• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brake Subharmonic Solutions of Subquadratic Hamiltonian Systems?

    2016-06-09 03:34:34ChongLI

    Chong LI

    1 Introduction and the Main Results

    Consider the Hamiltonian systems

    whereis the standard symplectic matrix,Inis the unit matrix of order n,H∈C2(R×R2n,R)and?H(t,z)is the gradient of H(t,z)with respect to the space variable z.We denote the standard norm and inner product in R2nby|·|and(·,·),respectively.

    Suppose that H(t,z)=and H∈C2(R×R2n,R)satisfies the following conditions:

    (H4)There exist constants a1,a2>0 and α∈(0,1)such that

    (H6)is a symmetrical continuous matrix,semi-positively definite for all t∈R;

    Recall that a T-periodic solution(z,T)of(1.1)is called a brake solution if z(t+T)=z(t)and z(t)=Nz(?t),and the later is equivalent toin which T is called the brake period of z.Up to the author’s knowledge,H.Seifert firstly studied brake orbits in the second-order autonomous Hamiltonian systems in[27]of 1948.Since then,many studies have been carried out for brake orbits of the first-order and second-order Hamiltonian systems.For the minimal periodic problem,multiple existence results about brake orbits for the Hamiltonian systems and more details about brake orbits,one can refer to the papers(see[1,3–6,11–13,20,22,25,29])and the references therein.S.Bolotin proved first in[5](also see[6])of 1978 the existence of brake orbits in the general setting.K.Hayashi in[13],H.Gluck and W.Ziller in[11],and V.Benci in[3]in 1983–1984 proved the existence of brake orbits of second-order Hamiltonian systems under certain conditions.In 1987,P.Rabinowitz in[25]proved the existence of brake orbits of the first-order Hamiltonian systems.In 1989,V.Benci and F.Giannoni gave a different proof of the existence of one brake orbit in[4].In 1989,A.Szulkin in[29]proved the existence of brake orbits of the first-order Hamiltonian systems under the√2-pinched condition.E.van Groesen in[12]of 1988 and A.Ambrosetti,V.Benci,Y.Long in[1]of 1993 also proved the multiplicity result about brake orbits for the second order Hamiltonian systems under different pinching conditions.Without pinching conditions,in[22]Y.Long,D.Zhang and C.Zhu proved that there exist at least two geometrically distinct brake orbits in every bounded convex symmetric domain in Rnfor n≥2.Recently,C.Liu and D.Zhang in[20]proved that there exist at least+1 geometrically distinct brake orbits in every bounded convex symmetric domain in Rnfor n≥2,and there exist at least n geometrically distinct brake orbits on the nondegenerate domain.D.Zhang studied the minimal period problem for brake orbits of nonlinear autonomous reversible Hamiltonian systems in[30].

    For the non-autonomous Hamiltonian systems,and the periodic boundary(brake solution)problems,since the Hamiltonian function H is T-periodic in the time variable t,if the system(1.1)has a T-periodic solution(z1,T),one hopes to find the jT-periodic solution(zj,jT)for integer j≥1,for example,(z1,jT)itself is a jT-periodic solution.The subharmonic solution problem asks when the solutions z1and zjare geometrically distinct.More precisely,in the case of brake solutions,z1and zjare distinct iffor any integer k.Below we remind that the L0-indices of the two solutions z1and(kT)?z1for any k∈Z in the interval?0,?are the same.

    Theorem 1.1 Suppose that H ∈ C2(R×R2n,R)satisfies(H1)–(H7),and then for each integerthere is a jT-periodic nonconstant brake solution zjof(1.1)such that zjand zkjare distinct for k ≥ 5 andFurthermore,{zkp|p∈ N}is a pairwise distinct brake solution sequence of(1.1)for k≥5 and 1≤

    Especially,ifTherefore,one can state the following theorem.

    Theorem 1.2 Suppose that H ∈ C2(R×R2n,R)with(t)≡ 0 satisfies(H1)–(H5),and then for each integer j≥1,there is a jT-periodic nonconstant brake solution zjof(1.1).Furthermore,given any integers j≥1 and k≥5,zjand zkjare distinct brake solutions of(1.1),and in particularly,{zkp|p∈N}is a pairwise distinct brake solution sequence of(1.1).

    The first result on subharmonic periodic solutions for the Hamiltonian systems˙z(t)=J?H(t,z(t)),where z∈ R2nand H(t,z)is T-periodic in t,was obtained by P.Rabinowitz in his pioneer work[26].Since then,many new contributions have appeared(see,for example,[8–9,19,21,28]and the references therein).Especially,in[9],I.Ekeland and H.Hofer proved that under a strict convex condition and a superquadratic condition,the Hamiltonian system ˙z(t)=J?H(t,z(t))possesses a subharmonic solution zkfor each integer k≥1 and all of these solutions are pairwise geometrically distinct.In[19],C.Liu obtained a result of subharmonic solutions for the non-convex case by using the Maslov-type index iteration theory.In[14],the author of this paper and C.Liu obtained a result of brake subharmonic solutions for the superquadratic condition by using the L-Maslov type index iteration theory.For the subquadratic Hamiltonian systems,P.Rabinowitz[26]proved the existence of subharmonic solutions for the Hamiltonian system(1.1)under conditions(H4)–(H5)for the special case α =0.In[28],E.A.B.Silva obtained the existence of subharmonic solutions for the Hamiltonian system(1.1)under conditions(H4)–(H5),by establishing a new version of a saddle point theorem for strongly in definite functionals which satisfy a generalization of the well-known(PS)condition.In this paper,we mainly use the L-Maslov type index iteration theory to study the brake subharmonic solutions under the subquadratic conditions.

    The main ingredient in proving Theorems 1.1–1.2 is to transform the brake solution problem into the L0-boundary problem:

    where L0={0}⊕Rn∈ Λ(n).Λ(n)is the set of all linear Lagrangian subspaces in(R2n,ω0),where the standard symplectic form is defined byA Lagrangian subspace L of R2nis an n dimensional subspace satisfying ω0|L=0.Then we use the Galerkin approximation methods to get a critical point of the action functional which is also a solution of(3.1)with a suitable L0-index estimate(see Theorem 3.1 below).

    The L-Maslov type index theory for any L∈Λ(n)was studied in[17]by the algebraic methods.In[22],Y.Long,D.Zhang and C.Zhu established two indices μ1(γ)and μ2(γ)for the fundamental solution γ of a linear Hamiltonian system by the methods of functional analysis which are special cases of the L-Maslov type index iL(γ)for Lagrangian subspaces L0={0}⊕Rnand L1=Rn⊕{0}up to a constant n.In order to prove Theorem 1.1,we need to consider the problem(3.1).The iteration theory of the L0-Maslov type index theory was developed in[18]and[20],which helps us to distinguish solutions zjfrom zkjin Theorems 1.1–1.2.

    This paper is divided into 3 sections.In Section 2,we give an introduction to the Maslovtype index theory for symplectic paths with Lagrangian boundary conditions and an iteration theory for the L0-Maslov type index theory.In Section 3,we give the proofs of Theorems 1.1–1.2.

    2 Preliminaries

    In this section,we briefly recall the Maslov-type index theory for symplectic paths with Lagrangian boundary conditions and an iteration theory for the L0-Maslov type index theory.All the details can be found in[16–18,20].

    We denote the 2n-dimensional symplectic group Sp(2n)by where L(R2n)is the set of all real 2n×2n matrices,and MTis the transpose of matrix M.Denote by Ls(R2n)the subset of L(R2n)consisting of symmetric matrices.And denote the symplectic path space by

    We write a symplectic path γ∈P(2n)in the following form:

    where S(t),T(t),V(t)and U(t)are n×n matrices.The n vectors that come from the column of the matrixare linearly independent and they span a Lagrangian subspace of(R2n,ω0).Particularly,at t=0,this Lagrangian subspace is L0={0}⊕Rn.

    definition 2.1(see[17])We define the L0-nullity of any symplectic path γ∈P(2n)by

    with the n×n matrix function V(t)defined in(2.1).

    For L0={0}⊕Rn,We define the following subspaces of Sp(2n)by

    whereandWe denote two subsets of P(2n)by

    We note that rankso the complex matrixis invertible.We define a complex matrix function by

    It is easy to see that the matrix Q(t)is a unitary matrix for any t∈[0,1].We define

    For a pathwe first adjoin it with a simple symplectic path starting from J=?M+,that is,we define a symplectic path by

    Then we choose a symplectic path β(t)in Sp(2n)starting from γ(1)and ending at M+or M?according to γ(1)respectively.We now define a joint path by

    By the definition,we see that the symplectic path γ starts from ?M+and ends at either M+or M?.As above,we define

    forWe can choose a continuous function Δ(t)in[0,1]such that

    By the above arguments,we see that the number∈Z and it does not depend on the choice of the function

    definition 2.2(see[17])For a symplectic pathwe define the L0-index of γ

    definition 2.3(see[17])For a symplectic pathwe define the L0-index of γandis sufficiently close to γ}.

    We know thatwhich means that for any linear subspace L∈Λ(n),there is an orthogonal symplectic matrix P=the unitary matrix,such that PL0=L.P is uniquely determined by L up to an orthogonal matrix C∈O(n).It means that for any other choice P?satisfying the above conditions,there exists a matrix C∈O(n)such thatWe define the conjugated symplectic path γc∈ P(2n)of γ by γc(t)=P?1γ(t)P.

    definition 2.4(see[17])We define the L-nullity of any symplectic path γ∈P(2n)by

    where the n × n matrix function Vc(t)is defined in(2.1)with the symplectic path γ replaced by

    definition 2.5(see[17])For a symplectic path γ ∈ P(2n),we define the L-index of γ by iL(γ)=iL0(γc).

    In the case of linear Hamiltonian systems,

    where B ∈ C(R,Ls(R2n)).Its fundamental solution γ = γBis a symplectic path starting from the identity matrix I2n,i.e.,γ=γB∈P(2n).We denote

    Theorem 2.1 (see[17])Suppose that γ ∈P(2n)is a fundamental solution of(2.2)with B(t)>0.There holds iL(γ)≥ 0.

    Suppose that the continuous symplectic path γ :[0,2]→ Sp(2n)is the fundamental solution of(2.2)with B(t)satisfying B(t+2)=B(t)and B(1+t)N=NB(1?t).This implies that B(t)N=NB(?t).By the unique existence theorem of the differential equations,we get

    We define the iteration path of γ|[0,1]by

    and in general,for k∈N,we define

    Recall that(iω(γ),νω(γ))is the ω-index pair of the symplectic path γ introduced in[21],andis defined in[20].

    Theorem 2.2(see[20])Suppose thatFor odd k we have

    and for even k,we have

    where

    Theorem 2.3(see[20])There hold

    where L1=Rn⊕{0}∈Λ(n).

    In the following section,we need the following two iteration inequalities.

    Theorem 2.4(see[18])For any γ∈P(2n)and k∈N,there hold

    Remark 2.1 From(3.21)of[20]and Proposition B of[22],we have that

    3 Proof of Theorems 1.1–1.2

    In reference[14],we have proved the following Lemma 3.1.

    Lemma 3.1 Suppose that the Hamiltonian function H satisfies(H1)–(H2)and(H7).If?z,?is a solution of the problem(1.2),then(,T)is a T-periodic solution of the Hamiltonian system(1.1)satisfying the brake conditionwhereis defined by

    By this observation,we consider the following Hamiltonian system:where j∈N.The following result is the first part of Theorem 1.1.

    Theorem 3.1 Suppose that H(t,z) ∈ C2(R × R2n,R)satisfies(H4)–(H6),and then(3.1)possesses at least one nontrivial solution zjwhose L0-index pair(iL0(zj),νL0(zj))satisfies

    So we get a nonconstant brake solution(?zj,jT)with a brake period jT of the Hamiltonian system(1.1)by Lemma 3.1.

    In order to prove Theorem 3.1,we need the following arguments.For simplicity,we supposebe the Hilbert space with the inner product

    In the following,we use?·,·?and?·?to denote the inner product and the norm in X,respectively.It is well known that for any z∈X,one has z∈Lr([0,j],R2n)for any r∈[1,+∞),and there exists a constant cr>0 such that?z?Lr≤cr?z?.

    We define the linear operators A andon X by extending the bilinear form

    Thenis a compact self-adjoint operator(see[21])and A is a self-adjoint operator,i.e.,

    We take the spaces

    andWe haveWe also know that

    Equalities(3.2)and(3.3)can be proved by definition and direct computation.Let Pm:X→Xmbe the corresponding orthogonal projection for m ∈N.Then Γ={Pm;m ∈N}is a Galerkin approximation scheme with respect to A(see[16]).

    For any Lagrangian subspace L∈Λ(n),suppose P∈Sp(2n)∩O(2n)such that L=PL0.Then we define XL=PX and=PXm.Let Pm:XL→Then as above,={Pm;m∈N}is a Galerkin approximation scheme with respect to A.For d>0,we denote by(Q),?=+,0,?,the eigenspaces corresponding to the eigenvalues λ of the linear operator Q:XL→ XLbelonging to[d,+∞),(?d,d)and(?∞,?d],respectively.And denote by M?(Q),?=+,0,?,the eigenspaces corresponding to the eigenvalues λ of Q belonging to(0,+∞),{0}and(?∞,0),respectively.For any adjoint operator Q,we denote Q?=(Q|ImQ)?1,and we also denote PmQPm=(PmQPm)|XmL.The following result is the well-known Galerkin approximation formula,which is proved in[16].

    Theorem 3.2 For any B(t)∈ C([0,1],Ls(R2n))with its L-index pair(iL(B),νL(B))and any constant 00 such that for m≥m0,we have

    define a function ? on X by

    Suppose that W is a real Banach space,g∈C1(W,R).g is said to satisfy the(PS)condition,if for any sequence{xq}?W satisfying that g(xq)is bounded and g?(xq)→0 as q→∞,there exists a convergent subsequence{xqj}of{xq}(see[24]).Let ?m= ?|Xmbe the restriction of ? on Xm.When H satisfies(H4)and(H5),by Proposition A in[2],we have the following two lemmas.

    Lemma 3.2 For all m∈N,?msatisfies the(PS)condition on Xm.

    Lemma 3.3 ? satisfies the(PS)?condition on X with respect to{zm},i.e.,for any sequence{zm}?X satisfying that zm∈ Xm,?m(zm)is bounded and thatas m→+∞,where(Xm)?is the dual space of Xm,there exists a convergent subsequence{zmj}of{zm}in X.

    In order to proveTheorem 3.1,we need the following definition and the saddle-point theorem.

    definition 3.1(see[10])Let E be a C2-Riemannian manifold and D be a closed subset of E.A family φ(α)of subsets of E is said to be a homological family of dimensional q with boundary D if for some nontrivial class,α ∈ Hq(E,D).The family φ(α)is defined by

    where i?is the homomorphism induced by the immersion i:G→E.

    Theorem 3.3(see[10])For the above E,D and α,let φ(α)be a homological family of dimension q with boundary D.Suppose that f∈C2(E,R)satisfies the(PS)condition.define

    Suppose thatFredholm on

    Then there exists an x∈Kc(f)such that the Morse index m?(x)and the nullity m0(x)of the functional f at x satisfy

    It is clear that a critical point of ? is a solution of(3.1).For a critical point z=z(t),let B(t)=H??(t,z(t)),and define the linearized systems at z(t)by

    Then the L0-index pair of z is defined by(iL0(z),νL0(z))=(iL0(B),νL0(B)).

    Now we give the proof of Theorem 3.1.

    Proof of Theorem 3.1 We carry out the proof in 2 steps.

    Step 1 The critical points of ?m.

    Set Sm=⊕X0.Then dim Sm=mn+dim X0=mn+dim ker A=mn+n,dim=mn.

    In the following,we prove that ?m(z)satisfies:

    (I)?m(z)≥β>0,?z∈ Ym=∩?Bρ(0),

    (II)?m(z)≤ 0< β,?z∈ ?Qm,where Qm={re|r∈ [0,r1]}⊕(Br2(0)∩Sm),e∈X+m∩?B1(0),r1>ρ,r2>0.

    First we prove(I).By(H4),we have?H(t,z)≤ d1|z|1+α+d2|z|+d3,where d1,d2,d3>0.Take z∈Ym,and then

    Hence by(3.2)and(3.4),

    Since 1≤j<,choose a large enough ρ >0 independent of m such that for z ∈ Ym,?m(z)≥β>0.Hence(I)holds.

    Now we prove(II).Let e∈∩?B1and z=z?+z0∈Sm.By(3.2)and(3.3),

    where w=z?+re and?w?=?z??+r,Then we can obtain

    It follows from(H5)thatbounded from below onhas an upper bound.Choose r1and r2independent of m such that ?m(z+re)≤ 0< β on?Qm.Hence(II)holds.

    Because Qmis the deformation retract of Xm,then Hq(Qm,?Qm)Hq(Xm,?Qm),where q=dim Sm+1=mn+n+1=dim Qm,and?Qmis the boundary of Qmin Sm⊕{Re}.But Hq(Qm,?Qm)Hq?1(Sq?1)R.Denote by i:Qm→ Xmthe inclusion map.Let α =[Qm]∈ Hq(Qm,D)be a generator.Then i?α is nontrivial in Hq(Xm,?Qm),and φ(i?α)defined by definition 3.1 is a homological family of dimension q with boundary D:=?Qmand Qm∈ φ(i?α).?Qmand Ymare homologically linked(see[7]).By Lemma 3.2,?msatisfies the(PS)condition.defineWe have

    Since Xmis finite dimensionalis Fredholm.By Theorem 3.3,?mhas a critical pointwith critical value cm,and the Morse index m?()and nullity m0)of zsatisfy

    Since{cm}is bounded,passing to a subsequence,supposeBy the(PS)?condition of Lemma 3.3,passing to a subsequence,there exists a zj∈X such that

    Step 2Since

    there exists an r3>0 such that

    Then for m large enough,there holds

    Thus by(3.8),

    Similarly,we have

    By Theorem 3.2 and(3.6),(3.9)–(3.10),for large m we have

    We also have

    Combining(3.11)and(3.12),we have

    The proof of Theorem 3.1 is complete.

    It is the time to give the proof of Theorem 1.1.

    Proof of Theorem 1.1 For 1≤k<,by Theorem 3.1,we obtain that there is a nontrivial solution(zk,k)of the Hamiltonian systems(3.1)and its L0-index pair satisfies

    Then by Lemma 3.1,(,2k)is a nonconstant brake solution of(1.1).

    For k∈2N?1,we suppose that,2)and(,2k)are not distinct.By(3.13),Theorems 2.3–2.4,we have

    where L1=Rn⊕{0}∈Λ(n).By(H3),(H6)and Theorem 2.1,we have iL1(z1,1)≥0.We also know that νL1(z1,1)≥ 0 and iL0(z1,1)+ νL0(z1,1)≥ 1.Then(3.14)is

    By 0 ≤ iL0(z1,1)≤ 1,from(3.15)we haveIt is contradictory to k≥5.Similarly,we have that for each k∈2N?1,k≥5 and kjare distinct brake solutions of(1.1).Furthermore,are pairwise distinct brake solutions of(1.1),where k ∈ 2N?1,k≥ 5 and 1

    For k∈2N,as above,we suppose thatare not distinct.By(3.13),Theorems 2.3–2.4,we have

    Similarly,we also know that iL1(z1,1)≥ 0,νL1(z1,1)≥ 0,iL0(z1,1)+νL0(z1,1)≥ 1.By Remark 2.1,we haveThen(3.16)is

    By 0≤iL0(z1,1)≤1,from(3.17)we haveIt contradicts k≥5.Similarly we have that for each k∈2N,k≥6 andandare distinct brake solutions of(1.1).Furthermore,are pairwise distinct brake solutions of(1.1),where k∈2N,k≥6 andwith p∈ N.

    In all,for any integer 1≤j

    We note that Theorem 1.2 is a direct consequence of Theorem 1.1.

    AcknowledgementsThe author sincerely thanks Professor Chungen Liu for his much precious help and valuable suggestions.The author is also most grateful to the referees for their careful reading and valuable suggestions.

    [1]Ambrosetti,A.,Benci,V.and Long,Y.,A note on the existence of multiple brake orbits,Nonlinear Anal.TMA,21,1993,643–649.

    [2]Bahri,A.and Berestycki,H.,Forced vibrations of superquadratic Hamiltonian systems,Acta Math.,152,1984,143–197.

    [3]Benci,V.,Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems,Ann.I.H.P.Analyse Nonl.,1,1984,401–412.

    [4]Benci,V.and Giannoni,F.,A new proof of the existence of a brake orbit,in“Advanced Topics in the Theory of Dynamical Systems”,Notes Rep.Math.Sci.Eng.,6,1989,37–49.

    [5]Bolotin,S.,Libration motions of natural dynamical systems(in Russian),Vestnik Moskov Univ.Ser.I.Mat.Mekh.,6,1978,72–77.

    [6]Bolotin,S.and Kozlov,V.V.,Librations with many degrees of freedom(in Russian),J.Appl.Math.Mech.,42,1978,245–250.

    [7]Chang,K.,In finite Dimensional Morse Theory and Multiple Solution Problems,Birkh¨auser Verlag,Basel,Boston,Berlin,1993.

    [8]Ekeland,I.,Convexity Method in Hamiltonian Mechanics,Springer-Verlag,Berlin,1990.

    [9]Ekeland,I.and Hofer,H.,Subharmonics of convex Hamiltonian systems,Comm.Pure Appl.Math.,40,1987,1–37.

    [10]Ghoussoub,N.,Location,multiplicity and Morse indices of minimax critical points,J.Reine Angew Math.,417,1991,27–76.

    [11]Gluck,H.and Ziller,W.,Existence of periodic solutions of conservtive systems,Seminar on Minimal Submanifolds,Princeton University Press 1983,65–98.

    [12]Groesen,E.W.C.van,Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy,J.Math.Anal.Appl.,132,1988,1–12.

    [13]Hayashi,K.,Periodic solution of classical Hamiltonian systems,Tokyo J.Math.,6,1983,473–486.

    [14]Li,C.and Liu,C.,Brake subharmonic solutions of first order Hamiltonian systems,Science in China Ser.A,53(10),2010,2719–2732.

    [15]Li,C.and Liu,C.,Nontrivial solutions of superquadratic Hamiltonian systems with Lagrangian boundary conditions and the L-index theory,Chin.Ann.Math.Ser.B,29(6),2008,597–610.

    [16]Liu,C.,Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions,Pacific J.Math.,232(1),2007,233–255.

    [17]Liu,C.,Maslov-type index theory for symplectic paths with Lagrangian boundary conditions,Adv.Non.Stu.,7,2007,131–161.

    [18]Liu,C.,Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems,Discrete Contin.Dyn.Syst.,27,2010,337–355.

    [19]Liu,C.,Subharmonic solutions of Hamiltonian systems,Nonlinear Anal.TMA,42,2000,185–198.

    [20]Liu,C.and Zhang,D.,Iteration theory of L-index and multiplicity of brake orbits,J.Diff.Eq.,257,2014,1194–1245.

    [21]Long,Y.,Index Theory for Symplectic Paths with Applications,Birkh¨auser Verlag,Basel,Boston,Berlin,2002.

    [22]Long,Y.,Zhang,D.and Zhu,C.,Multiple brake orbits in bounded convex symmetric domains,Adv.in Math.,203,2006,568–635.

    [23]McDuff,D.and Salamon,D.,Introduction to Symplectic Topology,Clarendon Press,Oxford,1998.

    [24]Rabinowitz,P.H.,Minimax methods in critical point theory with applications to differential equations,CBMS Regional Conf.Ser.in Math.,65,AMS,RI,1986.

    [25]Rabinowitz,P.H.,On the existence of periodic solutions for a class of symmetric Hamiltonian systems,Nonlinear Anal.TMA,11,1987,599–611.

    [26]Rabinowitz,P.H.,On subharmonic solutions of Hamiltonian systems,Comm.Pure Appl.Math.,33,1980,609–633.

    [27]Seifert,H.,Periodische Bewegungen mechanischer systeme,Math.Z.,51,1948,197–216.

    [28]Silva,E.A.B.,Subharmonic solutions for subquadratic Hamiltonian systems,J.Diff.Eq.,115,1995,120–145.

    [29]Szulkin,A.,An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems,Math.Ann.,283,1989,241–255.

    [30]Zhang,D.,Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems,Discrete Contin.Dyn.Syst.,35(5),2015,2227–2272.

    免费观看无遮挡的男女| 国产免费又黄又爽又色| 亚洲色图av天堂| 亚洲精品日韩在线中文字幕| 高清不卡的av网站| 嘟嘟电影网在线观看| 免费看不卡的av| 欧美xxⅹ黑人| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩卡通动漫| 99热这里只有精品一区| 久久久久久久久久人人人人人人| 亚洲成人中文字幕在线播放| 美女xxoo啪啪120秒动态图| 日韩 亚洲 欧美在线| 中文字幕人妻熟人妻熟丝袜美| 色综合色国产| 欧美bdsm另类| av卡一久久| 一级黄片播放器| 夜夜爽夜夜爽视频| 亚洲欧美一区二区三区黑人 | 美女国产视频在线观看| 免费观看的影片在线观看| 伊人久久国产一区二区| 波野结衣二区三区在线| 日韩制服骚丝袜av| 亚洲va在线va天堂va国产| av线在线观看网站| 97超碰精品成人国产| 久久毛片免费看一区二区三区| 深爱激情五月婷婷| 国产av国产精品国产| 中文字幕精品免费在线观看视频 | 亚洲精品久久午夜乱码| 午夜免费鲁丝| 综合色丁香网| 精品午夜福利在线看| 国产亚洲欧美精品永久| 一本色道久久久久久精品综合| 一级a做视频免费观看| 午夜激情久久久久久久| 国产综合精华液| 日韩免费高清中文字幕av| 国产精品一二三区在线看| 亚洲第一av免费看| 不卡视频在线观看欧美| 两个人的视频大全免费| 日日啪夜夜撸| 五月玫瑰六月丁香| 啦啦啦中文免费视频观看日本| 国产精品一区www在线观看| 亚洲美女搞黄在线观看| 亚洲在久久综合| 精品少妇黑人巨大在线播放| 久久热精品热| 美女国产视频在线观看| 国产精品精品国产色婷婷| 一级二级三级毛片免费看| 综合色丁香网| 日本一二三区视频观看| 免费黄色在线免费观看| 老师上课跳d突然被开到最大视频| 久久久久久久亚洲中文字幕| 网址你懂的国产日韩在线| 亚洲av国产av综合av卡| 国产精品秋霞免费鲁丝片| 舔av片在线| 亚洲精品国产av成人精品| 久久精品国产亚洲网站| 国产色爽女视频免费观看| 99re6热这里在线精品视频| 熟女电影av网| 91午夜精品亚洲一区二区三区| 亚洲av男天堂| av一本久久久久| 97热精品久久久久久| 熟女人妻精品中文字幕| 国产精品一二三区在线看| 亚洲成人一二三区av| av专区在线播放| 尾随美女入室| 久久av网站| 大陆偷拍与自拍| 国产精品福利在线免费观看| 成人国产av品久久久| 少妇被粗大猛烈的视频| 最新中文字幕久久久久| 亚洲自偷自拍三级| 国产精品精品国产色婷婷| 欧美xxxx黑人xx丫x性爽| 亚洲四区av| 久久精品国产亚洲网站| 国产一级毛片在线| 国产大屁股一区二区在线视频| 少妇的逼水好多| 国产精品一区二区三区四区免费观看| 午夜福利在线观看免费完整高清在| 日本色播在线视频| 国模一区二区三区四区视频| 久久精品熟女亚洲av麻豆精品| 日韩一本色道免费dvd| 激情 狠狠 欧美| 免费看av在线观看网站| 夜夜看夜夜爽夜夜摸| 欧美精品国产亚洲| 欧美丝袜亚洲另类| 久久久久久久久久人人人人人人| 国产亚洲欧美精品永久| 欧美丝袜亚洲另类| 美女脱内裤让男人舔精品视频| 亚洲一级一片aⅴ在线观看| 国产精品熟女久久久久浪| 99视频精品全部免费 在线| 亚洲国产精品专区欧美| 亚洲精品成人av观看孕妇| 高清视频免费观看一区二区| 亚洲国产av新网站| 免费黄色在线免费观看| 黄色日韩在线| 97在线视频观看| 久久久久国产精品人妻一区二区| 色综合色国产| 啦啦啦在线观看免费高清www| 黄色视频在线播放观看不卡| 久久鲁丝午夜福利片| 日韩不卡一区二区三区视频在线| 中文字幕精品免费在线观看视频 | 青青草视频在线视频观看| 国产v大片淫在线免费观看| 黄色日韩在线| av一本久久久久| 嘟嘟电影网在线观看| 黑丝袜美女国产一区| 亚洲自偷自拍三级| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 久久久久久久精品精品| 在线观看人妻少妇| 久久热精品热| 欧美成人a在线观看| 亚洲第一av免费看| 欧美日韩精品成人综合77777| 成人无遮挡网站| 精品一区二区三卡| 一区在线观看完整版| 高清av免费在线| 国产人妻一区二区三区在| 新久久久久国产一级毛片| 免费人成在线观看视频色| 欧美激情国产日韩精品一区| 精品99又大又爽又粗少妇毛片| 日韩电影二区| 99精国产麻豆久久婷婷| 亚洲欧洲国产日韩| 18禁在线无遮挡免费观看视频| 新久久久久国产一级毛片| 肉色欧美久久久久久久蜜桃| 国产精品一及| 六月丁香七月| 成人二区视频| 人人妻人人澡人人爽人人夜夜| 黄色一级大片看看| 男的添女的下面高潮视频| 一本色道久久久久久精品综合| 国产精品久久久久久av不卡| 99久久精品国产国产毛片| av不卡在线播放| 免费在线观看成人毛片| 亚洲人成网站高清观看| 永久网站在线| 久久久午夜欧美精品| 国产视频首页在线观看| 一级a做视频免费观看| 韩国av在线不卡| a级一级毛片免费在线观看| 国产精品久久久久久久电影| 国产精品国产三级国产av玫瑰| 国产精品久久久久久精品电影小说 | 视频中文字幕在线观看| 热re99久久精品国产66热6| 在线精品无人区一区二区三 | 国产精品久久久久久久久免| 日韩欧美一区视频在线观看 | 亚洲精品日韩在线中文字幕| 一级二级三级毛片免费看| 18禁动态无遮挡网站| 久久久久久久久久人人人人人人| 亚洲av福利一区| 久久久色成人| 欧美成人午夜免费资源| 你懂的网址亚洲精品在线观看| 高清av免费在线| 美女内射精品一级片tv| 成人美女网站在线观看视频| 久久国产精品大桥未久av | 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类| 亚洲中文av在线| 亚洲国产精品专区欧美| 精品久久久精品久久久| 亚洲精品国产av蜜桃| 十八禁网站网址无遮挡 | 亚洲国产av新网站| 久久精品久久精品一区二区三区| 美女高潮的动态| .国产精品久久| 大片电影免费在线观看免费| 99热6这里只有精品| 久久久a久久爽久久v久久| 伊人久久精品亚洲午夜| av国产免费在线观看| 亚洲高清免费不卡视频| 天堂俺去俺来也www色官网| 人人妻人人爽人人添夜夜欢视频 | 在线看a的网站| 在线观看国产h片| av线在线观看网站| av网站免费在线观看视频| 精品一区在线观看国产| 国产黄色视频一区二区在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲av中文av极速乱| 美女国产视频在线观看| 国产综合精华液| 久久久久国产精品人妻一区二区| 欧美97在线视频| 老司机影院毛片| 视频区图区小说| 国产精品女同一区二区软件| 麻豆成人午夜福利视频| 老女人水多毛片| 少妇高潮的动态图| 亚洲美女黄色视频免费看| 午夜免费鲁丝| 韩国高清视频一区二区三区| 国产精品99久久久久久久久| 黄色怎么调成土黄色| 午夜免费鲁丝| 日韩人妻高清精品专区| 免费av中文字幕在线| 中文字幕制服av| 熟女电影av网| 精品一区在线观看国产| 建设人人有责人人尽责人人享有的 | 97在线人人人人妻| 大话2 男鬼变身卡| 久久99热这里只频精品6学生| 亚洲国产成人一精品久久久| 免费观看在线日韩| 伦理电影免费视频| 日韩亚洲欧美综合| 尾随美女入室| 色吧在线观看| 一级黄片播放器| 免费看光身美女| 99久久精品热视频| 国产精品熟女久久久久浪| 中文字幕制服av| 亚洲性久久影院| 中文字幕av成人在线电影| 国产男人的电影天堂91| 美女cb高潮喷水在线观看| 中文字幕免费在线视频6| 另类亚洲欧美激情| 高清黄色对白视频在线免费看 | 五月玫瑰六月丁香| 亚洲国产最新在线播放| 久久精品国产a三级三级三级| 亚洲成色77777| 亚洲国产欧美在线一区| 免费看日本二区| 久久久久久九九精品二区国产| 天天躁日日操中文字幕| 亚洲中文av在线| 亚洲国产精品一区三区| 免费看不卡的av| xxx大片免费视频| 高清毛片免费看| 亚洲美女黄色视频免费看| 黄色视频在线播放观看不卡| 国产成人精品久久久久久| 久久韩国三级中文字幕| 精品酒店卫生间| 欧美一区二区亚洲| 80岁老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 日韩电影二区| 一级片'在线观看视频| 久久精品国产亚洲av天美| 国产一区二区三区av在线| 亚洲人与动物交配视频| 在线观看av片永久免费下载| 久久久久网色| 两个人的视频大全免费| 老司机影院成人| 女性生殖器流出的白浆| 少妇的逼好多水| 国产乱来视频区| 性高湖久久久久久久久免费观看| 精品一区二区免费观看| 亚洲精品中文字幕在线视频 | 国产一区二区三区av在线| 久久精品夜色国产| 日韩一本色道免费dvd| 热99国产精品久久久久久7| 看十八女毛片水多多多| 免费观看性生交大片5| 午夜视频国产福利| 色哟哟·www| 免费少妇av软件| www.色视频.com| 欧美成人精品欧美一级黄| 亚洲真实伦在线观看| 丝袜脚勾引网站| 亚洲欧美一区二区三区黑人 | 国产在线一区二区三区精| 国产真实伦视频高清在线观看| 亚洲欧美日韩另类电影网站 | 久久午夜福利片| 国产精品一区二区三区四区免费观看| 女人十人毛片免费观看3o分钟| 91狼人影院| 伦理电影免费视频| 欧美老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| av视频免费观看在线观看| 亚洲精品色激情综合| 久久精品国产鲁丝片午夜精品| 五月伊人婷婷丁香| 欧美日韩亚洲高清精品| 观看av在线不卡| 韩国高清视频一区二区三区| 国产极品天堂在线| 青春草国产在线视频| 男女啪啪激烈高潮av片| 少妇熟女欧美另类| freevideosex欧美| 韩国av在线不卡| 亚洲精品亚洲一区二区| 人妻系列 视频| 亚洲av中文av极速乱| 欧美精品亚洲一区二区| 中文天堂在线官网| 乱系列少妇在线播放| 纵有疾风起免费观看全集完整版| 乱系列少妇在线播放| 高清黄色对白视频在线免费看 | 成人一区二区视频在线观看| 一级a做视频免费观看| 日韩电影二区| 激情五月婷婷亚洲| 中文资源天堂在线| 久久综合国产亚洲精品| 在线精品无人区一区二区三 | 国产熟女欧美一区二区| 99久国产av精品国产电影| 日本免费在线观看一区| 在线 av 中文字幕| 91久久精品电影网| 亚洲精品第二区| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 午夜福利在线在线| 成人二区视频| 免费播放大片免费观看视频在线观看| 国产久久久一区二区三区| 草草在线视频免费看| 亚洲精品国产av蜜桃| 精品国产乱码久久久久久小说| 久久久久久久大尺度免费视频| 精品久久久久久久久亚洲| 一级av片app| 国产真实伦视频高清在线观看| 免费看av在线观看网站| 少妇丰满av| 欧美成人午夜免费资源| 成人国产av品久久久| 99热全是精品| 亚洲真实伦在线观看| 色视频www国产| 国产一区二区三区av在线| 成人二区视频| 亚洲美女视频黄频| 精品亚洲成国产av| 日韩av免费高清视频| 美女中出高潮动态图| 日本猛色少妇xxxxx猛交久久| 男女无遮挡免费网站观看| 久久人人爽人人爽人人片va| 午夜免费男女啪啪视频观看| 青青草视频在线视频观看| 十八禁网站网址无遮挡 | 国产久久久一区二区三区| 人人妻人人看人人澡| 激情五月婷婷亚洲| 99国产精品免费福利视频| 久久久久久久精品精品| 色综合色国产| 亚洲欧美清纯卡通| 边亲边吃奶的免费视频| 麻豆精品久久久久久蜜桃| 亚洲真实伦在线观看| 超碰97精品在线观看| av国产免费在线观看| 蜜桃久久精品国产亚洲av| 亚洲国产av新网站| 精品久久久噜噜| 国产亚洲欧美精品永久| 免费看不卡的av| 免费大片18禁| 亚洲中文av在线| 欧美成人一区二区免费高清观看| 免费观看av网站的网址| 亚洲欧美一区二区三区国产| 国产黄频视频在线观看| 99热这里只有精品一区| 国产欧美另类精品又又久久亚洲欧美| 成人午夜精彩视频在线观看| 综合色丁香网| 国产高清不卡午夜福利| 女性被躁到高潮视频| 在线观看av片永久免费下载| 亚洲av综合色区一区| 日韩伦理黄色片| 亚洲国产成人一精品久久久| 少妇人妻久久综合中文| 免费人成在线观看视频色| 激情五月婷婷亚洲| 国产午夜精品一二区理论片| 嫩草影院新地址| 人人妻人人澡人人爽人人夜夜| 一本久久精品| av在线蜜桃| 亚洲精品成人av观看孕妇| 少妇人妻一区二区三区视频| 高清在线视频一区二区三区| 国产男女内射视频| 91狼人影院| av国产精品久久久久影院| 久久国产精品大桥未久av | 国产日韩欧美在线精品| 免费av中文字幕在线| 欧美+日韩+精品| 国产精品女同一区二区软件| av福利片在线观看| 老司机影院成人| 男女边摸边吃奶| 蜜桃亚洲精品一区二区三区| 美女国产视频在线观看| 久热这里只有精品99| 99九九线精品视频在线观看视频| 日本黄色日本黄色录像| 18禁在线无遮挡免费观看视频| 在线天堂最新版资源| 人妻少妇偷人精品九色| 国产 一区精品| 亚洲精品一区蜜桃| 国产成人精品婷婷| 午夜免费男女啪啪视频观看| 女人十人毛片免费观看3o分钟| 99视频精品全部免费 在线| 亚洲欧美中文字幕日韩二区| 亚洲精品久久久久久婷婷小说| 美女视频免费永久观看网站| 日日撸夜夜添| 国产又色又爽无遮挡免| 美女福利国产在线 | 毛片一级片免费看久久久久| 国产成人精品久久久久久| 久久人人爽人人片av| 亚洲天堂av无毛| av黄色大香蕉| 亚洲精品国产成人久久av| 亚洲欧美日韩东京热| 午夜福利影视在线免费观看| 亚洲精品视频女| 婷婷色av中文字幕| 最近最新中文字幕免费大全7| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 亚洲内射少妇av| 国产毛片在线视频| 午夜福利视频精品| av网站免费在线观看视频| 男人狂女人下面高潮的视频| 少妇人妻久久综合中文| 国产在线男女| 日日摸夜夜添夜夜爱| 亚洲欧美精品自产自拍| 热re99久久精品国产66热6| 日本vs欧美在线观看视频 | 亚洲av中文av极速乱| 狠狠精品人妻久久久久久综合| av又黄又爽大尺度在线免费看| 国产又色又爽无遮挡免| 99久久综合免费| 纵有疾风起免费观看全集完整版| 亚洲精品456在线播放app| 七月丁香在线播放| 欧美高清成人免费视频www| 美女福利国产在线 | 春色校园在线视频观看| 国产极品天堂在线| 精品人妻一区二区三区麻豆| 亚洲精品国产成人久久av| 成人免费观看视频高清| 精品人妻熟女av久视频| 久久精品国产自在天天线| 黄色欧美视频在线观看| 免费大片18禁| 精品熟女少妇av免费看| 色视频www国产| av免费在线看不卡| 亚洲无线观看免费| 精品久久久精品久久久| av在线观看视频网站免费| av线在线观看网站| 精品一区在线观看国产| 久久女婷五月综合色啪小说| 少妇 在线观看| 国产伦精品一区二区三区视频9| h视频一区二区三区| 亚洲欧美日韩卡通动漫| 欧美精品一区二区大全| 女的被弄到高潮叫床怎么办| 日韩av免费高清视频| 免费大片黄手机在线观看| 色婷婷久久久亚洲欧美| 黄片wwwwww| 一级毛片aaaaaa免费看小| 免费观看性生交大片5| 高清黄色对白视频在线免费看 | 伦理电影大哥的女人| 人妻少妇偷人精品九色| 搡女人真爽免费视频火全软件| a级一级毛片免费在线观看| 久久韩国三级中文字幕| 日韩av在线免费看完整版不卡| 亚洲精品乱码久久久v下载方式| 国国产精品蜜臀av免费| 夫妻性生交免费视频一级片| 免费在线观看成人毛片| 最近最新中文字幕免费大全7| 国产毛片在线视频| 亚洲av免费高清在线观看| 成人黄色视频免费在线看| 成人美女网站在线观看视频| av在线播放精品| 91久久精品电影网| 丝瓜视频免费看黄片| 97在线视频观看| 久久国产精品大桥未久av | 亚洲在久久综合| 亚洲精品日本国产第一区| 看非洲黑人一级黄片| 午夜免费观看性视频| 91精品伊人久久大香线蕉| 日韩人妻高清精品专区| 97在线人人人人妻| 久久人人爽av亚洲精品天堂 | 美女高潮的动态| 精品午夜福利在线看| 日韩,欧美,国产一区二区三区| 国产精品嫩草影院av在线观看| 3wmmmm亚洲av在线观看| 一级毛片aaaaaa免费看小| 天天躁日日操中文字幕| 亚洲真实伦在线观看| 国产成人a区在线观看| 国精品久久久久久国模美| 中文天堂在线官网| 久久久久久久久久久丰满| 丰满迷人的少妇在线观看| 夜夜看夜夜爽夜夜摸| 91精品国产九色| 国产亚洲午夜精品一区二区久久| 夫妻性生交免费视频一级片| 美女高潮的动态| 中文精品一卡2卡3卡4更新| 人妻制服诱惑在线中文字幕| 国产黄色视频一区二区在线观看| 久久久久久伊人网av| 内射极品少妇av片p| 国产人妻一区二区三区在| www.色视频.com| 在线精品无人区一区二区三 | 最黄视频免费看| 国产午夜精品一二区理论片| 日本一二三区视频观看| 3wmmmm亚洲av在线观看| 久久久欧美国产精品| 毛片女人毛片| 视频区图区小说| 亚洲国产精品999| 在线 av 中文字幕| 99久久精品热视频| 久久久久久久久久成人| 黄色视频在线播放观看不卡| 国产成人免费观看mmmm| 国产成人freesex在线| 熟女电影av网| 女的被弄到高潮叫床怎么办| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久电影| 中文字幕亚洲精品专区| 激情 狠狠 欧美| 1000部很黄的大片| 亚洲国产精品国产精品| 精品少妇久久久久久888优播| 久久精品国产亚洲av涩爱| av女优亚洲男人天堂| 久久久久久伊人网av| 看免费成人av毛片| 久久精品国产亚洲网站|