• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adapted Metrics and Webster Curvature in Finslerian 2-Dimensional Geometry

    2016-06-09 03:34:38MirceaCRASMAREANU

    Mircea CRASMAREANU

    1 Introduction

    The present note introduces the Webster scalar curvature discussed by Chern and Hamilton in[5]into the framework of 2-dimensional Finsler geometry.More precisely,we compute the Webster curvature for the sphere bundle T1S of a Finsler surface(S,F(x,y))by using the structural equations of this bundle.Specifically,the condition of adapted metric of[5]is suitable for only one 1-form(namely ω3)of the natural co-frame of T1S endowed with the Sasaki type metric gSasakiinduced by F.This condition,called vertical adapted,reduces the discussion to the Riemannian surfaces by the vanishing of the main scalar I and yields the constant Gaussian curvature K=2.It follows that the Webster curvature is12and a natural Cartan structure(in terms of[8,p.148])is given by the horizontal 1-forms.Let us remark that an interplay between Cartan structures and the generalized Finsler structures is studied in[13–14].

    We apply this computation to prove a structure result,that is,T1S with gSasakiis homothetic with a generalized Berger sphere.More precisely,we obtain that under the vertical adapted condition,the vector field e3,dual of ω3with respect to gSasaki,is a Killing vector field for this metric and then it makes(gSasaki,ω3)a Sasakian structure on T1S.Another important result is that in our setting ω3is a pseudo-Hermitian form corresponding to a CR structure on T1S.Although this pseudo-Hermitian structure is non-Einstein,we obtain that its Webster scalar curvature is again12.

    In order to extend the class of metrics,we generalize the concept of adapted metrics;in fact,we modify the original condition of Chern-Hamilton from the scalar 2 to a general ρ∈R in order to cover all possibilities;this approach was used in[6].Also our study is enlarged to all 1-forms providing the natural co-frame of T1S.

    2 Webster Scalar Curvature:The Chern-Hamilton Formalism

    Fix(M3,g)to be a 3-dimensional Riemannian manifold and consider{ω1,ω2,ω3}as an orthonormal basis of 1-forms on M;then M is oriented with the volume form ω1∧ ω2∧ ω3.Then there exists a unique skew-symmetric matrix of 1-forms

    such that the structural equations

    hold on M.Making one step further,we derive the existence of the functions{Kij;1≤i,j≤3}such that Kij=Kjiand

    Recall that the subject of[5]consists in adapted metrics for a contact 1-form ω,i.e.,Riemannian metrics satisfying

    If g is adapted to ω3,then the Webster scalar curvature W of the triple(M,g,ω3)is defined as

    and is computed in[5]for the unit sphere S3,the unit tangent bundle of a compact orientable surface of genus g?1(for g=0 it results in W=1)and the Heisenberg group Nil3.In fact,W(S3)=1 and W(Nil3)=0.For another formalism on Webster curvature,see[3,p.212]and our formula(5.4)below.

    A last main notion of this note is that of Cartan structure according to definition 1.1 of[8,p.148]:A pair of 1-forms ω1,ω2with

    3 Finsler 2-Dimensional Geometry and Adapted Metrics

    Let S be a 2-dimensional manifold and π :TS → S its tangent bundle.Let x=(xi)=(x1,x2)be the local coordinates on S and(x,y)=(xi,yi)=(x1,x2,y1,y2)the induced local coordinates on TS.Denote by O the null-section of π.

    Recall that a Finsler fundamental function on S is a map F:TS→R+with the following properties:

    (F1)F is smooth on the slit tangent bundle TSO and continuous on O;

    (F2)F is positive homogeneous of degree 1:F(x,λy)= λF(x,y)for every λ >0;

    (F3)the matrixis invertible and its associated quadratic form is positive definite.

    The tensor field(gij(x,y))is called the Finsler metric.

    Due to the homogeneity condition,all important objects of Finsler geometry actually live on the sphere bundle p:T1S={(x,y)∈TS;F(x,y)=1}→S(see[2,p.9]).Here T1S is 3-dimensional and an adapted co-frame consists in three 1-forms denoted by ω1,ω2,ω3.More precisely,after[2,p.93],we have

    where g=det(gij),being the canonical nonlinear connection of the Finsler geometry(S,F)(see[2,p.34]).The vector fieldsspan the vertical distribution whilespan the horizontal distribution.The Finsler metric yields the Sasaki type metric on T1S(see[2,p.93]):

    making{ω1,ω2,ω3}an orthonormal co-frame.If{e1,e2,e3}is the dual frame,then e1and e2are horizontal while e3is vertical.

    After[2,p.82],the structural equations of(S,F)are

    where I,J,K are smooth functions defined as follows(see[2,p.82]):

    (i)I is the Cartan(or main)(pseudo-)scalar.Its vanishing characterizes Riemannian surfaces,i.e.,g=g(x)which means thaton TS is exactly the Sasaki lift of the Riemannian metric g.It also follows thatbeing the Christoffel symbols of g.

    (ii)J is the Landsberg(pseudo-)scalar.Its vanishing characterizes Landsberg surfaces.

    (iii)K is the Gaussian curvature.Its vanishing characterizes flat(in the Finslerian sense)surfaces.Note that ω3is a contact form for non- flat Finslerian surfaces since ω3∧ dω3=ω3∧(Kω1∧ω2?Jω1∧ω3)=Kω1∧ω2∧ω3.Then e3can be called the Reeb vector field of(S,F).

    Remark that Bianchi equations yield some relations between these functions(see[2,p.97]):

    where the subscript i denotes the derivation in the direction of ei,i.e.,df=f1ω1+f2ω2+f3ω3.It follows that I=0 implies J=0 and also K2=0.

    In order to enlarge the class of suitable metrics,we consider the following notion which appears(with a factor 2 in RHS)in[11].

    definition 3.1 Fix a 1-form ω on a general(M3,g)and the real number ρ.The Riemannian metric g on M is called ρ-adapted to ω if dω = ρ ? ω.

    We conclude from(3.3)the following proposition.

    Proposition 3.1 The metric gSasakianis

    (i)1-adapted to the ω1if and only if S is a Riemannian surface;

    (ii)1-adapted to ω2;

    (iii)K-adapted to ω3in the Landsberg case.

    It follows that the lift of the round metric of S2to T1S2=RP3=SO(3)is 1-adapted all ω’s.

    4 Webster Curvature in Finslerian Geometry of Surfaces

    Comparing(2.3)with(3.3),it results that gSasakican be an adapted metric only for ω3,in which case we say that it is vertical adapted due to the character of the Reeb vector field e3;correspondingly the 1-forms ω1,ω2will be called horizontal.We are ready for the main result of this note.

    Theorem 4.1 The Riemannian metric gSasakiof T1S is vertical adapted if and only if S is a Riemannian surface with K=2.Then,the horizontal pair(ω1,ω2)is a Cartan structure and the Webster curvature is

    Proof Since ωiis a gSasaki-orthonormal co-frame,we have ?ω3= ω1∧ ω2,and locking at(3.33),we get that gSasakiis vertical adapted if and only if J=0,K=2.From the second Bianchi relation(3.4),we deduce that I=0,which yields the first part of the conclusion.

    Now,the structural equations have the expression

    and then we get the relations(2.5)with ω1∧dω1= ω2∧dω2= ω1∧ω2∧ω3=being the volume form of the metric gSasaki.It also follows that

    It results in

    which gives the matrix of K’s:

    all other being zero.Using the definition(2.4),it results in the Webster curvature(4.1).

    Remark 4.1(i)Comparing our result with the second example of[5,p.285]gives that Kiigiven by(4.5)coincides with relations(22)of the cited paper for?=12=W.

    (ii)If S is compact embedded in R3(being also oriented),then a classical sphere theorem(from 1897)of Hadamard states that S must be diffeomorphic with a sphere.The following Theorem 4.2 clarifies this claim.

    (iii)In[7],the 1-form η =Iω3is introduced under the name Cartan-type form of(S,F)and it is proved that η ∧ dη is the Chern-Simons form of(S,F).In our setting,this Chern-Simons form is zero.

    (iv)A Cartan structure is a particular case of taut contact circle according to the definition 1.1 of[8,p.148]and then any linear combination λ1ω1+λ2ω2with(λ1,λ2)∈ S1? R2defines the same volume form,and in our case that is the form of gSasaki.

    As an application of the previous theorem,we have the following structural result.

    Theorem 4.2 If the Riemannian metric gSasakiof T1S is vertical adapted,then the manifold(T1S,gSasaki)is Sasakian and homothetic with a generalized Berger sphere.

    Proof According to the classification of[9,p.124],W=12implies that if(T1S,gSasaki,ω3)is a Sasakian manifold,then it is homothetic with a generalized Berger sphere.Hence we must prove that the vertical adapted condition implies the Sasakian condition for gSasaki.But from[3,p.87],we know that in dimension 3 this is equivalent to the cu K-contact condition and then we prove that the vertical adapted condition implies that e3is a Killing vector field for gSasaki.

    According to[4,p.28],we have the general Lie brackets:

    which yields the Levi-Civita connection of gSasaki:

    Let X=Xieiand Y=Yieibe two arbitrary vector fields on T1S,we get

    It follows that the Lie derivatives of the metric are

    The vertical adapted condition gives then

    and we have the final conclusion.

    Remark 4.2(i)The relations in first line of(4.7)yield that under the vertical adapted condition all vector fields eiare geodesic:?eiei=0.Also,we can determine the generalized Berger sphere structure of(T1S2,gSasaki)according to the computations of[12].More precisely,we consider SU(2)=S3with the natural left-invariant and orthonormal frame(X1,X2,X3)of[12,p.7],and gSasakiis the metric making orthonormal the frame:as in[12,p.81].

    (ii)Let us remark that our contact structure on T1S is different from that of[3,p.175]for which the K-contact condition is characterized via the well-known Tashiro theorem([3,p.178])in terms of constant curvature+1 for the base manifold(S,g(x)).Let us also note that the Finslerian version of the Tashiro theorem was proved in[1].

    (iii)Our Theorem 4.2 is a particular case of Lemma A.1 of Alan Weinstein from the Appendix of[5]that ?1= ω1, ?2= ω2implies e3is a Killing vector field.Also,from the complex structural equations(39)of[5,p.290],it follows that Ω = ω1+iω2is a closed differential 1-form:dΩ=0.

    5 An Associated Pseudo-Hermitian Structure on T1S

    From the third equation of(4.8),it results that the vertical adapted condition implies

    and recall,after[3,p.87],that the Sasakian condition reads

    in terms of the structural tensor field φ of(1,1)-type.It gives the expression of φ:

    Let D=kerω3be the structural distribution associated to ω3.A second formula for the Webster scalar formula is[3,p.213]:

    where τ is the scalar curvature of the metric g and Ric(e3)is the Ricci curvature in the direction of e3.Note also that in the same way as[3,p.214],we have where K(D)is the sectional curvature of the 2-plane D and from Theorem 7.1 of[3,p.112]on the 3-dimensional K-contact case it results that Ric(e3)=2.Using the Levi-Civita connection(4.7),we obtain K(D)= ?1,so then τ=2 and from(4.14)we arrive again at W=

    Remark also that J=φ|Dis a complex structure satisfying the integrability conditions:

    for all X,Y∈D=span{e1,e2}.Using the terminology of[10],ω3is a pseudo-Hermitian structure on the CR manifold(T1S,D,J).Its associated Webster metric:

    being

    is not positive definite and hence the pseudo-Hermitian structure is not strictly pseudoconvex.Since the Levi-Civita connection of gω3satisfies

    it results that

    and then,as in the previous section,we get that e3is a Killing vector field for gω3,which means that e3is a transversal symmetry(see[10,p.446])for the given pseudo-Hermitian structure.

    Using the formulae of[10,p.448]we get a component of the Webster-Ricci tensor of gω3:

    and then the Webster scalar curvature of gω3is

    Since we have RicW?= ?iscalWdω3,it results that this pseudo-Hermitian structure is not Einstein.

    AcknowledgementThe author is extremely indebted to an anonymous referee who helped to substantially improve the presentation and the contents of this paper.

    [1]Anastasiei,M.,A framed f-structure on tangent manifold of a Finsler space,An.Univ.Bucure?sti Math.Inform.,49(2),2000,3–9.

    [2]Bao,D.,Chern,S.-S.and Shen,Z.,An introduction to Riemann-Finsler geometry,Graduate Texts in Mathematics,200,Springer-Verlag,New York,2000.

    [3]Blair,D.E.,Riemannian geometry of contact and symplectic manifolds,2nd edition,Progress in Mathematics,203,Birkh¨auser Boston,Inc.,Boston,MA,2010.

    [4]Bryant,R.L.,Finsler structures on the 2-sphere satisfying K=1,in “Finsler Geometry” (Seattle,WA,1995),27–41,Contemp.Math.,196,Amer.Math.Soc.,Providence,RI,1996.

    [5]Chern,S.-S.and Hamilton,R.S.,On Riemannian Metrics Adapted to Three-Dimensional Contact Manifolds,with an Appendix,by Alan Weinstein,Lecture Notes in Math.,1111,Workshop Bonn,1984,279–308,Springer-Verlag,Berlin,1985.

    [6]Crasmareanu,M.,Adapted metrics and Webster curvature on three classes of 3-dimensional geometries,International Electronic Journal of Geometry,7(2),2014,50–59.

    [7]Feng,H.and Li,M.,Adiabatic limit and connections in Finsler geometry,Comm.Anal.Geom.,21(3),2013,607–624.arXiv:1207.1552

    [8]Geiges,H.and Gonzalo,J.,Contact geometry and complex surfaces,Invent.Math.,121(1),1995,147–209.

    [9]Guilfoyle,B.S.,The local moduli of Sasakian 3-manifolds,Int.J.Math.Math.Sci.,32(2),2002,117–127.[10]Leitner,F.,On transversally symmetric pseudo-Einstein and Fefferman-Einstein spaces,Math.Z.,256(2),2007,443–459.

    [11]Nicolaescu,L.I.,Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds,Comm.Anal.Geom.,6(2),1998,331–392.

    [12]Petersen,P.,Riemannian Geometry,2nd edition,Graduate Texts in Mathematics,171,Springer-Verlag,New York,2006.

    [13]Sabau,S.V.,Shibuya,K.and Shimada,H.,Moving frames on generalized Finsler structures,J.Korean Math.Soc.,49(6),2012,1229–1257.

    [14]Sabau,S.V.,Shibuya,K.and Pitis,Gh.,Generalized Finsler structures on closed 3-manifolds,Tohoku Math.J.(2),66(3),2014,321–353.

    国产高清有码在线观看视频| 久久久久国产精品人妻aⅴ院| 精品不卡国产一区二区三区| 丰满的人妻完整版| 亚洲狠狠婷婷综合久久图片| 国产亚洲av嫩草精品影院| 老司机福利观看| 国产熟女xx| 久久久久久人人人人人| 99在线人妻在线中文字幕| 日韩欧美精品免费久久 | 一区二区三区国产精品乱码| 日韩精品青青久久久久久| 色综合亚洲欧美另类图片| 女人十人毛片免费观看3o分钟| 欧美日韩福利视频一区二区| 人人妻人人看人人澡| 精品国产超薄肉色丝袜足j| 三级国产精品欧美在线观看| 变态另类丝袜制服| 在线观看免费午夜福利视频| 麻豆一二三区av精品| 久久伊人香网站| 一级毛片高清免费大全| 91九色精品人成在线观看| 久久久久久久亚洲中文字幕 | 国产探花在线观看一区二区| 99久久精品一区二区三区| www日本在线高清视频| 波多野结衣巨乳人妻| 夜夜爽天天搞| 亚洲五月天丁香| av视频在线观看入口| 999久久久精品免费观看国产| 国产精品综合久久久久久久免费| 99国产极品粉嫩在线观看| 18禁黄网站禁片免费观看直播| 亚洲专区中文字幕在线| 色在线成人网| 啦啦啦免费观看视频1| 国产免费av片在线观看野外av| 99精品欧美一区二区三区四区| 亚洲熟妇熟女久久| 国产精品精品国产色婷婷| 嫩草影院入口| 亚洲成av人片免费观看| 亚洲欧美激情综合另类| 亚洲人成网站在线播| 怎么达到女性高潮| 亚洲 国产 在线| 国产亚洲欧美在线一区二区| 女人被狂操c到高潮| 好看av亚洲va欧美ⅴa在| 亚洲精品一区av在线观看| 精品久久久久久久毛片微露脸| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩精品一区二区| 色在线成人网| 天美传媒精品一区二区| 国产成人啪精品午夜网站| 国产黄片美女视频| 88av欧美| 久久九九热精品免费| 欧美一级a爱片免费观看看| 不卡一级毛片| 成人特级av手机在线观看| 热99re8久久精品国产| 中文字幕高清在线视频| 亚洲国产精品sss在线观看| 国产精品女同一区二区软件 | 99国产综合亚洲精品| 亚洲一区高清亚洲精品| 免费无遮挡裸体视频| 亚洲美女视频黄频| tocl精华| 美女被艹到高潮喷水动态| 午夜福利高清视频| 国产黄色小视频在线观看| 99久国产av精品| 久久久久国产精品人妻aⅴ院| 久久精品夜夜夜夜夜久久蜜豆| 色播亚洲综合网| 亚洲精品乱码久久久v下载方式 | 成人鲁丝片一二三区免费| 欧美乱色亚洲激情| 18禁黄网站禁片免费观看直播| 久久久久久久精品吃奶| 国产 一区 欧美 日韩| 成人特级黄色片久久久久久久| 美女高潮喷水抽搐中文字幕| 国内精品久久久久久久电影| 757午夜福利合集在线观看| 久久这里只有精品中国| tocl精华| 91在线观看av| 草草在线视频免费看| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 国产免费一级a男人的天堂| 亚洲国产欧美人成| 精品久久久久久成人av| 精品一区二区三区人妻视频| 成人特级av手机在线观看| 美女高潮的动态| 757午夜福利合集在线观看| 久久婷婷人人爽人人干人人爱| 午夜免费激情av| 中文字幕久久专区| 欧美av亚洲av综合av国产av| 亚洲精华国产精华精| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 国产一区二区激情短视频| 免费在线观看成人毛片| 婷婷亚洲欧美| 免费电影在线观看免费观看| 97超级碰碰碰精品色视频在线观看| 又黄又粗又硬又大视频| 18禁国产床啪视频网站| 一级作爱视频免费观看| 亚洲国产欧美网| 日韩成人在线观看一区二区三区| 黄片大片在线免费观看| 久久精品亚洲精品国产色婷小说| 日韩欧美三级三区| 国产日本99.免费观看| 欧美日韩瑟瑟在线播放| 88av欧美| 午夜激情欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 深夜精品福利| 成年女人毛片免费观看观看9| 黄色日韩在线| 久久久久久大精品| 精品午夜福利视频在线观看一区| 欧美日韩综合久久久久久 | 国产爱豆传媒在线观看| 夜夜爽天天搞| 国产色婷婷99| 3wmmmm亚洲av在线观看| 成人av在线播放网站| 欧美乱码精品一区二区三区| 免费av毛片视频| 久9热在线精品视频| 一区二区三区国产精品乱码| 丰满的人妻完整版| 色视频www国产| 精品福利观看| a级毛片a级免费在线| 成人亚洲精品av一区二区| 夜夜看夜夜爽夜夜摸| 亚洲人成电影免费在线| 特级一级黄色大片| 亚洲av成人av| 又爽又黄无遮挡网站| 在线观看66精品国产| 天堂√8在线中文| 亚洲成a人片在线一区二区| 手机成人av网站| 国产欧美日韩一区二区三| 舔av片在线| 色吧在线观看| 欧美av亚洲av综合av国产av| 欧美av亚洲av综合av国产av| 久久香蕉国产精品| 十八禁人妻一区二区| 亚洲欧美精品综合久久99| 久久久久久久久中文| 国产一级毛片七仙女欲春2| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区在线臀色熟女| 真人一进一出gif抽搐免费| 尤物成人国产欧美一区二区三区| 欧美+日韩+精品| 91字幕亚洲| 老汉色av国产亚洲站长工具| 久久九九热精品免费| 91在线观看av| 美女黄网站色视频| 99久久精品国产亚洲精品| 波野结衣二区三区在线 | 国产中年淑女户外野战色| 757午夜福利合集在线观看| 亚洲av免费在线观看| 久久久久性生活片| 精品国产超薄肉色丝袜足j| 欧美性感艳星| 免费观看精品视频网站| 国产高清激情床上av| 别揉我奶头~嗯~啊~动态视频| 国产免费男女视频| 天堂√8在线中文| xxxwww97欧美| 变态另类成人亚洲欧美熟女| 日韩欧美免费精品| 国产精品电影一区二区三区| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 在线a可以看的网站| 国产一区二区激情短视频| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区视频在线观看免费| 亚洲七黄色美女视频| 亚洲在线自拍视频| 18禁黄网站禁片免费观看直播| tocl精华| 精品不卡国产一区二区三区| 两个人视频免费观看高清| 一级毛片女人18水好多| 他把我摸到了高潮在线观看| aaaaa片日本免费| 黄色日韩在线| 18禁美女被吸乳视频| 淫妇啪啪啪对白视频| 国产真实伦视频高清在线观看 | 母亲3免费完整高清在线观看| 脱女人内裤的视频| 欧美bdsm另类| 国产69精品久久久久777片| 成人特级黄色片久久久久久久| 叶爱在线成人免费视频播放| 观看免费一级毛片| 婷婷六月久久综合丁香| 欧美黄色淫秽网站| 97碰自拍视频| 欧美色视频一区免费| 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| 亚洲第一电影网av| 美女免费视频网站| 久久久久性生活片| 在线观看av片永久免费下载| 日本一二三区视频观看| 亚洲av二区三区四区| 亚洲av电影在线进入| 国产 一区 欧美 日韩| 在线视频色国产色| 国产日本99.免费观看| 日韩中文字幕欧美一区二区| 欧美在线一区亚洲| 欧美绝顶高潮抽搐喷水| 国产国拍精品亚洲av在线观看 | 国产真实伦视频高清在线观看 | 高清毛片免费观看视频网站| 搞女人的毛片| 久久久精品欧美日韩精品| 国产色爽女视频免费观看| 欧美av亚洲av综合av国产av| 老司机午夜十八禁免费视频| 国产高潮美女av| 色精品久久人妻99蜜桃| 成人国产综合亚洲| 午夜亚洲福利在线播放| 在线观看舔阴道视频| 久久久久久久久久黄片| www.熟女人妻精品国产| 一a级毛片在线观看| 黄色片一级片一级黄色片| 国产视频一区二区在线看| 免费大片18禁| 99久久精品一区二区三区| 91麻豆精品激情在线观看国产| 久久草成人影院| 中文字幕av成人在线电影| 高清毛片免费观看视频网站| av福利片在线观看| 91在线精品国自产拍蜜月 | 亚洲aⅴ乱码一区二区在线播放| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 真实男女啪啪啪动态图| 久久久久久久久大av| 国产v大片淫在线免费观看| 日韩免费av在线播放| 俺也久久电影网| 少妇熟女aⅴ在线视频| 一个人免费在线观看的高清视频| 国产av麻豆久久久久久久| 免费av毛片视频| 老司机午夜福利在线观看视频| 大型黄色视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 欧美区成人在线视频| 国产高清有码在线观看视频| 99国产精品一区二区三区| 午夜福利免费观看在线| 可以在线观看毛片的网站| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 91av网一区二区| 亚洲人成伊人成综合网2020| 91字幕亚洲| 亚洲av免费高清在线观看| 国产精品1区2区在线观看.| 观看美女的网站| 麻豆一二三区av精品| 男女床上黄色一级片免费看| 国产在线精品亚洲第一网站| 美女黄网站色视频| 久久人妻av系列| av欧美777| 欧美丝袜亚洲另类 | 婷婷精品国产亚洲av| 免费观看人在逋| 日韩欧美在线乱码| 国产一区二区激情短视频| 国产精品久久久久久久久免 | 欧美一区二区精品小视频在线| 久久久久国内视频| 精品不卡国产一区二区三区| 日韩高清综合在线| 在线观看免费视频日本深夜| 国产精品久久视频播放| 免费无遮挡裸体视频| 51午夜福利影视在线观看| 日韩大尺度精品在线看网址| 国产乱人视频| 偷拍熟女少妇极品色| 亚洲不卡免费看| 1000部很黄的大片| 日本a在线网址| 国产成人av激情在线播放| 成人av一区二区三区在线看| or卡值多少钱| 色av中文字幕| 亚洲精品在线美女| 国产一区二区三区在线臀色熟女| 校园春色视频在线观看| 亚洲中文字幕日韩| or卡值多少钱| 亚洲国产中文字幕在线视频| 999久久久精品免费观看国产| 黄色视频,在线免费观看| www.熟女人妻精品国产| 一进一出抽搐gif免费好疼| 一夜夜www| 两个人看的免费小视频| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 99精品在免费线老司机午夜| 一进一出好大好爽视频| 国产高清videossex| 亚洲美女视频黄频| 精品人妻一区二区三区麻豆 | xxxwww97欧美| 色在线成人网| 婷婷丁香在线五月| 精品国产三级普通话版| 丰满人妻熟妇乱又伦精品不卡| 少妇丰满av| 99久国产av精品| 美女大奶头视频| 性欧美人与动物交配| 国产三级在线视频| 国产成人欧美在线观看| 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 法律面前人人平等表现在哪些方面| av国产免费在线观看| xxxwww97欧美| 一级a爱片免费观看的视频| 97超级碰碰碰精品色视频在线观看| 久久久久亚洲av毛片大全| 热99re8久久精品国产| 久久精品人妻少妇| 99久久精品国产亚洲精品| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 成人国产一区最新在线观看| 午夜激情福利司机影院| 亚洲美女黄片视频| 欧美一级毛片孕妇| 精品国产三级普通话版| 国产 一区 欧美 日韩| 精品乱码久久久久久99久播| 精品国内亚洲2022精品成人| 欧美性猛交黑人性爽| 午夜日韩欧美国产| 午夜亚洲福利在线播放| 手机成人av网站| 夜夜爽天天搞| 在线天堂最新版资源| 日本一二三区视频观看| 日韩欧美 国产精品| av女优亚洲男人天堂| 99久久久亚洲精品蜜臀av| 欧美乱妇无乱码| 国产99白浆流出| 国产精品嫩草影院av在线观看 | 啦啦啦韩国在线观看视频| 变态另类丝袜制服| 久久精品国产综合久久久| 18禁在线播放成人免费| 国产精品一区二区三区四区免费观看 | 男女那种视频在线观看| 亚洲熟妇中文字幕五十中出| 小蜜桃在线观看免费完整版高清| 极品教师在线免费播放| 久久精品亚洲精品国产色婷小说| 91久久精品国产一区二区成人 | 天美传媒精品一区二区| 国内精品一区二区在线观看| 欧美成人一区二区免费高清观看| 国产一区二区三区视频了| 一级作爱视频免费观看| 亚洲精品一区av在线观看| 久久精品国产99精品国产亚洲性色| 美女免费视频网站| 精品人妻一区二区三区麻豆 | 久久伊人香网站| 国产91精品成人一区二区三区| 国产精品一区二区免费欧美| 色综合站精品国产| 又黄又粗又硬又大视频| 亚洲精华国产精华精| 日韩中文字幕欧美一区二区| 国产成人aa在线观看| 免费看a级黄色片| 老司机午夜福利在线观看视频| 最新中文字幕久久久久| 国产aⅴ精品一区二区三区波| 久久久久久久久久黄片| 中文字幕av在线有码专区| 超碰av人人做人人爽久久 | 亚洲性夜色夜夜综合| 国产伦一二天堂av在线观看| 啪啪无遮挡十八禁网站| 精品国产亚洲在线| 国产成人av教育| 欧美日本亚洲视频在线播放| 欧美另类亚洲清纯唯美| 深夜精品福利| 99久久99久久久精品蜜桃| 天美传媒精品一区二区| 精品不卡国产一区二区三区| 成人av在线播放网站| 亚洲真实伦在线观看| 老司机福利观看| 香蕉av资源在线| 国产探花在线观看一区二区| 免费大片18禁| 久久国产精品影院| 在线观看免费午夜福利视频| 成人三级黄色视频| 国产综合懂色| 久久久久久国产a免费观看| 亚洲无线观看免费| 日本 欧美在线| 亚洲中文字幕一区二区三区有码在线看| 可以在线观看的亚洲视频| 一级黄色大片毛片| www.www免费av| 人妻夜夜爽99麻豆av| 很黄的视频免费| 国产一区在线观看成人免费| 国产综合懂色| 90打野战视频偷拍视频| 日韩精品中文字幕看吧| 亚洲av免费高清在线观看| 国产精品久久久久久亚洲av鲁大| 精品99又大又爽又粗少妇毛片 | 男女下面进入的视频免费午夜| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲狠狠婷婷综合久久图片| 亚洲色图av天堂| 欧美激情在线99| 欧美日韩瑟瑟在线播放| 超碰av人人做人人爽久久 | 一级a爱片免费观看的视频| 亚洲avbb在线观看| 老汉色av国产亚洲站长工具| 国产午夜精品论理片| 男女视频在线观看网站免费| 两个人的视频大全免费| 女人被狂操c到高潮| www.色视频.com| 免费在线观看日本一区| 99久国产av精品| 久久精品国产亚洲av香蕉五月| 亚洲人成网站高清观看| 18禁在线播放成人免费| 欧美区成人在线视频| 亚洲人与动物交配视频| 最新中文字幕久久久久| 免费人成在线观看视频色| 欧美日韩乱码在线| 久久精品91蜜桃| 精品无人区乱码1区二区| 亚洲av成人不卡在线观看播放网| 久9热在线精品视频| 亚洲专区中文字幕在线| 欧美另类亚洲清纯唯美| 一二三四社区在线视频社区8| 久久精品国产综合久久久| 嫩草影院入口| 大型黄色视频在线免费观看| 亚洲久久久久久中文字幕| 国产av不卡久久| 亚洲一区二区三区不卡视频| 一本久久中文字幕| 人人妻人人澡欧美一区二区| 尤物成人国产欧美一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 欧美激情久久久久久爽电影| 欧美乱妇无乱码| 波多野结衣高清无吗| 国产69精品久久久久777片| 亚洲激情在线av| 少妇的逼水好多| 日韩av在线大香蕉| 成年女人看的毛片在线观看| 首页视频小说图片口味搜索| 黄片小视频在线播放| 中文资源天堂在线| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区激情视频| 两人在一起打扑克的视频| 欧美午夜高清在线| 久久精品国产综合久久久| 亚洲五月天丁香| 身体一侧抽搐| 国产精品久久久久久久久免 | av在线天堂中文字幕| 三级男女做爰猛烈吃奶摸视频| 欧美日韩一级在线毛片| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕久久专区| 欧美激情在线99| 亚洲成人久久性| 午夜福利成人在线免费观看| 床上黄色一级片| 激情在线观看视频在线高清| 别揉我奶头~嗯~啊~动态视频| 日韩 欧美 亚洲 中文字幕| 脱女人内裤的视频| 91久久精品国产一区二区成人 | 高清毛片免费观看视频网站| 午夜影院日韩av| xxx96com| 69人妻影院| 亚洲成人久久性| 欧美另类亚洲清纯唯美| 久久精品综合一区二区三区| 婷婷精品国产亚洲av| 国产中年淑女户外野战色| 一进一出好大好爽视频| 一本综合久久免费| 欧美成狂野欧美在线观看| 丁香欧美五月| 免费在线观看日本一区| 亚洲国产精品成人综合色| 国产乱人视频| 久久久久精品国产欧美久久久| 乱人视频在线观看| 日本成人三级电影网站| 三级毛片av免费| 久久久成人免费电影| 欧美乱码精品一区二区三区| 给我免费播放毛片高清在线观看| 欧美av亚洲av综合av国产av| 欧美最黄视频在线播放免费| 免费搜索国产男女视频| 日韩精品青青久久久久久| 国产在视频线在精品| 免费观看人在逋| 老汉色∧v一级毛片| 成人亚洲精品av一区二区| 色综合站精品国产| 熟女电影av网| 欧美一级毛片孕妇| 久久精品综合一区二区三区| 国产精品亚洲一级av第二区| 国产69精品久久久久777片| 亚洲精品美女久久久久99蜜臀| 在线十欧美十亚洲十日本专区| 操出白浆在线播放| 一进一出好大好爽视频| 国产精品99久久久久久久久| 麻豆国产av国片精品| 国内揄拍国产精品人妻在线| 9191精品国产免费久久| 禁无遮挡网站| 色噜噜av男人的天堂激情| 小蜜桃在线观看免费完整版高清| 99riav亚洲国产免费| 搡老岳熟女国产| 亚洲av中文字字幕乱码综合| a在线观看视频网站| 亚洲精品成人久久久久久| a级一级毛片免费在线观看| 日韩高清综合在线| 亚洲成人中文字幕在线播放| 波多野结衣巨乳人妻| 午夜福利视频1000在线观看| 欧美bdsm另类| 欧美日本视频| 1024手机看黄色片| 久久这里只有精品中国| 国产成+人综合+亚洲专区| av女优亚洲男人天堂| 免费av毛片视频| 免费看光身美女| 少妇人妻精品综合一区二区 | 国内毛片毛片毛片毛片毛片| 1000部很黄的大片| 尤物成人国产欧美一区二区三区| 性色av乱码一区二区三区2| 好男人电影高清在线观看| 日本一本二区三区精品| 欧美激情在线99| 女人高潮潮喷娇喘18禁视频| 99热精品在线国产| 性色avwww在线观看| 日韩 欧美 亚洲 中文字幕|