• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Twistor Spinors and Quasi-twistor Spinors?

    2016-06-09 03:34:44YongfaCHEN

    Yongfa CHEN

    1 Introduction

    It is well known that the spectrum of the Dirac operator on closed spin manifolds detects subtle information on the geometry and the topology of such manifolds(see[1]).The first sharp estimate for the nonzero eigenvalues λ of the Dirac operator is the well-known Friedrich inequality,which says that

    where R is the scalar curvature of the closed spin manifold(Mn,g).The case of equality in(1.1)occurs if and only if(Mn,g)admits a nontrivial spinor field ψ called a real Killing spinor,satisfying the following overdetermined elliptic equation:

    where X ∈ Γ(TMn)and the dot“.”indicates the Clifford multiplication.Obviously,a Killing spinor is a twistor spinor which is also an eigenspinor.The existence of Killing spinors implies severe restrictions on the manifold.The manifold must be a locally irreducible Einstein manifold and the simply connected manifolds admitting real Killing spinors were completely classified(see[2]).Some classification results for manifolds with twistor spinors can be seen in[3–4].

    On the other hand,Lichnerowicz[5]and Hijazi[6]noticed that a manifold admitting a non-zero parallel k-form,for k?=0,n,carries no real Killing spinor.Furthermore,if(Mn,g)possesses a locally product structure,then there is no Killing spinor.Consequently,this shows the estimate(1.1)cannot be sharp,for example,on(quaternionic)K¨ahler manifolds,and on manifolds with a locally product structure.Indeed,better estimates have been proved in these cases by Kirchberg[7],Hijazi[8],Kramer et al[9],and Kim[10],respectively.

    In the paper[8],K¨ahlerian twistor spinors are introduced to get lower bounds for the eigenvalues of the Dirac operator on closed spin K¨ahler manifolds.Hijazi also studied the uniqueness of K¨ahlerian twistor spinors and obtained some vanishing theorems(see[11]).In particular,he proved that on a K¨ahler spin manifold with R?≡0,the space of twistor spinors is reduced to zero.Motivated by the paper[8],we study the properties and applications of the quasi-Killing spinors and the quasi-twistor spinors which were used to get lower bounds for the eigenvalues of the Dirac operator in[10–12],and obtain some vanishing theorems.Especially,we prove that on a locally decomposable closed spin manifold with nonzero Ricci curvature,the space of twistor spinor is trivial.

    The article is organized as follows:In Section 2,some geometric conventions and preliminaries are given.In Section 3,we discuss the quasi-Killing spinor and its application in lower bounds estimation for the eigenvalues of the Dirac operator.In the final section,the quasitwistor spinor is investigated.Especially,we give an integrability condition for twistor spinors(see Theorem 4.2).More generally,we study the uniqueness of quasi-twistor spinors on complete Riemannian spin manifolds(see Theorems 4.3–4.4).As a corollary,we know that on a locally decomposable closed spin manifold with Ric?≡0,the space of twistor spinors is trivial.

    2 Preliminaries

    Let(Mn,g)be an oriented n-Riemannian manifold.Let β be a(1,1)-tensor field on(Mn,g)such that β2= σId,σ = ±1 and

    for all vector fields X,Y ∈ Γ(TMn)(here Id stands for the identity map).We say(Mn,g,β)is an almost Hermitian manifold if σ = ?1 and an almost product Riemannian manifold if σ =1,respectively.Moreover,if σ = ?1 and β is parallel,(Mn,g,β)is called a K¨ahler manifold.Similarly,we have the following definition.

    definition 2.1(see[10,13])An n-Riemannian manifold(Mn,g)is called locally decomposable if it is an almost product Riemannian manifold(Mn,g,β)and β is parallel.

    In case that(Mn,g,β)is locally decomposable,the tangent bundle TMndecomposes into TMn=T+Mn⊕T?Mnunder the action of the endomorphism β,where

    Obviously,the distributions T±Mnare integrable since β is parallel.If(Mn,g)is simply connected and complete,then the De Rham decomposition theorem implies that there is a global splitting(Mn,g)=(M1×M2,g1+g2).

    Example 2.1 Suppose that an n-Riemannian manifold(Mn,g)possesses a unit vector field ξ∈ Γ(TMn).Then the reflection β defined by is an almost product Riemannian structure.Moreover,it is a locally decomposable Riemannian structure if ξ is a parallel vector field.

    We now suppose that(Mn,g)is a Riemannian manifold with a fixed spin structure.We understand the spin structure as a reduction SpinMnof the SO(n)-principal bundle of Mnto the universal covering Ad:Spin(n)→SO(n)of the special orthogonal group.The spinor bundle ΣMn=SpinMn×ρΣnon Mnis the associated complexdimensional complex vector bundle,where ρ is the complex spinor representation.The tangent bundle TMncan be regarded as TMn=SpinMn×AdRn.Consequently,the Clifford multiplication on ΣMnis the fibrewise action given by

    On the spinor bundle ΣMn,one has a natural Hermitian metric,denoted as the Riemannian metric byThe spinorial connection on the spinor bundle induced by the Levi-Civita connection ? on Mnwill also be denoted by ?.The Hermitian metricand spinorial connection ? are compatible with the Clifford multiplication μ.That is

    ?φ,? ∈ Γ(ΣMn)and ?X,Y ∈ Γ(TMn).Using a local orthonormal frame field{e1,···,en},the spinorial connection?,the Dirac operator D and the twistor operator P,are locally expressed as

    respectively,which satisfy the following important relation:

    for any ψ ∈ Γ(ΣMn)(throughout this paper,the Einstein summation notation is always adopted).The kernels of the operators D and P are respectively,the twistor spinors and the harmonic spinors,and they are both conformally invariant.If M is closed,KerD=KerD2on L2(ΣMn).

    Let RX,YZ?(?X?Y??Y?X??[X,Y])Z be the Riemannian curvature of(Mn,g)and denote by RX,Yψ ?(?X?Y??Y?X??[X,Y])ψ the spin curvature in the spinor bundle ΣMn.They are related via the formula

    We also use the notation

    andWith the help of the Bianchi identity,(2.4)implies

    which in turn gives 2ei·ej·Rei,ejψ =Rψ.Hence one derives the well-known Schr?dinger-Lichnerowicz formula

    where??is the formal adjoint of? with respect to the natural Hermitian scalar product on ΣMn.The formula shows the close relation between the scalar curvature R and the Dirac operator D.

    On almost Hermitian manifolds or almost product Riemannian manifolds,we can also define the following β-twist Dβof the Dirac operator D by

    It is easy to see that Dβis a formally self-adjoint elliptic operator with respect to L2-product,if Mnis closed and divβ=0.As in the K¨ahlerian case,Kim obtained that D2=holds on the locally decomposable Riemannian spin manifold(Mn,g,β)(see Prop.2.1 in[10]).

    3 Quasi-Killing Spinors

    definition 3.1(see[10])A non-trivial solution ψ to the following field equation on the almost product Riemannian manifold(Mn,g,β)

    is called a quasi-Killing spinor of type(a,b).

    Obviously,if ψ is a quasi-Killing spinor of type(a,b),the energy-momentum tensor associated to ψ is given on the complement of its zero set by

    for any X,Y ∈ Γ(TMn).Especially,the quasi-Killing spinor of type(a,0)(or β =±Id)is also called the generalized Killing spinor.In fact,in this case one can prove that the function a must be a constant.That is,ψ is in fact a Killing spinor.In addition,Hijazi proved that a manifold admitting a parallel 1-form carries no real Killing spinors(see[6]).Furthermore,we can prove the following theorem.

    Theorem 3.1 Let ψ be a quasi-Killing spinor of type(a,b)on a locally decomposable Riemannian spin manifold(Mn,g,β),where β ?±Id.Then|ψ|2is a positive constant and

    (1)if R?≡ 0,ψ is an eigenspinor of D,0a=b(or 0?a= ?b)is constant,and R is a positive constant;

    (2)if R≡0,then Ric≡0;

    (3)the real vector field Xψdefined by

    is a Killing field,i.e.,LXψg=0.

    Proof(1)First,from

    we know that ?i|ψ|2=2Re??iψ,ψ?=0.Hence|ψ|2is a positive constant.One can also easily check

    and

    In particular

    since=D2.Noting β±Id,we have a=±b,which in turn implies that β(?a)=±?a.Hence the quasi-Killing equation can also be written as

    where Qψ=?a(Id±β).Moreover,by(2.5),

    Hence performing its Clifford multiplication by eiyields

    Using(trQψ)2=+|Qψ|2,it follows that

    By dtrQψ=divQψ,we infer that

    Consequently,?a=0 since R is non-zero.Moreover,R is a positive constant andwhere n1dimT+Mn,n2dimT?Mn.

    (2)If R ≡ 0,(3.7)yields a=0 or n±trβ?2≡ 0.If a=0,?ψ=0 and Ric≡ 0.If n+trβ?2≡ 0,we see by(3.5)that

    whereObviously

    from which the result follows.

    (3)Since the Clifford multiplication by vector fields is skew-symmetric with respect tothe vector field Xψis real.We need the following formula for arbitrary vector fields X,Y,Z∈Γ(TM)

    since? is metric and torsion-free.On the other hand,by the definition of Xψ,at the point p with?ei|p=0,

    which is clearly skew-symmetric with respect to ei,ej.

    Remark 3.1 We can compute if R?0 and Mnis closed,

    Hence,Ric ≥ 0 and moreover,by the Bochner-Weitzenb?ck formula,we know that every harmonic 1-form on Mnis parallel.

    One application of the quasi-Killing spinor is another simple proof of the following theorem,which is due to Alexandrov,Grantcharov and Ivanov[12].The other related issues can be seen in[10,14–15].

    Theorem 3.2 Let(Mn,g),n≥3 be a closed Riemannian spin manifold of positive scalar curvature admitting a non-trivial parallel vector field of unit length.Then any eigenvalue λ of the Dirac operator D satisfies

    The equality in(3.12)occurs if and only if there exists a quasi-Killing spinor field of type

    Proof First suppose that ξ is a unit parallel vector field and let

    where D? = λ?, β(ei)?ei?2?ei,ξ?ξ.Then,an elementary calculation provides the following

    At the same time,?ξ=0 yields

    Hence integrating(3.14)and applying the Schr?dinger-Lichnerowicz formula(2.6),wefind that

    Note by the definition,

    So using the Cauchy-Schwarz inequality leads to

    From this,it follows immediately that

    If λ2achieves its minimum,then T? ≡ 0,which implies the associated eigenspinor ? is a nontrivial quasi-Killing spinor field on locally decomposable Riemannian spin manifold(Mn,g,β).

    Remark 3.2 It follows from T? ≡ 0, βij= δij? 2ξiξjthat

    By Br’s result in[2],the universal covering space of the manifolds in the limiting case was described in[12].

    Remark 3.3 The proof given above also works if ξ is just a harmonic vector field of unit length,and hence the result in[14]is also obtained.In fact,with the help of the Bochner-Weitzenb?ck formula on 1-forms,it is not difficult to check that for any φ,

    Note the fact that ξ is a harmonic vector field of unit length implies div(β)=0,hence Dβis self-adjoint with respect to L2-product.Hence

    So,if Dφ=λφ,one can use the classical Rayleigh inequality and(2.6)to conclude

    and the remaining proof is quite similar to that of Theorem 3.2.

    4 Quasi-twistor Spinors

    Analogous to the K¨ahlerian twistor equation in[8],we have the following definition.

    definition 4.1(see[10])A non-trivial solution ψ to the following field equation on almost product Riemannian manifold(Mn,g,β):

    is called a quasi-twistor spinor of type(p,q),where p,q∈R.

    Remark 4.1 Obviously,the quasi-twistor spinor of type(?,0)is the familiar twistor spinor or called conformal Killing spinor which lies in the kernel of the twistor operator P(see(2.3)).

    On a locally decomposable spin manifold,a straightforward computation using(4.1)gives the following-Ric formula(see[10])

    and the following useful identity

    Theorem 4.1 Suppose that ψ is a quasi-twistor spinor of type(p,q)on a locally decomposable Riemannian spin manifold(Mn,g,β), β ?±Id and Dψ = λψ,where λ ?0.Then

    Proof(1)If trβ=0,then from0 and

    one gets

    (2)then the limiting-case in Friedrich’s inequality is achieved,and moreover,Mncarries a nontrivial Killing spinor with a real nonzero Killing number.Hence Mnis locally irreducible,which is a contradiction(see[16]).

    (3)If trβ?0 and pq?0,we know

    HenceConsequently,ψ is a quasi-Killing spinor.

    Now we turn to discuss the existence of twistor spinors.It is well-known that

    if n≥3,and the maximal possible dimension is attained only for conformal flat manifolds as in the case of conformal Killing fields.Furthermore,Hijazi proved that on a K¨ahler spin manifold with R?0,the space of twistor spinors is reduced to zero(see[8]).Another proof of this result can also been seen in[11].Here,we prove the following theorem.

    Theorem 4.2 Suppose that(Mn,g)is a closed Riemannian spin manifold admitting a non-trivial harmonic vector field ξ,ψ is a non-trivial twistor spinor.Then on Mnthe following integrability condition holds:

    where D(Ric)(ξ)?ei·(?iRic)(ξ).

    Proof Let ψ be a non-trivial twistor spinor,i.e.,

    which implies the following integrability conditions

    and

    Hence from(4.6),

    First,the harmonicity of the vector field ξ= ξiei,together with the compactness of Mn,implies that

    This means that ξi,j= ξj,iand ξi,i=0,respectively.Moreover,

    On the one hand,

    and on the other hand,

    Therefore(4.8)turns into

    From(4.5),(4.7)and(4.10)–(4.11),it is clear that

    Hence the proof of the theorem is completed.

    Remark 4.2 Note

    and any non-trivial twistor spinor on a spin manifold vanishes at most at one point(see[5]).So taking the inner product of(4.4)with ξ·ψ and comparing its real part,we obtain on Mn,

    which is also a corollary of the well-known fact that the Einstein tensoris divergence-free.

    As an immediate consequence of the preceding theorem,we obtain the following corollary.

    Corollary 4.1 Suppose a closed Riemannian spin manifold admits a non-trivial parallel vector field and R?≡0,and then the space of twistor spinors is trivial.

    Proof Suppose ξ is a unit parallel vector field,and we denote the dual one-form of ξ also by ξ.Since

    it follows that Ric(ξ)=0.Hence the theorem above implies

    for any non-trivial twistor spinor ψ.Eventually,wefind that R ≡ constant ≥ 0,since all eigenvalues of D2are non-negative on closed spin manifolds.Hence(4.7)implies that the limiting-case in Friedrich’s inequality is achieved,and moreover,(Mn,g)is Einstein with R ≥ 0.In fact,ψ is the sum of two non-parallel real Killing spinors,or ψ is parallel(in this case R ≡ 0),which is a contradiction.

    Corollary 4.2 Suppose spin manifold(Mn,g)is a closed Riemannian symmetric space with b1(M)?0 and R?0,and then the space of twistor spinors is trivial.

    Remark 4.3 In fact,from the proof of the theorem above one can easily see that if a(not necessarily closed)Riemannian spin manifold admits a non-trivial unit parallel vector field and R?≡ 0,?R ·ψ =nξ(R)ξ·ψ still holds for any non-trivial twistor spinor ψ.So R must be a constant(≤0).

    Now we return to studying the uniqueness of quasi-twistor spinors.

    Theorem 4.3 Let ψ be a quasi-twistor spinor of type(p,q)on a locally decomposable complete Riemannian spin manifold(Mn,g,β),β?= ±Id.Then

    (1)If?R?0,then

    (2)If R is a nonzero constant and ψ ∈ L2(ΣMn),we also havehere n1dimT+Mn,and n2dimT?Mn.

    Proof(1)First,assume?R?=0.From

    we obtain

    Noting R0,we also have

    and

    Note0 and

    That is

    If ψ(m)?0,it follows from(4.18)that

    Suppose now ψ(m)=0.Since ψ is a solution of the elliptic differential equation

    there exists a sequence of points miconverging to m such that ψ(mi)?=0.Then we have(1+np)?R+tr(β)qβ(?R)=0 at points miand with respect to the continuity of ?R and β(?R).We obtain again(1+np)?R(m)+tr(β)qβ(?R)(m)=0.Hence from(4.18),using β2=Id,one gets the system

    Similarly,from(4.19),we obtain

    Hence,if?R+β(?R)?=0 and?R?=0,then from(A)and(B)

    Note

    So

    Hence solving the linear equations above leads to

    and Dψ =Dβψ.Moreover,Dψ for i≤n1and?jψ =0 for j>n1.

    If?R+β(?R)=0 and?R?=0,then?R?β(?R)?=0.Moreover,from(A)and(B),

    A similar argument shows that

    and Dψ=?Dβψ.

    (2)Now suppose that R is a nonzero constant and ψ ∈ L2(ΣMn).Hence D2ψ ∈ L2(ΣMn)by(4.2).Note for the L2-norm?·?and any number t>0,we have(see[17,p.96])

    which implies that Dψ ∈ L2(ΣMn).Therefore we know that ψ lies in the domain of the maximal extension of D.Since Mnis complete,D is essentially self-adjoint as an unbounded operator in L2(ΣMn),so the maximal and the minimal extensions coincide and ψ ∈ dom()=dom(D?).

    On the other hand,by combining(4.13)and(4.14)wefind that

    Therefore by integrating(4.24)and using=D2,one obtains

    Case 1 If

    Case 2 If p=q,then(4.15)implies that

    Case 3 SupposeThen

    Clearly,R is a positive constant.Hence Mncarries a non-parallel real Killing spinor,which is a contradiction.

    Obviously,from the proof of the above theorem,one gets the following theorem.

    Theorem 4.4 Let ψ be a quasi-twistor spinor of type(p,q)on a locally decomposable closed Riemannian spin manifold(Mn,g,β),β?=±Id.Then

    Remark 4.4 When Dψ=λψ,Kim and Alexandrov classify all the types of spin manifolds admitting non-trivial quasi-twistor spinors of type

    Corollary 4.3 On a locally decomposable closed Riemannian spin manifold with β ?±Id and Ric?0,the space of twistor spinors is trivial.

    AcknowledgementThe author cordially thanks the referees for their careful reading and helpful comments.

    [1]Lawson,H.B.and Michelsohn,M.L.,Spin Geometry,Princeton Math Series,38,Princeton University Press,Princeton,1989.

    [2]B¨ar,C.,Real Killing spinors and holonomy,Comm.Math.Phys.,154,1993,509–521.

    [3]Lichnerowicz,A.,Killing spinors,twistor-spinors and Hijazi inequality,J.Geom.Phys.,5,1988,2–18.

    [4]Kühnel,W.and Rademacher,H.B.,Asymptotically Euclidean manifolds and twistor spinors,Comm.Math.Phys.,196,1998,67–76.

    [5]Lichnerowicz,A.,Spin manifolds,Killing spinors and the universality of the Hijazi inequality,Lett.Math.Phys.,3,1987,331–344.

    [6]Hijazi,O.,A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors,Commun.Math.Phys.,104,1986,151–162.

    [7]Kirchberg,K.D.,An estimation for the first eigenvalue of the Dirac operator in closed K¨ahler manifolds of positive scalar curvature,Ann.Glob.Ann.Geom.,3,1986,291–325.

    [8]Hijazi,O.,Eigenvalues of the Dirac operator on compact K¨ahler manifolds,Comm.Math.Phys.,160(3),1994,563–579.

    [9]Kramer,W.,Semmelmann,U.and Weingart,G.,Eigenvalue estimates for the Dirac operator on quaternionic K¨ahler manifolds,Math.Z.,230,1999,727–751.

    [10]Kim,E.C.,Lower bounds of the Dirac eigenvalues on compact Riemannian spin manifolds with locally product structure.arXiv:math.DG/0402427

    [11]Kirchberg,K.D.,Properties of K¨ahlerian twistor spinors and vanishing theorems,Math.Ann.,293(2),1992,349–369.

    [12]Alexandrov,B.,Grantcharov,G.and Ivanov,S.,An estimate for the first eigenvalue of the Dirac operator on compact Riemannian spin manifold admitting a parallel one-form,J.Geom.Phys.,28,1998,263–270.[13]Yano,K.and Kon,M.,Structures on Manifolds,World Sci.,Singapore,1984.

    [14]Alexandrov,B.,The first eigenvalue of the Dirac operator on locally reducible Riemannian manifolds,J.Geom.Phys.,57(2),2007,467–472.

    [15]Moroianu,A.and Ornea,L.,Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length,C.R.Math.Acad.Sci.Paris,338,2004,561–564.

    [16]Br,C.,Spectral bounds for Dirac operators on open manifolds,Ann.Glob.Anal.Geom.,36,2009,67–79.

    [17]Friedrich,T.,Dirac operators in Riemannian geometry,Graduate Studies in Mathematics,25,American Mathematical Society,Providence,RI,2000.

    [18]Hijazi,O.,Lower bounds for the eigenvalues of the Dirac operator,J.Geom.Phys.,16,1995,27–38.

    亚洲国产欧美在线一区| 国产高清videossex| 久久女婷五月综合色啪小说| 欧美日韩亚洲综合一区二区三区_| 亚洲九九香蕉| 汤姆久久久久久久影院中文字幕| 日韩有码中文字幕| 成人三级做爰电影| 91精品伊人久久大香线蕉| 啦啦啦中文免费视频观看日本| 日本av手机在线免费观看| 一级毛片电影观看| 久久国产精品人妻蜜桃| 窝窝影院91人妻| 老熟妇乱子伦视频在线观看 | 一个人免费看片子| 国产深夜福利视频在线观看| 在线观看人妻少妇| 午夜福利,免费看| 青春草视频在线免费观看| 精品人妻1区二区| 精品国产乱子伦一区二区三区 | 一个人免费在线观看的高清视频 | 亚洲精品乱久久久久久| 99九九在线精品视频| 国产精品免费视频内射| 99久久人妻综合| 黄片小视频在线播放| 成年美女黄网站色视频大全免费| 国产人伦9x9x在线观看| 精品少妇内射三级| 黄色 视频免费看| 国产精品久久久人人做人人爽| 国产av精品麻豆| 久久久久国内视频| 成人18禁高潮啪啪吃奶动态图| 色播在线永久视频| 欧美 日韩 精品 国产| 午夜福利乱码中文字幕| 亚洲国产欧美一区二区综合| 人妻久久中文字幕网| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频| 中文字幕人妻丝袜一区二区| 亚洲色图 男人天堂 中文字幕| 欧美少妇被猛烈插入视频| av不卡在线播放| 十八禁高潮呻吟视频| 啦啦啦 在线观看视频| 亚洲一区二区三区欧美精品| av天堂久久9| 欧美日韩精品网址| av视频免费观看在线观看| 精品免费久久久久久久清纯 | 一区二区三区精品91| 亚洲国产中文字幕在线视频| 狂野欧美激情性bbbbbb| 18禁国产床啪视频网站| 成年人黄色毛片网站| 国产高清国产精品国产三级| 久久人人爽人人片av| 男女无遮挡免费网站观看| 中文字幕另类日韩欧美亚洲嫩草| 精品久久蜜臀av无| 又黄又粗又硬又大视频| 日韩视频在线欧美| 男女免费视频国产| 国产精品欧美亚洲77777| 热99国产精品久久久久久7| 男女午夜视频在线观看| 91av网站免费观看| 国产男人的电影天堂91| 九色亚洲精品在线播放| 午夜福利一区二区在线看| 精品免费久久久久久久清纯 | 别揉我奶头~嗯~啊~动态视频 | 香蕉丝袜av| 亚洲国产av新网站| av电影中文网址| 日本五十路高清| 亚洲中文av在线| av福利片在线| 午夜日韩欧美国产| 精品人妻1区二区| 大陆偷拍与自拍| 99久久精品国产亚洲精品| 精品国产乱子伦一区二区三区 | 最新在线观看一区二区三区| 国产成+人综合+亚洲专区| 日韩制服丝袜自拍偷拍| 国产av精品麻豆| 亚洲av男天堂| 9热在线视频观看99| 在线观看人妻少妇| 69av精品久久久久久 | 女性被躁到高潮视频| 国产成人系列免费观看| 亚洲国产欧美一区二区综合| 青青草视频在线视频观看| 国产亚洲一区二区精品| 日韩,欧美,国产一区二区三区| 国产一区二区三区av在线| 国产一区二区 视频在线| 在线观看www视频免费| 久久av网站| 麻豆国产av国片精品| 亚洲国产精品一区三区| 久久久久久人人人人人| 99国产综合亚洲精品| 色婷婷av一区二区三区视频| www日本在线高清视频| 国产xxxxx性猛交| 在线看a的网站| 成年女人毛片免费观看观看9 | 人妻久久中文字幕网| 亚洲午夜精品一区,二区,三区| 日韩电影二区| 在线观看免费日韩欧美大片| 色播在线永久视频| h视频一区二区三区| a级毛片在线看网站| 黑人猛操日本美女一级片| 精品少妇一区二区三区视频日本电影| 在线精品无人区一区二区三| 视频区图区小说| 亚洲av成人一区二区三| 美女午夜性视频免费| 欧美精品人与动牲交sv欧美| 久久综合国产亚洲精品| 欧美+亚洲+日韩+国产| 视频区欧美日本亚洲| 国产麻豆69| 咕卡用的链子| 人妻 亚洲 视频| 又大又爽又粗| 少妇猛男粗大的猛烈进出视频| 精品人妻1区二区| 久久人妻熟女aⅴ| 人妻久久中文字幕网| 97精品久久久久久久久久精品| 91麻豆精品激情在线观看国产 | 午夜福利视频在线观看免费| 又大又爽又粗| 王馨瑶露胸无遮挡在线观看| 两个人免费观看高清视频| 国产色视频综合| 免费一级毛片在线播放高清视频 | 亚洲九九香蕉| av天堂久久9| 悠悠久久av| 18禁观看日本| 久久精品国产亚洲av高清一级| 黑人猛操日本美女一级片| 精品国产超薄肉色丝袜足j| 国产一区二区激情短视频 | 日韩精品免费视频一区二区三区| 久久九九热精品免费| 欧美久久黑人一区二区| 97在线人人人人妻| 麻豆av在线久日| 淫妇啪啪啪对白视频 | 大香蕉久久成人网| 国产免费一区二区三区四区乱码| 精品人妻在线不人妻| 麻豆av在线久日| 精品第一国产精品| av在线app专区| 欧美在线一区亚洲| 国产免费视频播放在线视频| 精品人妻一区二区三区麻豆| 1024视频免费在线观看| 国产成人a∨麻豆精品| 国产亚洲精品第一综合不卡| 日韩大码丰满熟妇| 亚洲国产欧美网| 无遮挡黄片免费观看| 精品福利永久在线观看| 少妇猛男粗大的猛烈进出视频| 一个人免费看片子| 亚洲色图 男人天堂 中文字幕| 黑人操中国人逼视频| 日韩精品免费视频一区二区三区| 女警被强在线播放| 女性被躁到高潮视频| 亚洲国产精品999| 女警被强在线播放| 久久人人爽人人片av| 亚洲精品国产精品久久久不卡| e午夜精品久久久久久久| 欧美精品啪啪一区二区三区 | 午夜激情久久久久久久| 国产成人欧美| 亚洲精品久久午夜乱码| 91成人精品电影| 母亲3免费完整高清在线观看| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品久久午夜乱码| 欧美黑人精品巨大| 国产精品秋霞免费鲁丝片| 欧美国产精品va在线观看不卡| 国产精品久久久人人做人人爽| 在线观看免费午夜福利视频| 下体分泌物呈黄色| 久久久国产精品麻豆| 国产在线观看jvid| 91国产中文字幕| netflix在线观看网站| 美女中出高潮动态图| 国产av又大| 一本大道久久a久久精品| 午夜福利一区二区在线看| 精品国产一区二区久久| 亚洲熟女毛片儿| 成在线人永久免费视频| 国产精品一区二区免费欧美 | 欧美精品av麻豆av| 国产成人系列免费观看| 99香蕉大伊视频| 热99国产精品久久久久久7| www.999成人在线观看| 成人国语在线视频| 午夜视频精品福利| 老鸭窝网址在线观看| 国产成人免费无遮挡视频| 午夜免费观看性视频| 三级毛片av免费| 精品少妇一区二区三区视频日本电影| 精品国产一区二区三区久久久樱花| av一本久久久久| www.自偷自拍.com| 嫁个100分男人电影在线观看| netflix在线观看网站| 久久av网站| av又黄又爽大尺度在线免费看| 啦啦啦啦在线视频资源| 国产亚洲精品久久久久5区| 亚洲欧美日韩高清在线视频 | 国产成人精品无人区| 国产99久久九九免费精品| 久久精品熟女亚洲av麻豆精品| 视频区图区小说| 国产视频一区二区在线看| 久久国产精品大桥未久av| av天堂久久9| 午夜影院在线不卡| 日韩制服骚丝袜av| 飞空精品影院首页| 日韩大码丰满熟妇| 曰老女人黄片| 亚洲国产精品一区二区三区在线| 91精品伊人久久大香线蕉| 久久久精品免费免费高清| 亚洲伊人久久精品综合| 老司机靠b影院| 最近最新免费中文字幕在线| 成年人午夜在线观看视频| 国产三级黄色录像| 青青草视频在线视频观看| 久久狼人影院| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品古装| 亚洲国产精品一区二区三区在线| 亚洲专区字幕在线| 午夜福利免费观看在线| 啦啦啦视频在线资源免费观看| 蜜桃在线观看..| 亚洲第一欧美日韩一区二区三区 | 成年动漫av网址| 精品国产一区二区久久| 亚洲专区中文字幕在线| 国产av又大| 九色亚洲精品在线播放| 99国产精品一区二区蜜桃av | 一级毛片女人18水好多| 蜜桃在线观看..| 自拍欧美九色日韩亚洲蝌蚪91| 在线亚洲精品国产二区图片欧美| 后天国语完整版免费观看| 国产精品1区2区在线观看. | 在线观看一区二区三区激情| 久久这里只有精品19| 不卡一级毛片| 久久久久久久久久久久大奶| 亚洲专区字幕在线| 亚洲人成77777在线视频| 久久久久久久精品精品| 国产一卡二卡三卡精品| 欧美少妇被猛烈插入视频| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 国产精品一区二区精品视频观看| 欧美在线一区亚洲| 亚洲一区中文字幕在线| 亚洲欧美精品自产自拍| 精品卡一卡二卡四卡免费| 热99久久久久精品小说推荐| 久久久精品94久久精品| 天天影视国产精品| 爱豆传媒免费全集在线观看| 亚洲专区中文字幕在线| 日韩有码中文字幕| 纯流量卡能插随身wifi吗| 精品久久久久久电影网| 亚洲精品在线美女| 桃红色精品国产亚洲av| 建设人人有责人人尽责人人享有的| 伊人亚洲综合成人网| 99国产精品一区二区三区| 亚洲性夜色夜夜综合| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看| 国产精品一区二区免费欧美 | 美女福利国产在线| 欧美黄色片欧美黄色片| 亚洲国产中文字幕在线视频| 欧美黑人精品巨大| 免费av中文字幕在线| 国产在线观看jvid| 久久久久国产一级毛片高清牌| 成人国产一区最新在线观看| 久久这里只有精品19| 久久久久久人人人人人| 欧美日韩福利视频一区二区| 狠狠精品人妻久久久久久综合| 桃红色精品国产亚洲av| 久久久久久免费高清国产稀缺| 这个男人来自地球电影免费观看| 国产精品1区2区在线观看. | 精品一区二区三区四区五区乱码| 国产精品欧美亚洲77777| 午夜福利影视在线免费观看| 国产精品影院久久| 免费观看人在逋| 久久久国产一区二区| 妹子高潮喷水视频| 亚洲性夜色夜夜综合| av一本久久久久| 国产精品久久久久久精品古装| 免费观看人在逋| 久久人人爽av亚洲精品天堂| 精品国产超薄肉色丝袜足j| 俄罗斯特黄特色一大片| 国产片内射在线| 国产在线一区二区三区精| av网站免费在线观看视频| 一级毛片女人18水好多| 久久国产精品男人的天堂亚洲| 麻豆av在线久日| 两性午夜刺激爽爽歪歪视频在线观看 | 岛国毛片在线播放| 啦啦啦视频在线资源免费观看| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 日本黄色日本黄色录像| 99国产精品99久久久久| 国产一区二区三区在线臀色熟女 | 国产有黄有色有爽视频| 不卡av一区二区三区| 久久人妻熟女aⅴ| 我要看黄色一级片免费的| 亚洲性夜色夜夜综合| 久久精品国产综合久久久| 国产在线免费精品| 午夜91福利影院| 久久女婷五月综合色啪小说| 久久精品国产综合久久久| 90打野战视频偷拍视频| 精品国产国语对白av| 久久久国产精品麻豆| 亚洲成人手机| 亚洲av电影在线进入| 中文字幕高清在线视频| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美网| 大陆偷拍与自拍| 色播在线永久视频| 叶爱在线成人免费视频播放| 一区二区三区乱码不卡18| 俄罗斯特黄特色一大片| 我要看黄色一级片免费的| 黄频高清免费视频| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区| 中文字幕高清在线视频| 中文字幕人妻丝袜制服| 久久久久网色| 18在线观看网站| 动漫黄色视频在线观看| 国产欧美日韩综合在线一区二区| 精品人妻1区二区| 首页视频小说图片口味搜索| 日韩精品免费视频一区二区三区| 欧美精品av麻豆av| 亚洲精品美女久久av网站| 久久 成人 亚洲| 国产在线免费精品| 一区二区三区乱码不卡18| 黄频高清免费视频| 亚洲欧美精品综合一区二区三区| 又大又爽又粗| 欧美日韩亚洲高清精品| 日本wwww免费看| 国产亚洲精品第一综合不卡| 亚洲精品国产一区二区精华液| 人妻 亚洲 视频| 久久ye,这里只有精品| 91麻豆精品激情在线观看国产 | 美女脱内裤让男人舔精品视频| 一本大道久久a久久精品| 满18在线观看网站| 久久久久国产精品人妻一区二区| 亚洲一区二区三区欧美精品| 在线观看www视频免费| 99香蕉大伊视频| 人人妻,人人澡人人爽秒播| 精品一区二区三区四区五区乱码| 在线观看人妻少妇| 国产精品欧美亚洲77777| 午夜福利乱码中文字幕| 国产高清国产精品国产三级| 老汉色av国产亚洲站长工具| 丁香六月欧美| 美女脱内裤让男人舔精品视频| 无限看片的www在线观看| 亚洲欧美精品自产自拍| 9热在线视频观看99| 国产成人影院久久av| 老熟妇乱子伦视频在线观看 | 午夜福利影视在线免费观看| 老鸭窝网址在线观看| 黄网站色视频无遮挡免费观看| 日本av免费视频播放| 天天躁夜夜躁狠狠躁躁| 亚洲第一欧美日韩一区二区三区 | 亚洲精品粉嫩美女一区| 久久精品国产综合久久久| 免费观看人在逋| 久久久久网色| 国产色视频综合| 男人舔女人的私密视频| 91国产中文字幕| 亚洲精品成人av观看孕妇| 一区二区三区精品91| 三上悠亚av全集在线观看| 国产麻豆69| 天天影视国产精品| 亚洲国产精品一区三区| 国产精品一区二区在线观看99| av电影中文网址| 久久久久久久久久久久大奶| 老汉色∧v一级毛片| 国产成人一区二区三区免费视频网站| av在线老鸭窝| 国产精品一区二区在线不卡| 久久久国产精品麻豆| 99国产精品一区二区三区| 视频在线观看一区二区三区| 18禁观看日本| 日韩中文字幕视频在线看片| 国产免费av片在线观看野外av| 日本av手机在线免费观看| 色94色欧美一区二区| 一本大道久久a久久精品| 男女边摸边吃奶| 欧美日韩一级在线毛片| videos熟女内射| 一级片'在线观看视频| 欧美激情 高清一区二区三区| 国产成人免费无遮挡视频| 肉色欧美久久久久久久蜜桃| 欧美精品亚洲一区二区| av福利片在线| 免费少妇av软件| 久久久久精品国产欧美久久久 | 丰满人妻熟妇乱又伦精品不卡| 十八禁网站网址无遮挡| 91精品伊人久久大香线蕉| 免费女性裸体啪啪无遮挡网站| 下体分泌物呈黄色| 午夜精品久久久久久毛片777| 精品亚洲乱码少妇综合久久| 黑人猛操日本美女一级片| 久久久水蜜桃国产精品网| 欧美日韩国产mv在线观看视频| 最近最新中文字幕大全免费视频| 午夜两性在线视频| 人人妻人人澡人人看| 国产一区有黄有色的免费视频| 久久ye,这里只有精品| 男女床上黄色一级片免费看| 日韩免费高清中文字幕av| 电影成人av| 婷婷成人精品国产| 女人精品久久久久毛片| 国产不卡av网站在线观看| 日日摸夜夜添夜夜添小说| 日韩欧美免费精品| 国产视频一区二区在线看| 午夜老司机福利片| 日韩电影二区| 啦啦啦在线免费观看视频4| 国内毛片毛片毛片毛片毛片| 亚洲熟女毛片儿| 老司机午夜十八禁免费视频| 在线永久观看黄色视频| 久久 成人 亚洲| 交换朋友夫妻互换小说| 国产欧美日韩一区二区三区在线| 大片电影免费在线观看免费| 日本黄色日本黄色录像| www日本在线高清视频| 国产av又大| 国产精品久久久av美女十八| 丰满迷人的少妇在线观看| 大陆偷拍与自拍| 黑人巨大精品欧美一区二区mp4| 热99re8久久精品国产| 亚洲精品久久成人aⅴ小说| 日日夜夜操网爽| 大型av网站在线播放| 热re99久久精品国产66热6| 少妇人妻久久综合中文| 少妇被粗大的猛进出69影院| 午夜福利视频精品| 亚洲激情五月婷婷啪啪| 人人妻,人人澡人人爽秒播| 男女国产视频网站| 黑丝袜美女国产一区| av免费在线观看网站| 欧美日韩一级在线毛片| 久久亚洲精品不卡| 日日爽夜夜爽网站| 母亲3免费完整高清在线观看| 国产欧美日韩一区二区三区在线| 日本猛色少妇xxxxx猛交久久| 国产精品九九99| 色老头精品视频在线观看| 99精品久久久久人妻精品| 日韩电影二区| 在线观看免费高清a一片| 永久免费av网站大全| 中文字幕制服av| 午夜久久久在线观看| 亚洲精品粉嫩美女一区| 水蜜桃什么品种好| 亚洲伊人久久精品综合| 欧美激情 高清一区二区三区| av电影中文网址| 亚洲美女黄色视频免费看| 午夜影院在线不卡| av国产精品久久久久影院| 精品福利永久在线观看| 日韩制服丝袜自拍偷拍| 搡老乐熟女国产| 天天添夜夜摸| 亚洲精品在线美女| 老司机福利观看| 黄片小视频在线播放| 一区二区三区四区激情视频| 久久女婷五月综合色啪小说| 亚洲欧美激情在线| 中文字幕色久视频| 亚洲精品久久成人aⅴ小说| 成人18禁高潮啪啪吃奶动态图| 美女高潮到喷水免费观看| a 毛片基地| 精品久久久久久电影网| 久久av网站| 欧美国产精品va在线观看不卡| 欧美日韩福利视频一区二区| 在线永久观看黄色视频| 国产在视频线精品| 香蕉国产在线看| 日韩电影二区| 国产免费一区二区三区四区乱码| 国产黄频视频在线观看| 国产精品久久久av美女十八| 丁香六月欧美| 丝袜人妻中文字幕| 亚洲成人免费av在线播放| 人人澡人人妻人| 欧美在线一区亚洲| 精品亚洲乱码少妇综合久久| 精品一区二区三区av网在线观看 | 久久久国产成人免费| 午夜免费观看性视频| 咕卡用的链子| 一区在线观看完整版| 精品人妻在线不人妻| 一区二区三区乱码不卡18| 波多野结衣一区麻豆| 日韩精品免费视频一区二区三区| 99久久99久久久精品蜜桃| 欧美成狂野欧美在线观看| 美女午夜性视频免费| 99久久综合免费| 嫁个100分男人电影在线观看| 久久国产精品男人的天堂亚洲| 91精品伊人久久大香线蕉| 一区二区三区精品91| 久久狼人影院| 丰满少妇做爰视频| 久久香蕉激情| 国产不卡av网站在线观看| 欧美性长视频在线观看| 一区二区av电影网| 日本精品一区二区三区蜜桃| 午夜激情av网站| 一本—道久久a久久精品蜜桃钙片| 捣出白浆h1v1| 秋霞在线观看毛片| 老司机福利观看| 成在线人永久免费视频|