• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Grbner-Shirshov Bases of Irreducible Modules of the Quantum Group of Type G2?

    2016-06-09 03:34:38GhaniUSTAAbdukadirOBUL

    Ghani USTA Abdukadir OBUL

    1 Introduction

    Reduction is a fundamental problem in studying the structures of algebras.Precisely,let A be an algebra given by a group of generators and a set of relations between them.We denote by S and?S?the set of these relations and the ideal generated by them,respectively.For any element a in S,we often need to decide whether a belongs to?S?or not.This is the so-called“membership problem”in algebra and it is often very difficult but important.

    In his thesis[6],Buchberger provided a method to solve this problem in commutative algebra and called his theory the Gr?bner bases theory.Later,Bergman[1]generalized Buchberg’s theory to associative algebra.On the other hand,Shirshov[18]developed the same theory for Lie algebras.In[2],Bokut proved that Shirshov’s method is also valid for associative algebras,so the theory of Shirshov for Lie algebras and the universal enveloping algebras is called the Gr?bner-Shirshov bases theory.

    In[5],Bokut and Malcolmson developed the Gr?bner-Shirshov bases theory for the Drinfeld-Jimbo quantum groups and as an application,constructed a Gr?bner-Shirshov basis for the quantum group of type An.Recently,in[14–16,19]the authors,by using the representation theory of algebras,constructed a Gr?bner-Shirshov basis for the quantum groups of types G2,D4,E6,and F4.

    In[12],Kang and Lee developed the Gr?bner-Shirshov bases theory for the modules over associative algebras and in[13],by using their theory,constructed a Gr?bner-Shirshov basis for the irreducible modules of simple Lie algebras of type An.Several years later,in[8]Chibrikov used another approach to deal with Gr?bner-Shirshov bases for the modules,and the key idea in his approach is that a module of an algebra is viewed as a free module over a free algebra.Later,in[7],authors gave a Grbner-Shirshov basis for the modules over associative algebras by using the idea of Chibrikov.

    In this paper,based on the Grbner-Shirshov basis for the Drinfeld-Jimbo quantum group Uq(G2)given in[16],we construct a Gr?bner-Shirshov basis for the irreducible module Vq(λ)of Uq(G2)by using the method in[7]and by specializing a suitable version of Uq(G2)at q=1,we get a Gr?bner-Shirshov basis for the universal enveloping algebra U(G2)of the simple Lie algebra of type G2and the finite-dimensional irreducible module V(λ)over it.And by comparing this new Gr?bner-Shirshov basis for U(G2)with the one obtained in[3]we found that the new one contains the minimal basis in[3].

    2 Some Preliminaries

    For the convenience of the reader,in this section we recall some notions and results about the Gr?bner-Shirshov bases of double-free modules and the quantum groups from[7],[9]and[11],respectively.

    Let k be a field,X a non-empty set of letters with integer index,and X?a free monoid of monomials in the letters in X.Let k?X?be the free associative k-algebra generated by X.In order to determine the leading term of an element f∈kwe choose a well ordering“<”on X?,and then this ordering naturally induces an ordering in the free associative algebra kFor any element f∈kwe denote bythe leading term of f.If the coefficient of the leading term of f is 1,then we say f is monic.If f and g are two monic elements in k,and their leading terms areand g,then the composition of f and g are defined as follows.

    (a)If there are a,b∈X?such that==ω and the length ofthe number of the letters inis bigger than the length of b,then the composition of intersection is defined to be(f,g)ω=fa?bg.

    (b)If there are a,b∈X?such that==ω,then the composition of inclusion is defined to be(f,g)ω=f?agb.

    Note that in both cases above,we have

    Let S be a non-empty subset of kgenerated by some monic elements.We define a congruence relation with respect to S on kas follows:For any f,g ∈ k?X?and ω ∈ X?,

    where αi∈ k,ai,bi∈ X?,si∈ S,andfor all i.If this is the case,then we say that f is congruent to g modulo S and ω,and denote it by f ≡ g mod(S;ω).If an element f is congruent to 0 modulo S for some ω,then we say f is trivial modulo S.If for any elements f,g ∈ S and ω ∈ X?,the composition(f,g)ω,whenever it is defined,is trivial modulo S,then we say S is closed under composition.If S is not closed under composition,then we will need to expand S by attaching all nontrivial compositions(inductively)to S to obtain a completion Sc.We call Sc(if it is closed under composition,then S=Sc)a Gr?bner-Shirshov basis for the ideal?S?of k?X?.Often,by abusing language,we call Sca Gr?bner-Shirshov basis of k?X?.

    Now we recall the definition of the double free module.

    definition 2.1(see[8])Let X,Y be two sets,and modk?X??Y?a free left k?X?-module with the basis Y.Theny is called a double free module.

    Let X,Y be two sets with well orderings and X?Y={uy|u ∈ X?,y ∈ Y}.For any ω ∈ X?Y,we have a unique expression ω =x1···xny,where xi∈ X,i=1,···,n,y ∈ Y,n ≥ 0.Set

    We define an ordering“?”on X?Y as follows:For any ω,′ω∈X?Y,

    where

    So the ordering“?”is admissible.

    definition 2.2(see[7])Let S?modk?X??Y?be a non-empty subset generated by some monic elements,and “ ? ” the admissible ordering defined above.We say that S is a Gr?bner-Shirshov basis in the free module modk?X?,if all compositions in S are trivial modulo S.

    The following is the composition-diamond lemma for the double free module,the central result about the Gr?bner-Shirshov bases theory of the double free module.

    Lemma 2.1(see[8])Let S?modk?X?be a non-empty subset generated by some monic elements,and“?”the admissible ordering defined above.The following statements are equivalent:

    (1)S is a Grbner-Shirshov basis of modk?X?Y;

    (2)If 0f∈kS,then=for some a∈X?and s∈S;

    (2?)If 0?f ∈ kS,then f=αiaisiwith···,where αi∈ k,ai∈ X?,si∈S;

    (3)Irr(S)is a k-linear basis for the factor module

    The following theorem explains the relation between the Gr?bner-Shirshov bases of the associative algebra and the double free module.

    Theorem 2.1(see[7])Let X,Y be two sets with well orderings,“<”a monomial ordering on X?and“?”the admissible ordering defined above.Let S?kbe a subset generated by some monic elements.Then,S ? kis a Gr?bner-Shirshov basis of kif and only if SX?Y ?is a Gr?bner-Shirshov basis of modk?X?with respect to the ordering?.

    Next,we recall some notions about quantum groups from[9]and[11].

    Let k be a field and A=(aij)a symmetrizable n×n Cartan matrix,that is,an integer matrix with aii=2,aij0(i?j)and there is an integral diagonal matrix D=diag(d1,d2,···,dn)such that DA is a symmetric matrix,where d1,···,dnare non-negative integers.Let q be a nonzero element of k so that it is not a root of unity.The quantum group Uq(A)is a free k-algebra with generators{Ei,,Fi|1≤i,j≤n},subject to the relations

    for all 1≤i,j≤n and

    Letbe the subalgebras of Uq(A)generated byn},{Ei|1≤i≤n}and{Fi|1≤i≤n},respectively.Then we have the following triangular decomposition of the quantum group Uq(A):

    The following is the main result in[5].

    Theorem 2.2 If the sets S+cand S?care the Gr?bner-Shirshov bases ofandrespectively,then the set S+c∪K ∪T ∪S?cis a Gr?bner-Shirshov basis of the quantum group Uq(A).

    3 Grbner-Shirshov Bases of Irreducible Modules over the Quantum Group G2

    From now on,we consider the quantum group Uq(G2).We choose the following orientation for G2

    Then the corresponding Cartan matrix A and its minimal symmetrizer D are

    Let

    be the generating set of Uq(G2),where E1,E12,E122,E1222,E11222,E2are the modified images of the isomorphism classes of indecomposable representations of the species of type G2under the canonical isomorphism of Ringel between the corresponding Ringel-Hall algebra H(G2)and the positive part of the quantum groupare the images of the E1,E12,E122,E1222,E11222,E2under the convolution automorphism of the quantum group Uq(G2)(for details,see[16]).The following skew-commutator relations are computed in[16]:

    where i,j=1,2.

    The main result in[16]says that the set S of the above skew-commutator relations is a minimal Grner-Shirshov basis of the quantum goup Uq(G2).Note that the ordering

    induces a lexicographic ordering on the monomials of these generators.

    Now we are ready to construct a Gr?bner-Shirshov basis for the irreducible modules of the quantum group Uq(G2).Let X?be a free monoid generated by X,and Λ1,Λ2be fundamental weights.Let υλbe the highest weight vector with the highest weight λ,where λ =m1Λ1+m2Λ2and m1,m2are non-negative integers.The finite-dimensional highest weight Uq(G2)-module Vq(λ)with the highest weight λ generated by υλis defined to be(see definition 2.1):

    where S is a Grbner-Shirshov basis of Uq(G2)and(?,?)is the symmetrization of the Euler form(see[16]).From[10]we know that Vq(λ)is a finite-dimensional irreducible module,and any irreducible finite-dimensional module on Uq(G2)can be obtained in this way.Our main result is the following theorem.

    Theorem 3.1 The set

    is a Gr?bner-Shirshov basis of the finite-dimensional irreducible Uq(G2)-module Vq(λ).

    Proof For convenience,we let

    where i=1,2.

    Now we prove that S1is closed under composition.Since S is a Gr?bner-Shirshov basis of Uq(G2),we know from[7]that SX?υλis closed under composition,and there is no composition between the elements ofSo we only need to prove that the compositions between the elements ofand SX?υλare trivial.

    For any u=saυλ∈ SX?υλ,s∈ S,a ∈ X?,

    (I)if a?=1,then we consider the following three cases.

    (i)If SX?υλ?u=sa1Eiυλ,where s ∈ S,a1∈ X?,i=1,2,

    (ii)Ifs∈ S,a1∈ X?,i=1,2,then there is no composition when 0

    (iii)If SX?υλ?u=sa1Kiυλ,where s ∈ S,a1∈ X?,i=1,2,and s=s+t,t

    (II)if a=1,that is,u=sυλ∈ SX?υλ,where s∈ S=S+∪K ∪T ∪S?,then we consider the following four cases.

    (i)If s∈S+,then s=ExEy,where Ex,Ey∈A,A={E12,E122,E1222,E11222}.Since we know from[17]that each E12,E122,E1222and E11222is polynomial of E1and E2without constant term,the proof is the same as(i)in(I).

    (ii)If s∈ S?,then by using the convolution automorphism(see[10])we convert this case to the case(i).

    (iii)If s∈K,then we have the following three compositions:

    If u=(KlKp?KpKl)υλ,where(l,p)>(p,l),when p=i,where i=1,2.So

    If u=when j=i.Thus

    SinceAgain,sincewe haveHence

    If uwhen l=i.So

    (iv)If s∈T,then there is no composition.

    The proof is complete.

    In order to specialize the quantum group Uq(G2)at q=1,we give another versionof Uq(G2)as follows.

    The k-algebrais generated bysubject to the relations

    where 1≤i,j≤2,and

    Then we have the following result.

    Theorem 3.2 The two k-algebrasare isomorphic.

    Proof We define two k-algebra homomorphisms φ and ψ as follows:

    and

    Then,we need to verify that these two maps are well-defined,that is,they are compatible with the defining relations for Uq(G2)and U?q(G2).Because of the definitions of φ and ψ,we only need to consider the relations relevant to Li.First,we prove that φ is well-defined.Since

    we have

    and φ is well-defined.

    Next,we prove that ψ is well-defined.Clearly,

    So

    Since

    one can get

    Similarly,we have

    So ψ is well-defined.Finally,we note that

    So

    Therefore,The proof is complete.

    This isomorphism gives the following Gr?bner-Shirshov basis for

    where i,j=1,2.

    We denote this Grbner-Shirshov basis ofby S?.Moreover,by the isomorphism φ above,we define a(G2)-module structure on Vq(λ)as follows:

    and we denote this finite-dimensional irreducibleThen we get the following Gr?bner-Shirshov basis for

    where X?is the free monoid of monomials in the letters inWe denote bythe specialization ofBy using the Lie bracket and the formulas(6),(8),(13)and(15),we have

    From the formulas(1)–(5),(7),(9)–(12)and(14),we have

    In the same way,we have

    whereThen there is a surjection

    defined by

    and KerSo

    where U(G2)is the classical universal enveloping algebra of the simple Lie algebra of type G2.Hence by replacing the q and all Ki’s by 1 in the Gr?bner-Shirshov basis S?of U?q(G2),and using the map f,we get the following Gr?bner-Shirshov basis S0of U(G2):

    where i,j=1,2.In this Gr?bner-Shirshov basis,we omit brackets for convenience.The Lie product[ab]will be written as(ab)or ab,[z1,z2···zm]will mean z1[z2···zm]and(z1z2···zm)will mean(z1z2···zm?1)zm.Thus,we have[z1z2···zm]=(?1)m?1zm···z2z1.

    In[4]a minimal Gr?bner-Shirshov basis of U(G2)is given and by comparing it with the basis above,wefind that the minimal one is contained in the basis above.

    Again,by replacing the q and all Ki’s by 1 in the Gr?bner-Shirshov basisof the finite-dimensional irreducible(G2)-module(λ)and using the map f,we get the following Gr?bner-Shirshov basis of U(G2)-module V(λ):

    where X?is the free monoid of monomials in the letters in{xi,hi,yi|1≤i≤2}.Note that here we have used the fact(λ,i)=mi,1 ≤ i≤ n(see[3]).

    AcknowledgementThe authors are grateful to the referee for the nice suggestions.

    [1]Bergman,G.M.,The diamond lemma for ring theory,Adv.Math.,29,1978,178–218.

    [2]Bokut,L.A.,Imbeddings into simple associative algebras,Algebra and Logic,15,1976,117–142.

    [3]Bokut,L.A.and Klein,A.A.,Serre relations and Grobner-Shirshov bases for simple Lie algebras I,II,Internat.J.Algebra Comput.,6,1996,389–400,401–412.

    [4]Bokut,L.A.and Klein,A.A.,Grbner-Shirshov bases for exceptional Lie algebras I,Journal of Pure and Applied Algebra,133,1998,51–57.

    [5]Bokut,L.A.and Malcolmson,P.,Grbner-Shirshov bases for quantum enveloping algebras,Israel Journal of Mathematics,96,1996,97–113.

    [6]Buchberger,B.,An Algorithm for Finding a Basis for the Residue Class Ring of a Zero Dimensional Polynomial ideal,Ph.D.Thesis,University of Innsbruck,Austria,1965.

    [7]Chen,Y.Q.,Chen,Y.S.and Zhong,C.Y.,Composition-diomond lemma for modules,Czechoslovak Math.J.,60,2010,59–76.

    [8]Chibrikov,E.S.,On free Lie conformal algebras,Vestnik Novosibirsk State University,4(1),2004,65–83.

    [9]Drinfel’d,V.G.,Hopf algebras and the quantum Yang-Baxter equation,Doklady Akademii Nauk SSSR,283(5),1985,1060–1064.

    [10]Jantzen,J.C.,Lectures on Quantum Groups,Graduate Studies in Mathematics,Vol.6,Amer.Math.Soc.,Providence,1996.

    [11]Jimbo,M.,A q-difference analogue of U(G)and the Yang-Baxter equation,Letters in Mathematical Physics,10(1),1985,63–69.

    [12]Kang,S.J.and Lee,K.-H.,Grbner-Shirshov basis for representation theory,J.Korean Math.Soc.,37(1),2000,55–72.

    [13]Kang,S.J.and Lee,K.-H.,Grbner-Shirshov bases for irreducible s?n+1-modules,J.Algebra,232,2000,1–20.

    [14]Obul,A.and Yunus,G.,Grbner-Shirshov basis of quantum group of type E6,J.Algebra,346,2011,248–265.

    [15]Qiang,C.X.and Obul,A.,Grbner-Shirshov basis of quantum group of type F4,Frontiers of Mathematics in China,9(1),2014,135–150.

    [16]Ren,Y.H.and Obul,A.,Grbner-Shirshov basis of quantum group of type G2,Comm.Algebra,39(5),2011,1510–1518.

    [17]Ringel,C.M.,PBW-bases of quantum groups,J.Reine Angew.Math.,470,1996,51–88.

    [18]Shirshov,A.I.,Some algorithmic problems for Lie algebras,Siberian Math.J.,3,1962,292–296.

    [19]Yunus,G.and Obul,A.,Gr?bner-Shirshov basis of quantum group of type D4,Chin.Ann.Math.Ser.B,32(4),2011,581–592.

    精品午夜福利在线看| 亚洲最大成人av| 噜噜噜噜噜久久久久久91| 69av精品久久久久久| 麻豆国产av国片精品| 99热这里只有是精品在线观看 | 色视频www国产| 成人亚洲精品av一区二区| 国产在线精品亚洲第一网站| av在线老鸭窝| 成年版毛片免费区| 日韩免费av在线播放| 午夜福利欧美成人| 午夜福利免费观看在线| 国产成人影院久久av| 综合色av麻豆| 亚洲av免费高清在线观看| 国产精品亚洲av一区麻豆| 九色国产91popny在线| 天天一区二区日本电影三级| 日本五十路高清| 欧美午夜高清在线| 丝袜美腿在线中文| 最新在线观看一区二区三区| 精品国内亚洲2022精品成人| 欧美三级亚洲精品| 久久久成人免费电影| 欧美zozozo另类| 久久午夜亚洲精品久久| 精品人妻一区二区三区麻豆 | 亚洲av.av天堂| 波多野结衣高清作品| av视频在线观看入口| 亚洲欧美日韩高清专用| 国产av一区在线观看免费| 搡老熟女国产l中国老女人| 久久香蕉精品热| 国产精品98久久久久久宅男小说| 国产三级在线视频| 日本五十路高清| 国产免费av片在线观看野外av| 毛片一级片免费看久久久久 | 亚洲av电影不卡..在线观看| 国产伦在线观看视频一区| 12—13女人毛片做爰片一| 国产精品av视频在线免费观看| 丰满乱子伦码专区| 最近在线观看免费完整版| 日本三级黄在线观看| 免费一级毛片在线播放高清视频| 三级国产精品欧美在线观看| 88av欧美| 欧美乱妇无乱码| 国产成人啪精品午夜网站| 欧美极品一区二区三区四区| 两性午夜刺激爽爽歪歪视频在线观看| 国产午夜精品久久久久久一区二区三区 | 久久精品久久久久久噜噜老黄 | 亚洲,欧美精品.| 欧美黑人欧美精品刺激| 成人无遮挡网站| 中出人妻视频一区二区| 免费看光身美女| 久久欧美精品欧美久久欧美| АⅤ资源中文在线天堂| 男插女下体视频免费在线播放| 精品久久久久久成人av| 中文资源天堂在线| 人人妻人人澡欧美一区二区| 最近视频中文字幕2019在线8| 男人和女人高潮做爰伦理| 亚洲国产精品久久男人天堂| 免费无遮挡裸体视频| 欧美日本亚洲视频在线播放| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 麻豆一二三区av精品| 亚洲第一区二区三区不卡| 草草在线视频免费看| 免费高清视频大片| 欧美zozozo另类| 亚洲精品456在线播放app | 日韩国内少妇激情av| 亚洲 国产 在线| 亚洲自偷自拍三级| 18禁裸乳无遮挡免费网站照片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区二区三区不卡视频| 国内少妇人妻偷人精品xxx网站| 精品乱码久久久久久99久播| 欧美成人a在线观看| 成年女人毛片免费观看观看9| 赤兔流量卡办理| 亚洲中文字幕一区二区三区有码在线看| 久久99热这里只有精品18| 欧美成人性av电影在线观看| 老司机福利观看| 91在线观看av| 97碰自拍视频| av欧美777| 淫秽高清视频在线观看| 国产人妻一区二区三区在| 久久久久久久亚洲中文字幕 | 亚洲成av人片免费观看| 99久久99久久久精品蜜桃| 午夜影院日韩av| 性色av乱码一区二区三区2| 成人亚洲精品av一区二区| 国产一区二区在线观看日韩| 亚洲性夜色夜夜综合| 99精品久久久久人妻精品| 最新在线观看一区二区三区| 欧美激情久久久久久爽电影| 美女免费视频网站| 女人十人毛片免费观看3o分钟| aaaaa片日本免费| 国产伦在线观看视频一区| 午夜福利欧美成人| a在线观看视频网站| 欧美一级a爱片免费观看看| 九九在线视频观看精品| 国产成年人精品一区二区| 一边摸一边抽搐一进一小说| 国产久久久一区二区三区| 亚洲三级黄色毛片| 国产一区二区三区视频了| 宅男免费午夜| 男人和女人高潮做爰伦理| 日本一本二区三区精品| 午夜福利在线观看免费完整高清在 | 婷婷亚洲欧美| 国内精品美女久久久久久| www.色视频.com| 偷拍熟女少妇极品色| 欧美色欧美亚洲另类二区| 可以在线观看毛片的网站| 亚洲中文字幕一区二区三区有码在线看| 丰满人妻一区二区三区视频av| 久久久久国内视频| 国产麻豆成人av免费视频| 国产探花在线观看一区二区| 我的老师免费观看完整版| 美女高潮喷水抽搐中文字幕| 1024手机看黄色片| 欧美一级a爱片免费观看看| 国产午夜福利久久久久久| 他把我摸到了高潮在线观看| 成人无遮挡网站| 尤物成人国产欧美一区二区三区| 亚洲专区国产一区二区| 男女下面进入的视频免费午夜| 精品久久久久久久久av| 18美女黄网站色大片免费观看| 色综合欧美亚洲国产小说| 日韩国内少妇激情av| 五月伊人婷婷丁香| 中国美女看黄片| 久久伊人香网站| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 亚洲最大成人手机在线| 久久久久久久久中文| 大型黄色视频在线免费观看| 在线观看美女被高潮喷水网站 | 可以在线观看毛片的网站| 悠悠久久av| 亚洲国产欧洲综合997久久,| 在线免费观看不下载黄p国产 | 国产激情偷乱视频一区二区| 日本与韩国留学比较| 国产精品精品国产色婷婷| 两人在一起打扑克的视频| 在线观看舔阴道视频| 日本五十路高清| 免费大片18禁| 校园春色视频在线观看| av专区在线播放| 国产免费一级a男人的天堂| 男女床上黄色一级片免费看| 日韩 亚洲 欧美在线| 精品久久久久久久人妻蜜臀av| 好男人电影高清在线观看| 成人特级av手机在线观看| 午夜激情欧美在线| 看片在线看免费视频| 久久精品人妻少妇| 午夜老司机福利剧场| 小蜜桃在线观看免费完整版高清| 亚洲第一欧美日韩一区二区三区| 国产男靠女视频免费网站| 听说在线观看完整版免费高清| 校园春色视频在线观看| 日本五十路高清| 亚洲精品久久国产高清桃花| 国产免费男女视频| АⅤ资源中文在线天堂| 国产精品永久免费网站| 神马国产精品三级电影在线观看| 国产精品久久视频播放| 亚洲,欧美,日韩| 黄片小视频在线播放| 在线看三级毛片| 免费av不卡在线播放| 女生性感内裤真人,穿戴方法视频| 如何舔出高潮| 国产乱人视频| 国产精华一区二区三区| 又黄又爽又免费观看的视频| 一二三四社区在线视频社区8| 国产精品亚洲av一区麻豆| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品成人综合色| 免费在线观看亚洲国产| 亚洲 欧美 日韩 在线 免费| 日韩av在线大香蕉| 免费av观看视频| 久久精品国产清高在天天线| 国产精品久久久久久久久免 | 深爱激情五月婷婷| 国产精品野战在线观看| 亚州av有码| 成人鲁丝片一二三区免费| 成年女人看的毛片在线观看| 黄色视频,在线免费观看| 久久国产精品人妻蜜桃| 男女下面进入的视频免费午夜| 久99久视频精品免费| 欧美不卡视频在线免费观看| 我要搜黄色片| 小蜜桃在线观看免费完整版高清| 波多野结衣高清作品| 精品日产1卡2卡| 免费在线观看影片大全网站| 性色avwww在线观看| 色5月婷婷丁香| 88av欧美| 日韩欧美国产在线观看| 亚洲片人在线观看| 成人鲁丝片一二三区免费| 亚洲av二区三区四区| 国产三级黄色录像| 精品一区二区三区av网在线观看| 他把我摸到了高潮在线观看| 色av中文字幕| 亚洲专区中文字幕在线| 午夜福利在线观看吧| 欧美高清成人免费视频www| 欧美午夜高清在线| 亚洲av电影不卡..在线观看| 久久精品人妻少妇| 欧美乱妇无乱码| 黄色一级大片看看| 18禁在线播放成人免费| 国内精品久久久久精免费| 男女下面进入的视频免费午夜| 三级毛片av免费| 欧美精品啪啪一区二区三区| or卡值多少钱| 国内精品久久久久精免费| 精品国产三级普通话版| 女人被狂操c到高潮| 国产精品一区二区性色av| 一个人观看的视频www高清免费观看| 波多野结衣巨乳人妻| 丰满人妻一区二区三区视频av| 如何舔出高潮| 亚洲国产精品sss在线观看| 亚洲欧美日韩高清专用| 又紧又爽又黄一区二区| 日韩av在线大香蕉| 怎么达到女性高潮| 人人妻人人澡欧美一区二区| 国产精品美女特级片免费视频播放器| .国产精品久久| 国产精品,欧美在线| 亚洲成a人片在线一区二区| 欧美日韩黄片免| 久久亚洲真实| 亚洲av五月六月丁香网| 最近中文字幕高清免费大全6 | 国内精品一区二区在线观看| 国产精品女同一区二区软件 | 老熟妇仑乱视频hdxx| 97热精品久久久久久| 老司机深夜福利视频在线观看| 长腿黑丝高跟| 成人美女网站在线观看视频| 国产高清激情床上av| 精品无人区乱码1区二区| 亚洲中文字幕一区二区三区有码在线看| 日本 欧美在线| 国产探花极品一区二区| 国产精品精品国产色婷婷| 99热精品在线国产| 亚洲熟妇中文字幕五十中出| 欧美一级a爱片免费观看看| 久久久成人免费电影| 99久国产av精品| 人人妻,人人澡人人爽秒播| 欧美色视频一区免费| 国产老妇女一区| av视频在线观看入口| 91狼人影院| 色哟哟·www| 淫妇啪啪啪对白视频| 亚洲综合色惰| 黄色丝袜av网址大全| 五月伊人婷婷丁香| 91麻豆av在线| 久久国产乱子免费精品| 国产精品久久久久久久久免 | 成人av在线播放网站| 日韩中文字幕欧美一区二区| 18禁裸乳无遮挡免费网站照片| 亚洲av五月六月丁香网| 99久久无色码亚洲精品果冻| 99久久九九国产精品国产免费| 我要搜黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 免费看美女性在线毛片视频| 亚洲一区二区三区不卡视频| 我要搜黄色片| 国产精品乱码一区二三区的特点| 岛国在线免费视频观看| 757午夜福利合集在线观看| 黄色视频,在线免费观看| a级一级毛片免费在线观看| 久久久久久久久久黄片| 天堂影院成人在线观看| 国产精品免费一区二区三区在线| 真实男女啪啪啪动态图| 男女床上黄色一级片免费看| 人妻丰满熟妇av一区二区三区| 高清日韩中文字幕在线| av在线老鸭窝| 高清日韩中文字幕在线| 最近最新中文字幕大全电影3| 久久久久久久精品吃奶| 看黄色毛片网站| 国产精品日韩av在线免费观看| 脱女人内裤的视频| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 欧美午夜高清在线| 亚洲成av人片在线播放无| 琪琪午夜伦伦电影理论片6080| 乱码一卡2卡4卡精品| 热99在线观看视频| 别揉我奶头 嗯啊视频| 午夜福利欧美成人| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久精品电影| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻视频免费看| xxxwww97欧美| 国产午夜精品久久久久久一区二区三区 | 国产三级中文精品| 一级黄片播放器| 日韩精品青青久久久久久| 亚洲人成电影免费在线| 亚洲av成人不卡在线观看播放网| 国产成人aa在线观看| 亚洲专区中文字幕在线| 日本撒尿小便嘘嘘汇集6| 午夜福利在线在线| 成年免费大片在线观看| 亚洲精品成人久久久久久| 如何舔出高潮| 搡女人真爽免费视频火全软件 | 亚洲精品久久国产高清桃花| 久久精品91蜜桃| 给我免费播放毛片高清在线观看| 99久久久亚洲精品蜜臀av| 简卡轻食公司| 97碰自拍视频| 久久久国产成人精品二区| 亚洲美女黄片视频| 中出人妻视频一区二区| 精品国产三级普通话版| 亚洲天堂国产精品一区在线| www.999成人在线观看| 久久久久久久亚洲中文字幕 | 亚洲精品亚洲一区二区| 日韩 亚洲 欧美在线| 欧美+亚洲+日韩+国产| 非洲黑人性xxxx精品又粗又长| 大型黄色视频在线免费观看| 国产亚洲欧美98| 日韩成人在线观看一区二区三区| 精品99又大又爽又粗少妇毛片 | 一区二区三区免费毛片| 动漫黄色视频在线观看| 一级作爱视频免费观看| 波多野结衣高清无吗| 亚洲成a人片在线一区二区| 日日干狠狠操夜夜爽| 欧美日本视频| 成人午夜高清在线视频| 亚洲经典国产精华液单 | 亚洲专区中文字幕在线| 亚洲成a人片在线一区二区| 久久国产乱子伦精品免费另类| 亚洲第一欧美日韩一区二区三区| 婷婷六月久久综合丁香| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲第一欧美日韩一区二区三区| 亚洲美女视频黄频| 精品人妻一区二区三区麻豆 | 我的老师免费观看完整版| 一级作爱视频免费观看| 亚洲真实伦在线观看| 国产亚洲欧美98| 最好的美女福利视频网| 国产v大片淫在线免费观看| 大型黄色视频在线免费观看| 首页视频小说图片口味搜索| 国产高清激情床上av| 一本精品99久久精品77| 国产成人福利小说| 亚洲国产日韩欧美精品在线观看| 日本a在线网址| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说| 1000部很黄的大片| 99久久精品国产亚洲精品| 久久国产乱子伦精品免费另类| 成熟少妇高潮喷水视频| 丰满人妻一区二区三区视频av| 久久午夜亚洲精品久久| 国产免费一级a男人的天堂| 国产成人aa在线观看| av天堂在线播放| 91麻豆av在线| 我的女老师完整版在线观看| 国产精品电影一区二区三区| 国产精品自产拍在线观看55亚洲| 日本熟妇午夜| 一本久久中文字幕| 久久热精品热| xxxwww97欧美| 亚洲片人在线观看| 亚洲av成人精品一区久久| 国产一区二区激情短视频| 亚洲成av人片在线播放无| 91在线精品国自产拍蜜月| av天堂中文字幕网| 久久久色成人| 欧美日本亚洲视频在线播放| 亚洲国产精品久久男人天堂| 免费高清视频大片| 国产午夜精品论理片| 免费搜索国产男女视频| 色哟哟哟哟哟哟| 国产成人av教育| 人人妻人人澡欧美一区二区| 国产成人啪精品午夜网站| 88av欧美| 91九色精品人成在线观看| 丝袜美腿在线中文| 亚洲中文字幕一区二区三区有码在线看| 国产麻豆成人av免费视频| 亚洲国产精品sss在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧洲综合997久久,| 欧美日韩国产亚洲二区| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 午夜激情福利司机影院| 少妇丰满av| 久久国产精品人妻蜜桃| 中文字幕熟女人妻在线| 黄色日韩在线| 精品一区二区三区视频在线| 午夜福利18| 黄色丝袜av网址大全| 九色成人免费人妻av| 国产成+人综合+亚洲专区| 亚洲精华国产精华精| 1000部很黄的大片| 成年女人毛片免费观看观看9| 欧美午夜高清在线| 中文字幕av在线有码专区| 性色av乱码一区二区三区2| 变态另类成人亚洲欧美熟女| bbb黄色大片| 深夜a级毛片| 乱码一卡2卡4卡精品| 亚洲av日韩精品久久久久久密| 欧美精品啪啪一区二区三区| 午夜精品在线福利| 色在线成人网| 精品久久久久久久久久久久久| 麻豆国产97在线/欧美| 日韩国内少妇激情av| 桃红色精品国产亚洲av| av中文乱码字幕在线| 别揉我奶头 嗯啊视频| 精品久久国产蜜桃| 黄色一级大片看看| 久9热在线精品视频| 日韩成人在线观看一区二区三区| 最近最新中文字幕大全电影3| 国产精品爽爽va在线观看网站| 白带黄色成豆腐渣| 欧美日韩福利视频一区二区| 亚洲精品成人久久久久久| 亚洲在线自拍视频| 超碰av人人做人人爽久久| 熟女电影av网| 色视频www国产| 高清日韩中文字幕在线| 亚洲国产日韩欧美精品在线观看| 亚洲精品久久国产高清桃花| 欧美又色又爽又黄视频| 亚洲国产精品久久男人天堂| 色综合站精品国产| 婷婷精品国产亚洲av| 可以在线观看的亚洲视频| 五月伊人婷婷丁香| 免费在线观看日本一区| 最近中文字幕高清免费大全6 | 日本与韩国留学比较| 国产在视频线在精品| 久久久久久久午夜电影| 国产精品98久久久久久宅男小说| bbb黄色大片| 久久亚洲精品不卡| 午夜视频国产福利| 一个人观看的视频www高清免费观看| 国产高潮美女av| 成人亚洲精品av一区二区| 国产av不卡久久| 成人高潮视频无遮挡免费网站| 免费观看的影片在线观看| 亚洲真实伦在线观看| 国产大屁股一区二区在线视频| 九九热线精品视视频播放| 波野结衣二区三区在线| 亚洲人与动物交配视频| 久久久成人免费电影| 欧美高清成人免费视频www| 欧美成人一区二区免费高清观看| 午夜免费成人在线视频| 国产色爽女视频免费观看| 黄色视频,在线免费观看| 在线天堂最新版资源| 亚洲一区高清亚洲精品| 精品午夜福利在线看| 亚洲欧美日韩东京热| 亚洲国产色片| 国产主播在线观看一区二区| 在线国产一区二区在线| 性色avwww在线观看| 国产野战对白在线观看| 天堂网av新在线| av视频在线观看入口| 老熟妇仑乱视频hdxx| 日本三级黄在线观看| 国产一区二区三区在线臀色熟女| 熟女电影av网| 中出人妻视频一区二区| 精品久久国产蜜桃| 免费av不卡在线播放| xxxwww97欧美| 亚洲国产欧洲综合997久久,| 成人国产综合亚洲| 日韩 亚洲 欧美在线| 他把我摸到了高潮在线观看| 成人永久免费在线观看视频| 欧美成狂野欧美在线观看| 亚洲成人中文字幕在线播放| 日日摸夜夜添夜夜添小说| 午夜福利在线观看吧| 日本与韩国留学比较| 亚洲欧美日韩高清在线视频| 久久久久久久精品吃奶| 神马国产精品三级电影在线观看| 国产色爽女视频免费观看| 国产高清有码在线观看视频| 91字幕亚洲| 黄色丝袜av网址大全| 免费观看人在逋| 91久久精品电影网| 欧洲精品卡2卡3卡4卡5卡区| 乱人视频在线观看| 亚洲 欧美 日韩 在线 免费| 色av中文字幕| 一个人免费在线观看的高清视频| 99视频精品全部免费 在线| 欧美中文日本在线观看视频| АⅤ资源中文在线天堂| 黄色日韩在线| 又爽又黄无遮挡网站| 亚洲熟妇熟女久久| 国产黄片美女视频| xxxwww97欧美| 国产av不卡久久| 三级男女做爰猛烈吃奶摸视频| 女人被狂操c到高潮| 有码 亚洲区| 女同久久另类99精品国产91| 久久精品国产99精品国产亚洲性色| 哪里可以看免费的av片| 在线观看66精品国产| 成年免费大片在线观看| 变态另类丝袜制服| 国产精品98久久久久久宅男小说| 欧美黄色淫秽网站| 亚洲熟妇熟女久久| 麻豆成人av在线观看| 女人被狂操c到高潮| 国产亚洲欧美在线一区二区| 午夜两性在线视频| 色噜噜av男人的天堂激情| 国产亚洲精品综合一区在线观看|