equivariant homeomorphism classes of orientable small covers over Δn1×Δn2×P(m)is

    (1)for n1>2,n2=1 and m=3 or n1≥2,n2=1 and m>4,

    where I1={1,2,···,24},I2={5,8,9,12,13,16,17,19,22}and I3={2,3,4};

    (2)for n1≥2,n2=1 and m=4,

    where I1={1,2,···,24},I2={5,8,9,12,13,16,17,19,22}and I3={2,3,4};

    (3)for n1>n2=2 and m>3 or n1>n2>2 and m≥3,

    where I1={1,2,···,24}and I2={8,12,17,19};

    (4)for n1>n2=2 and m=3 or n1=n2>2 and m≥3,

    where I1={1,2,···,24}and I2={8,12,17,19}.

    Proof According to Theorem 2.3,Lemma 2.1 and Burnside Lemma,we have

    where Og={λ∈O(n1,n2,m)|λ=λ?g}.

    In order to determine|Og|for g∈Aut(F(n1,n2,m)),we exhibit a system of generators of the group Aut(F(n1,n2,m)).

    Let x,y,si(i=1,···,n1),tj(j=1,···,n2)and zk(k=1,2,3,4)be the elememts of Aut(F(n1,n2,m))with the following properties:

    (1)x(ci)=ci+1(i=1,2,···,m ? 1),x(cm)=c1,x(aj)=aj(j=1,2,···,n1+1)and x(bk)=bk(k=1,2,···,n2+1).

    (2)y(ci)=cm+1?i(i=1,2,···,m),y(cm)=c1,y(aj)=aj(j=1,2,···,n1+1)and y(bk)=bk(k=1,2,···,n2+1).

    (3)si(a1)=ai+1,si(ai+1)=a1,si(ap)=ap(p?=1,i+1),i=1,···,n1,si(bj)=bj(j=1,···,n2+1)and si(ck)=ck(k=1,···,m).

    (4)ti(b1)=bi+1,ti(bi+1)=b1,ti(bq)=bq(q?=1,i+1),i=1,···,n2,ti(aj)=aj(j=1,···,n1+1)and ti(ck)=ck(k=1,···,m).

    (5)z1(ai)=bi,z1(bi)=ai(i=1,···,n1+1)and z1(ck)=ck(k=1,···,m)if n1=n2.

    (6)z2(bi)=ci,z2(ci)=bi,and z2(ak)=ak(k=1,···,n1+1)if n2=2 and m=3.

    (7)z3(ai)=ci,z3(ci)=ai(i=1,2,3)and z3(bi)=bi(i=1,2)if n1=2,n2=1 and m=3.

    (8)z4(b1)=c1,z4(c1)=b1,z4(b2)=c3,z4(c3)=b2,z4(c2)=c2,z4(c4)=c4and z4(ak)=ak(k=1,···,n1+1)for n1≥ 2,n2=1 and m=4.

    Every g ∈ Aut(F(n1,n2,m))can be expressed in the form xuyv(?zi)w(?si)α(?tj)β,u ∈ Zm,v,w,α and β ∈ Z2.The calculation of|Og|is divided into the following cases.

    Case 1 n1>2,n2=1,and m=3 or n1≥2,n2=1 and m>4.

    According to Lemma 2.3,Aut(F(n1,n2,m))=Sn1+1×Z2×Dmand g∈Aut(F(n1,n2,m))can be written in the formwhere u ∈ Zm,v,w and α ∈ Z2.

    Subcase 1.1 g=xu.

    Let k=gcd(u,m)(i.e.,the greatest common divisor of u and m).Then all facets in F(n1,n2,m)are divided into k orbits under the action of g and each orbit containsfacets.This means k?=1.An argument similar to that of|Bi(n1,n2,m)|shows that|Og|=|O(n1,1,k)|where I1={1,2,···,24}and I2={8,12,17,19}.For every k>1,there are exactly ?automorphisms of the form xu,each of which divides all facets in F(n1,n2,m)into k orbits.Thus

    where I1={1,2,···,24}and I2={8,12,17,19}.

    Subcase 1.2 g=xut1.

    In this case,λ(b1)= λ(b2)for λ ∈ Og.An argument similar to that of|Bi(n1,n2,m)|shows

    Subcase 1.3 g=xuy,xuyt1,where m is odd,or u and m are even.

    If λ ∈ Og,then λ restricted to some adjacent facets has the same value,which contradicts the non-singularity condition.So|Og|=0.

    Subcase 1.4 g=xuy,where u is odd and m is even.

    Because|Og1|=|Og2|for g1,g2∈ Og,suppose g=xm?1y(i.e.,g=yx).Similarly to the proof of Theorem 3.1,let Xi(n1,1,m)={λ |λ ∈ Bi(n1,1,m),λ(cj)= λ(cm?j),m is even,and j=1,···,m ? 1},where i=1,···,8.It is easy to show|X2(n1,1,m)|=|X3(n1,1,m)|=|X5(n1,1,m)|=|X8(n1,1,m)|=0.

    (1)Calculation of|X1(n1,1,m)|.

    Let X1i(n1,1,m)={λ |λ ∈ B1i(n1,1,m),λ(cj)= λ(cm?j),j=1,···,m?1},i=1,2,3,4.We have|X11(n1,1,m)|=2n1|X11(n1,1,m?2)|+22n1+1|X11(n1,1,m?4)|.|X11(n1,1,8)|=24n1+2,|X11(n1,1,6)|=23n1+1.So g1(n1,m)=|X11(n1,1,m)|.

    Similarly,|X12(n1,1,m)|=2n1?1|X12(n1,1,m?2)|+22n1|X12(n1,1,m?4)|.|X12(n1,1,8)|=24n1,|X12(n1,1,6)|=23n1.So g2(n1,m)=|X12(n1,1,m)|.

    |X13(n1,1,m)|=2n1?1|X13(n1,1,m?2)|+22n1|X13(n1,1,m?4)|.|X13(n1,1,8)|=3·24n1?1,|X13(n1,1,6)|=23n1.So g3(n1,m)=|X13(n1,1,m)|.

    |X14(n1,1,m)|=2n1?1|X14(n1,1,m?2)|+22n1|X14(n1,1,m?4)|.|X14(n1,1,8)|=3·24n1?2,|X14(n1,1,6)|=23n1?1.So g4(n1,m)=|X14(n1,1,m)|.

    (2)Calculation of|X4(n1,1,m)|.

    Let X4i(n1,1,m)={λ |λ ∈ B4i(n1,1,m),λ(cj)= λ(cm?j),j=1,···,m?1},i=1,2,3,4.Then

    So

    (3)Calculation of|X6(n1,1,m)|.

    Let X6i(n1,1,m)={λ |λ ∈ B6i(n1,1,m),λ(cj)= λ(cm?j),j=1,···,m?1},i=1,2,3,4.Then

    So|X6(n1,1,m)|=|X64(n1,1,m)|=g5(n1,m).

    (4)Calculation of|X7(n1,1,m)|.

    Let X7i(n1,1,m)={λ |λ ∈ B7i(n1,1,m),λ(cj)= λ(cm?j),j=1,···,m?1},i=1,···,8.Then

    By Burnside Lemma,

    Subcase 1.5 g=xuyt1,where u is odd and m is even.

    If λ ∈ Og,then λ(b1)= λ(b2).A similar argument as in subcase 1.4 shows

    Subcase 1.6

    By the non-singularity condition,|Og|=0.

    From Burnside Lemma and|Aut(F(n1,n2,m))|=(n1+1)!4m,we get

    where I1={1,2,···,24},I2={5,8,9,12,13,16,17,19,22}and I3={2,3,4}.

    Case 2 n1≥2,n2=1 and m=4.

    According to Lemma 2.3,Aut(F(n1,1,4))=Sn1+1×(Z2)3×S3.g∈Aut(F(n1,1,4))can be written in the form,where u ∈ Zm,v,α,β and γ ∈ Z2.

    Subcase 2.1where α =1 or γ =1.

    By the non-singularity condition,|Og|=0.

    Subcase 2.2

    The calculation is similar to the subcases 1.1–1.5.We omit the details.So

    where I1={1,2,···,24},I2={5,8,9,12,13,16,17,19,22}and I3={2,3,4}.

    Case 3 n1>n2>2 and m≥3,or n1>n2=2 and m>3.

    According to Lemma 2.3,Aut(F(n1,n2,m))=Sn1+1×Sn2+1×Dm.g∈Aut(F(n1,n2,m))can be written in the formwhere u ∈ Zm,v,α and β ∈ Z2.

    Subcase 3.1 g=xu.

    By an argument similar to that of the subcase 1.1,we have

    where I1={1,2,···,24}and I2={8,12,17,19}.

    Subcase 3.2 g=xuy,where m is odd,or u and m are both even.

    By the non-singularity condition,|Og|=0.

    Subcase 3.3 g=xuy,where u is odd and m is even.

    Without loss of generality,suppose g=xm?1y(i.e.,g=yx).Similar to the discussion in the subcase 1.4,let Xi(n1,n2,m)={λ |λ ∈ Bi(n1,n2,m),λ(cj)= λ(cm?j),j=1,···,m?1},where i=1,···,8.It is easy to show|X3(n1,n2,m)|=|X5(n1,n2,m)|=0.

    (1)Calculation of|X1(n1,n2,m)|.

    Let X1i(n1,n2,m)={λ | λ ∈ B1i(n1,n2,m),λ(cj)= λ(cm?j),j=1,···,m ? 1},i=1,2,3,4.We have the following result.

    where I1={1,2,···,24}and I2={8,12,17,19}.

    By Burnside Lemma,

    where I1={1,2,···,24}and I2={8,12,17,19}.

    Subcase 3.4 g=where α =1 or β =1.

    By the non-singularity condition,|Og|=0.

    From Burnside Lemma,we get

    where I1={1,2,···,24}and I2={8,12,17,19}.

    Case 4 n1>n2=2 and m=3 or n1=n2>2 and m≥3.

    According to Lemma 2.3,Aut(F(n1,n2,m))=Sn1+1×Sn2+1×Z2×Dm.g∈Aut(F(n1,n2,m))can be written in the formwhere u ∈ Zm,v,α,β and γ ∈ Z2.

    Subcase 4.1 g=where α =1 or β =1 or γ =1.

    By the non-singularity condition,|Og|=0.

    Subcase 4.2 g=xu,xuy.

    The calculation is similar to the subcases 3.1–3.3.We omit the details.So

    where I1={1,2,···,24}and I2={8,12,17,19}.

    The proof is completed.

    Remark 4.1 A direct calculation shows that Eo(3,1,3)=8679444480.

    Appendix 1

    Suppose that n1is odd,n1≥2,n2≥1,n1≥n2and m≥2.We list recursive functions fias follows:

    Appendix 2

    Suppose positive integers n1≥2 and m≥3.We list recursive functions gi.

    Form odd,gi(n1,m)=0(1≤i≤7).For m even,giis defined as follows:

    Appendix 3

    Suppose positive integers n1≥2,n2≥1 and m≥3.We list recursive functions ki.

    For m odd,ki(n1,n2,m)=0(1≤i≤24).For m even,kiis defined as follows:

    AcknowledgementThe authors would like to thank the referees for their very careful reading of the manuscript and valuable comments.

    [1]Alperin,J.L.and Bell,R.B.,Groups and Representations,Springer-Verlag,Berlin,1995.

    [2]Cai,M.,Chen,X.and Lü,Z.,Small covers over prisms,Topology Appl.,154,2007,2228–2234.

    [3]Chen,Y.and Wang,Y.,Small covers over a product of simplices,Filomat,27,2013,777–787.

    [4]Choi,S.,The number of orientable small covers over cubes,Proc.Japan Acad.,Ser.A,86,2010,97–100.

    [5]Davis,M.and Januszkiewicz,T.,Convex polytopes,Coxeter orbifolds and torus actions,Duke Math.J.,62,1991,417–451.

    [6]Garrison,A.and Scott,R.,Small covers of the dodecahedron and the 120-cell,Proc.Amer.Math.Soc.,131,2003,963–971.

    [7]Lü,Z.and Masuda,M.,Equivariant classification of 2-torus manifolds,Colloq.Math.,115,2009,171–188.

    [8]Meng,Y.,On closed manifolds and moment-angle complex in toric topology,Dissertation,Hebei Normal Univ.,2012.

    [9]Nakayama,H.and Nishimura,Y.,The orientability of small covers and coloring simple polytopes,Osaka J.Math.,42,2005,243–256.

    [10]Ziegler,G.M.,Lectures on Polytopes,Springer-Verlag,Berlin,1994.

    午夜免费成人在线视频| 国产精华一区二区三区| 色av中文字幕| 一本综合久久免费| 日本与韩国留学比较| АⅤ资源中文在线天堂| 久9热在线精品视频| 亚洲第一电影网av| 白带黄色成豆腐渣| 99re在线观看精品视频| 亚洲欧美日韩卡通动漫| 久久精品国产99精品国产亚洲性色| 亚洲中文日韩欧美视频| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 亚洲精华国产精华精| 亚洲成a人片在线一区二区| 真实男女啪啪啪动态图| 亚洲精品在线美女| www.999成人在线观看| 母亲3免费完整高清在线观看| 欧美3d第一页| 免费看光身美女| 最好的美女福利视频网| 叶爱在线成人免费视频播放| 国产亚洲欧美98| 色综合婷婷激情| 成人av一区二区三区在线看| 日韩三级视频一区二区三区| 久99久视频精品免费| 天堂网av新在线| 亚洲国产高清在线一区二区三| 国产精品久久久人人做人人爽| 69av精品久久久久久| 欧美中文日本在线观看视频| www日本在线高清视频| 村上凉子中文字幕在线| 精品国产乱码久久久久久男人| 99久久国产精品久久久| 亚洲中文日韩欧美视频| 最好的美女福利视频网| 亚洲精品中文字幕一二三四区| 国产97色在线日韩免费| 人人妻人人看人人澡| 一进一出抽搐gif免费好疼| 男女床上黄色一级片免费看| АⅤ资源中文在线天堂| 欧美乱妇无乱码| 国产 一区 欧美 日韩| av天堂中文字幕网| 久久中文看片网| 国产成人影院久久av| av黄色大香蕉| 1000部很黄的大片| 国产一区二区激情短视频| 麻豆国产av国片精品| 国产成人av激情在线播放| 久久精品91蜜桃| 宅男免费午夜| 后天国语完整版免费观看| 精品国产乱子伦一区二区三区| 成年女人看的毛片在线观看| 国产av不卡久久| 亚洲成av人片免费观看| 天堂网av新在线| 两个人的视频大全免费| 视频区欧美日本亚洲| 99久久国产精品久久久| 在线观看舔阴道视频| 女人高潮潮喷娇喘18禁视频| 51午夜福利影视在线观看| 久久精品国产99精品国产亚洲性色| 免费在线观看视频国产中文字幕亚洲| 99re在线观看精品视频| 禁无遮挡网站| 国产av麻豆久久久久久久| 国产高清视频在线播放一区| 成人特级av手机在线观看| 99热6这里只有精品| 色综合婷婷激情| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 精品日产1卡2卡| 日韩精品中文字幕看吧| 国产精品久久久久久精品电影| 午夜免费激情av| 真实男女啪啪啪动态图| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| 日本在线视频免费播放| 免费av不卡在线播放| 丰满的人妻完整版| 香蕉国产在线看| 啦啦啦韩国在线观看视频| 老熟妇仑乱视频hdxx| 国产一区二区在线av高清观看| 女警被强在线播放| 天天一区二区日本电影三级| 1024香蕉在线观看| 亚洲成人久久爱视频| 亚洲国产欧美网| 久久人人精品亚洲av| 黄频高清免费视频| 久久伊人香网站| 国产精品久久久久久久电影 | 国产一区二区在线av高清观看| 18禁黄网站禁片午夜丰满| 久久精品国产综合久久久| 国产精品久久久av美女十八| 亚洲精华国产精华精| 久久人妻av系列| 悠悠久久av| 国产精品日韩av在线免费观看| 免费在线观看成人毛片| 两性午夜刺激爽爽歪歪视频在线观看| 精品一区二区三区四区五区乱码| 免费观看精品视频网站| 又粗又爽又猛毛片免费看| 天天添夜夜摸| 免费看日本二区| 亚洲色图av天堂| 国产私拍福利视频在线观看| 国产美女午夜福利| 日本熟妇午夜| 亚洲精品美女久久久久99蜜臀| 欧美色视频一区免费| 丁香六月欧美| 精品久久久久久,| 国产精品久久久久久人妻精品电影| svipshipincom国产片| 一区二区三区激情视频| 久久久久久大精品| 欧美极品一区二区三区四区| 999精品在线视频| 九九热线精品视视频播放| 最新在线观看一区二区三区| 一二三四在线观看免费中文在| 美女黄网站色视频| 亚洲一区高清亚洲精品| 日本成人三级电影网站| 天堂√8在线中文| e午夜精品久久久久久久| 色老头精品视频在线观看| 91麻豆精品激情在线观看国产| 后天国语完整版免费观看| 91在线观看av| 日韩欧美三级三区| 黄色片一级片一级黄色片| 国产伦在线观看视频一区| 一区福利在线观看| 在线观看日韩欧美| 网址你懂的国产日韩在线| 亚洲av美国av| 精品无人区乱码1区二区| 亚洲欧美日韩东京热| 久久久成人免费电影| av女优亚洲男人天堂 | 夜夜爽天天搞| 真人做人爱边吃奶动态| 久久精品国产清高在天天线| 在线a可以看的网站| 一进一出好大好爽视频| 狂野欧美白嫩少妇大欣赏| 久久精品亚洲精品国产色婷小说| 亚洲,欧美精品.| 国产麻豆成人av免费视频| 亚洲自偷自拍图片 自拍| 男女做爰动态图高潮gif福利片| 青草久久国产| 欧美绝顶高潮抽搐喷水| 五月玫瑰六月丁香| 老司机午夜福利在线观看视频| 亚洲国产精品合色在线| 日韩三级视频一区二区三区| www.精华液| 国产精品综合久久久久久久免费| 精品免费久久久久久久清纯| 国产成人av激情在线播放| 男女午夜视频在线观看| 日本一二三区视频观看| 亚洲自偷自拍图片 自拍| 一进一出好大好爽视频| 首页视频小说图片口味搜索| 麻豆久久精品国产亚洲av| 黄频高清免费视频| 免费一级毛片在线播放高清视频| ponron亚洲| 久久香蕉国产精品| 精品熟女少妇八av免费久了| 看免费av毛片| 亚洲国产高清在线一区二区三| 久久99热这里只有精品18| 亚洲精品中文字幕一二三四区| 99久久精品国产亚洲精品| 天堂av国产一区二区熟女人妻| 不卡一级毛片| 国产精品一及| 亚洲av熟女| 99久久综合精品五月天人人| 国产免费男女视频| 亚洲精品在线观看二区| 国产亚洲欧美在线一区二区| 国产欧美日韩一区二区精品| 久久久精品大字幕| 国内精品美女久久久久久| 欧美一区二区国产精品久久精品| 亚洲天堂国产精品一区在线| 人人妻人人澡欧美一区二区| 丝袜人妻中文字幕| 中文资源天堂在线| 91av网一区二区| www.www免费av| 国产aⅴ精品一区二区三区波| 曰老女人黄片| or卡值多少钱| 99热精品在线国产| 香蕉av资源在线| 色视频www国产| 动漫黄色视频在线观看| 黄频高清免费视频| 国产成人精品久久二区二区免费| 国产精品免费一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 大型黄色视频在线免费观看| 日韩高清综合在线| 国产伦一二天堂av在线观看| 成年女人永久免费观看视频| 国产综合懂色| 国产高清激情床上av| 非洲黑人性xxxx精品又粗又长| 在线a可以看的网站| 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 男人舔女人下体高潮全视频| xxxwww97欧美| 一区二区三区高清视频在线| 欧美在线一区亚洲| 特级一级黄色大片| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 人人妻,人人澡人人爽秒播| 久久久久九九精品影院| 老熟妇乱子伦视频在线观看| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 久久国产乱子伦精品免费另类| 亚洲成av人片免费观看| 精品不卡国产一区二区三区| 欧美zozozo另类| 中文字幕av在线有码专区| 他把我摸到了高潮在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产高潮美女av| 少妇裸体淫交视频免费看高清| 国产v大片淫在线免费观看| 麻豆一二三区av精品| 亚洲男人的天堂狠狠| 在线a可以看的网站| 男女床上黄色一级片免费看| 欧美成狂野欧美在线观看| 精品久久蜜臀av无| 这个男人来自地球电影免费观看| 免费在线观看成人毛片| 午夜激情欧美在线| 中文字幕av在线有码专区| av中文乱码字幕在线| 国产黄色小视频在线观看| 欧美中文日本在线观看视频| 欧美日韩瑟瑟在线播放| 国产又色又爽无遮挡免费看| 国产精品久久久久久人妻精品电影| 欧美国产日韩亚洲一区| 国产亚洲精品久久久久久毛片| 国产精品免费一区二区三区在线| 精品一区二区三区视频在线 | 人妻久久中文字幕网| 亚洲专区中文字幕在线| 99在线视频只有这里精品首页| 黄色成人免费大全| 成人午夜高清在线视频| 超碰成人久久| 亚洲无线在线观看| 丁香六月欧美| 久久精品国产亚洲av香蕉五月| 成人鲁丝片一二三区免费| 一区二区三区高清视频在线| 久久久色成人| 又紧又爽又黄一区二区| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久中文| 亚洲国产欧洲综合997久久,| 亚洲在线自拍视频| 美女黄网站色视频| 最近最新中文字幕大全电影3| 亚洲片人在线观看| 欧美中文综合在线视频| 国产又色又爽无遮挡免费看| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆| 三级毛片av免费| 成年女人看的毛片在线观看| 国产亚洲av嫩草精品影院| 亚洲精品一卡2卡三卡4卡5卡| 少妇裸体淫交视频免费看高清| 一区二区三区国产精品乱码| 久久香蕉国产精品| 国产伦精品一区二区三区四那| 国产精品,欧美在线| 99热这里只有精品一区 | 最近在线观看免费完整版| 亚洲专区国产一区二区| 最近最新中文字幕大全免费视频| 免费看光身美女| av在线天堂中文字幕| 一级毛片高清免费大全| 欧美性猛交黑人性爽| 亚洲欧美日韩高清在线视频| 欧美黑人欧美精品刺激| 国产高清videossex| 巨乳人妻的诱惑在线观看| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线| 麻豆成人午夜福利视频| 日本黄大片高清| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 18禁美女被吸乳视频| 国产亚洲精品av在线| 国产黄a三级三级三级人| 制服人妻中文乱码| 99久久精品热视频| 久久久久精品国产欧美久久久| 亚洲国产看品久久| 欧美中文综合在线视频| 国产蜜桃级精品一区二区三区| 人人妻人人澡欧美一区二区| 首页视频小说图片口味搜索| 97人妻精品一区二区三区麻豆| av片东京热男人的天堂| 日韩欧美精品v在线| 老司机午夜十八禁免费视频| 久久久久亚洲av毛片大全| 午夜精品久久久久久毛片777| 欧美日韩综合久久久久久 | 搡老熟女国产l中国老女人| 综合色av麻豆| 亚洲成av人片在线播放无| 色综合站精品国产| 日韩欧美在线乱码| 露出奶头的视频| 人人妻人人看人人澡| 哪里可以看免费的av片| 夜夜躁狠狠躁天天躁| av欧美777| 久久久久性生活片| 日本成人三级电影网站| or卡值多少钱| svipshipincom国产片| 好男人电影高清在线观看| 欧美在线一区亚洲| 啦啦啦韩国在线观看视频| 欧美在线黄色| 日本一二三区视频观看| 国产伦一二天堂av在线观看| 久久天堂一区二区三区四区| 国内精品久久久久久久电影| 免费av不卡在线播放| 久久久久久大精品| av黄色大香蕉| av中文乱码字幕在线| 久久久久九九精品影院| 国产成+人综合+亚洲专区| 久久精品国产清高在天天线| xxxwww97欧美| 久久精品91蜜桃| 国产成人精品无人区| 国产精品亚洲美女久久久| 香蕉丝袜av| АⅤ资源中文在线天堂| 波多野结衣巨乳人妻| 欧美性猛交黑人性爽| 日韩欧美在线乱码| 少妇裸体淫交视频免费看高清| 久久精品亚洲精品国产色婷小说| 亚洲欧美日韩卡通动漫| 又紧又爽又黄一区二区| 男人和女人高潮做爰伦理| 成年女人看的毛片在线观看| 操出白浆在线播放| 国产av在哪里看| 最新在线观看一区二区三区| 国产又色又爽无遮挡免费看| 亚洲欧洲精品一区二区精品久久久| 在线永久观看黄色视频| 午夜精品一区二区三区免费看| 日本精品一区二区三区蜜桃| 欧美最黄视频在线播放免费| 亚洲狠狠婷婷综合久久图片| 成人永久免费在线观看视频| 欧美成人性av电影在线观看| 国产精品98久久久久久宅男小说| 国产亚洲av嫩草精品影院| 麻豆久久精品国产亚洲av| 在线观看免费午夜福利视频| 亚洲美女黄片视频| 亚洲国产中文字幕在线视频| 99热只有精品国产| 真人做人爱边吃奶动态| 免费观看人在逋| 久久久久国产精品人妻aⅴ院| 男女视频在线观看网站免费| 精品国产亚洲在线| 黄色片一级片一级黄色片| 婷婷精品国产亚洲av在线| 国产精品亚洲av一区麻豆| 搡老岳熟女国产| www.精华液| 1024香蕉在线观看| 丁香六月欧美| 欧美日韩乱码在线| av天堂中文字幕网| 亚洲国产色片| 日本五十路高清| 久久精品国产99精品国产亚洲性色| 午夜福利欧美成人| 制服人妻中文乱码| 久久久久久国产a免费观看| 久久久久久久久中文| 在线观看美女被高潮喷水网站 | 欧美另类亚洲清纯唯美| 他把我摸到了高潮在线观看| 99热精品在线国产| 我要搜黄色片| 亚洲精品一卡2卡三卡4卡5卡| 日本一二三区视频观看| www.自偷自拍.com| 亚洲精品456在线播放app | 美女被艹到高潮喷水动态| 亚洲狠狠婷婷综合久久图片| 国产毛片a区久久久久| 这个男人来自地球电影免费观看| 国产精品综合久久久久久久免费| 久久久国产成人精品二区| 高清在线国产一区| 99国产精品99久久久久| 国产精品日韩av在线免费观看| 精品一区二区三区av网在线观看| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| 男女下面进入的视频免费午夜| www国产在线视频色| 亚洲精品在线观看二区| 在线观看日韩欧美| 日韩欧美 国产精品| 男插女下体视频免费在线播放| 日韩中文字幕欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 国语自产精品视频在线第100页| 两个人视频免费观看高清| 久久国产精品人妻蜜桃| 99久久精品热视频| 美女扒开内裤让男人捅视频| 亚洲成人久久性| 又大又爽又粗| av福利片在线观看| 亚洲七黄色美女视频| 国产精品乱码一区二三区的特点| 18禁美女被吸乳视频| 亚洲va日本ⅴa欧美va伊人久久| 成在线人永久免费视频| 亚洲成av人片在线播放无| 国产精品自产拍在线观看55亚洲| 亚洲av中文字字幕乱码综合| 日韩欧美三级三区| 中文字幕久久专区| 国产精品日韩av在线免费观看| 成人精品一区二区免费| 黄色视频,在线免费观看| 无限看片的www在线观看| 亚洲七黄色美女视频| 亚洲午夜精品一区,二区,三区| 欧美成人性av电影在线观看| 国产精品国产高清国产av| 免费大片18禁| 久久精品国产综合久久久| 极品教师在线免费播放| 国产精品99久久久久久久久| 观看美女的网站| 一个人看视频在线观看www免费 | 日韩三级视频一区二区三区| 国产1区2区3区精品| 天堂√8在线中文| 高潮久久久久久久久久久不卡| 丰满人妻一区二区三区视频av | 少妇的丰满在线观看| 身体一侧抽搐| 欧美乱妇无乱码| 亚洲中文字幕一区二区三区有码在线看 | 久久久久性生活片| 亚洲自拍偷在线| 免费看日本二区| 五月玫瑰六月丁香| 国产成人啪精品午夜网站| 亚洲欧美日韩无卡精品| x7x7x7水蜜桃| 午夜福利18| 狂野欧美激情性xxxx| 美女免费视频网站| 成人三级做爰电影| 亚洲欧美日韩无卡精品| 欧美成人免费av一区二区三区| 亚洲国产看品久久| 日本三级黄在线观看| 国产精品久久久久久精品电影| 国产精品久久电影中文字幕| 精品国产三级普通话版| 桃色一区二区三区在线观看| 此物有八面人人有两片| 三级毛片av免费| 日本五十路高清| x7x7x7水蜜桃| 亚洲av成人不卡在线观看播放网| 热99re8久久精品国产| av天堂在线播放| 三级毛片av免费| av中文乱码字幕在线| www国产在线视频色| 无遮挡黄片免费观看| 色视频www国产| 无遮挡黄片免费观看| 国产美女午夜福利| 欧美日韩综合久久久久久 | 亚洲av成人不卡在线观看播放网| 欧美日韩福利视频一区二区| av在线蜜桃| 1024手机看黄色片| 我的老师免费观看完整版| 国产成人精品久久二区二区91| 看黄色毛片网站| 视频区欧美日本亚洲| 亚洲欧美日韩高清在线视频| 啦啦啦免费观看视频1| 国产精品美女特级片免费视频播放器 | 99国产精品一区二区三区| 男女床上黄色一级片免费看| 免费看日本二区| 亚洲成人久久性| 免费搜索国产男女视频| 一区二区三区国产精品乱码| 在线永久观看黄色视频| 97超级碰碰碰精品色视频在线观看| 激情在线观看视频在线高清| 久久精品综合一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久久久久亚洲av毛片大全| 18禁裸乳无遮挡免费网站照片| 在线观看舔阴道视频| 日本精品一区二区三区蜜桃| 欧美成人免费av一区二区三区| 国产爱豆传媒在线观看| 久久精品91无色码中文字幕| 99久久99久久久精品蜜桃| 欧美黄色片欧美黄色片| 美女高潮的动态| 成人av一区二区三区在线看| 中亚洲国语对白在线视频| 韩国av一区二区三区四区| 亚洲精品色激情综合| 99热这里只有精品一区 | 香蕉av资源在线| 欧美一级毛片孕妇| 男人舔女人的私密视频| 黄片大片在线免费观看| 欧美日韩瑟瑟在线播放| 午夜福利免费观看在线| 亚洲av成人精品一区久久| 黄色女人牲交| 久久草成人影院| 此物有八面人人有两片| 亚洲成av人片免费观看| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站 | 国产午夜精品论理片| 国产成人福利小说| 久久国产精品人妻蜜桃| 精品国产三级普通话版| 国产精品亚洲av一区麻豆| 男人舔女人的私密视频| 午夜精品在线福利| 麻豆成人av在线观看| 51午夜福利影视在线观看| 色综合婷婷激情| 国产精品九九99| 亚洲在线自拍视频| 国产精品久久久久久精品电影| 成人亚洲精品av一区二区| 久久国产乱子伦精品免费另类| 18禁黄网站禁片午夜丰满| 亚洲一区二区三区色噜噜| 亚洲精华国产精华精| 国产毛片a区久久久久| 制服丝袜大香蕉在线| 亚洲成av人片在线播放无| 成年女人永久免费观看视频| 午夜精品一区二区三区免费看| 国产精品一及| 国产人伦9x9x在线观看| 午夜a级毛片| 久久久久国产一级毛片高清牌| 久久久久亚洲av毛片大全| 18禁黄网站禁片午夜丰满| 午夜视频精品福利| 好男人在线观看高清免费视频| 成人特级黄色片久久久久久久| 一级作爱视频免费观看|