伍麗娜,甘彥峰,蘇炳銀
?
褪黑素對癲癇大鼠海馬氧化應(yīng)激及神經(jīng)元凋亡的影響
伍麗娜1,2,甘彥峰3,蘇炳銀1,2
[摘要]目的探討褪黑素對癲癇大鼠海馬氧化應(yīng)激及神經(jīng)元凋亡的影響及其機制。方法成年雄性Sprague-Dawley大鼠72只等分為對照組、模型組、褪黑素低劑量組和褪黑素高劑量組。模型組側(cè)腦室注射馬桑內(nèi)酯50 μg/kg,褪黑素低、高劑量組分別于腹腔注射褪黑素20 mg/kg和60 mg/kg后30 min,側(cè)腦室注射馬桑內(nèi)酯50 μg/kg。癲癇持續(xù)60 min后,采用紫外分光光度計檢測丙二醛(MDA)、超氧化物歧化酶(SOD)的含量;原位末端標(biāo)記法(TUNEL法)檢測大鼠海馬CA3區(qū)神經(jīng)元凋亡;電鏡觀察海馬CA3區(qū)神經(jīng)元及其線粒體改變。結(jié)果與對照組相比,模型組海馬神經(jīng)元、線粒體出現(xiàn)明顯超微結(jié)構(gòu)損傷,凋亡細胞數(shù)顯著增多(P<0.001),海馬SOD顯著降低(P<0.001),MDA顯著升高(P<0.001)。與模型組相比,褪黑素低劑量組大鼠海馬神經(jīng)元、線粒體超微結(jié)構(gòu)損傷有所改善,凋亡細胞數(shù)明顯減少(P<0.01),SOD升高(P<0.05),MDA降低(P<0.05);褪黑素高劑量組大鼠海馬神經(jīng)元、線粒體超微結(jié)構(gòu)損傷明顯改善,凋亡細胞數(shù)顯著減少(P<0.001),且與對照組相比無顯著性差異(P>0.05),SOD顯著升高(P<0.001),MDA顯著降低(P<0.001)。結(jié)論給予外源性褪黑素可明顯減少癲癇大鼠海馬神經(jīng)元凋亡,高劑量效果更佳,其作用機制可能涉及褪黑素對抗氧化應(yīng)激反應(yīng),減輕神經(jīng)元、線粒體損傷。
[關(guān)鍵詞]癲癇;褪黑素;氧化應(yīng)激;凋亡;超微結(jié)構(gòu);大鼠
[本文著錄格式]伍麗娜,甘彥峰,蘇炳銀.褪黑素對癲癇大鼠海馬氧化應(yīng)激及神經(jīng)元凋亡的影響[J].中國康復(fù)理論與實踐,2016,22(5):535-539.
作者單位:1.發(fā)育與再生四川省重點實驗室,四川成都市610081;2.成都醫(yī)學(xué)院人體解剖與組織胚胎學(xué)教研室,四川成都市610081;3.四川大學(xué)華西醫(yī)院西藏成辦分院,四川成都市610000。
CITED AS:Wu LN,Gan YF,Su BY.Effects of melatonin on oxidative stress and neuronal apoptosis in hippocampus of rats with epilepsy[J].Zhongguo Kangfu Lilun Yu Shijian,2016,22(5):535-539.
目前癲癇的治療主要通過抗癲癇藥物(antiepileptic drugs,AEDs)控制其發(fā)作,無法治愈。在應(yīng)用AEDs治療的同時給予相應(yīng)的腦保護劑,可以明顯減輕腦組織損傷,提高治療效果[1-3]。褪黑素(N-乙酰-5-甲氧基色胺)是一種內(nèi)源性自由基清除劑,易通過血腦屏障[4],在多種實驗性癲癇動物模型中發(fā)現(xiàn)具有抗驚厥作用,但具體機制尚不清楚[5-7]。馬桑內(nèi)酯是從桑寄生屬植物中提取的活性成分,是快速、有效的致癇劑[8]。其致癇機制主要通過對中樞神經(jīng)系統(tǒng)突觸的影響增加谷氨酸釋放、激活NMDA受體,阻止海馬神經(jīng)元γ-氨基丁酸合成[9-10];海馬神經(jīng)元內(nèi)大量Ca2+流入,改變細胞興奮性也是馬桑內(nèi)酯致癇的途徑[11]。丙二醛(malondialdehyde,MDA)是自由基脂質(zhì)過氧化反應(yīng)的最終代謝產(chǎn)物,超氧化物歧化酶(superoxide dismutase,SOD)是機體歧化并清除氧自由基的關(guān)鍵酶。測定組織MDA、SOD含量可以間接反映氧化應(yīng)激狀態(tài)。癲癇腦損傷所誘導(dǎo)的氧化應(yīng)激可影響腦組織神經(jīng)元功能,海馬神經(jīng)元凋亡可能是其結(jié)果之一[12]。本研究檢測褪黑素對癲癇大鼠模型海馬組織MDA、SOD含量的影響,觀察海馬神經(jīng)元凋亡和超微結(jié)構(gòu)的變化,探討褪黑素在癲癇治療中腦保護劑的可能機制。
1.1實驗動物和分組
成年健康雄性Sprague-Dawley大鼠72只,體質(zhì)量250~300 g,等分為4組,每組18只,分別為對照組(A組)、模型組(B組)、褪黑素低劑量組(C組)和褪黑素高劑量組(D組)。
1.2模型制備
B組大鼠關(guān)入標(biāo)本缸,加入無水乙醚1~1.5 ml,待動物出現(xiàn)全身肌肉松弛,角膜反射遲鈍,皮膚痛覺消失時,表明已進入麻醉狀態(tài)。從前囟后1 mm,中線旁開2 mm處刺穿顱骨,將馬桑內(nèi)酯(原華西醫(yī)科大學(xué)制藥廠,批號8338)50 μg/kg注入側(cè)腦室內(nèi)。C、D組分別經(jīng)腹腔注射褪黑素(深圳晶美公司)20 mg/kg、60 mg/kg,30 min后側(cè)腦室注射馬桑內(nèi)酯;A組側(cè)腦室注射等量生理鹽水。馬桑內(nèi)酯注射后5~15 min大鼠開始出現(xiàn)癲癇發(fā)作。參照Racine的0~Ⅴ級評價標(biāo)準(zhǔn)[13],發(fā)作達Ⅳ級及以上者為重度發(fā)作。連續(xù)觀察60 min,B組大鼠均達到重度發(fā)作,視為模型制備成功。
1.3取材
A組無癲癇發(fā)作癥狀出現(xiàn),B、C、D組癲癇發(fā)作持續(xù)60 min后,全部動物乙醚麻醉至四肢無力但呼吸尚見時開胸,從左心室至升主動脈快速灌注生理鹽水100 ml,4A多聚甲醛固定后取腦,分離雙側(cè)海馬。
1.4電鏡觀察
取海馬組織后修塊,體積約1×1×1 mm,2.5A戊二醛4℃前固定4 h,PBS漂洗,1A鋨酸后固定2 h,酒精-丙酮梯度脫水,環(huán)氧丙烷滲透,618環(huán)氧樹脂滲透包埋。LEICA超薄切片機切片,厚40 nm,JEM-1400透射電鏡下觀察海馬CA3區(qū)神經(jīng)元超微結(jié)構(gòu),Soft Image System(SIS)圖像采集系統(tǒng)采集電子圖像。
1.5TUNEL
按試劑盒說明書進行檢測。對海馬組織石蠟切片行缺口原位末端標(biāo)記后DAB顯色。染色后細胞核呈棕褐色的為陽性細胞。每張切片均檢測海馬CA3區(qū)錐體細胞層,隨意取5個視野,計數(shù)陽性細胞數(shù),取均數(shù)。
1.6MDA和SOD檢測
取海馬組織0.5 g,加生理鹽水稀釋10倍,冰上研磨制成組織勻漿,3000 r/min離心15 min,取上清液行超濾離心,最后取上清液,比色法檢測MDA、SOD含量。操作過程嚴格按照試劑盒(南京建成生物工程研究所)說明書進行。
1.7統(tǒng)計學(xué)分析
2.1行為觀察
B組大鼠注射后5~15 min出現(xiàn)癲癇發(fā)作。開始表現(xiàn)為耳、面部痙攣抽動;渾身濕狗樣顫動,節(jié)律性點頭;雙前肢抬起,呈半直立位;隨后全身及四肢肌肉陣攣;緊接著在飼養(yǎng)籠內(nèi)上下翻跳及狂奔,伴有嘶叫;失去體位控制,全身強直陣攣發(fā)作。觀察30 min動物均達到重度發(fā)作。A組大鼠無癲癇發(fā)作。
2.2TUNEL
光鏡下見凋亡細胞體積縮小,核固縮,呈深棕色。A組細胞形態(tài)飽滿、完整,排列整齊,僅見少量散在凋亡細胞。各組間凋亡細胞數(shù)有非常高度顯著性差異(P<0.001);B組較A組凋亡細胞數(shù)顯著增多(P<0.001);C組凋亡細胞數(shù)較B組明顯減少(P<0.01),D組凋亡細胞數(shù)顯著減少(P<0.001),D組較C組凋亡細胞數(shù)顯著減少(P<0.001),與A組無顯著性差異(P>0.05)。見圖1、表1。
2.3電鏡觀察
圖1 各組海馬CA3區(qū)TUNEL染色(400×)
A組海馬神經(jīng)元核膜清晰,染色質(zhì)密度均勻;線粒體雙層膜結(jié)構(gòu)清晰、嵴呈板層狀,基質(zhì)電子密度均勻。B組神經(jīng)元細胞核明顯變形、固縮,核膜模糊不清,核染色質(zhì)邊集,形成數(shù)個較為密集的斑塊;內(nèi)質(zhì)網(wǎng)擴張明顯、呈片層狀;線粒體明顯腫脹、膜結(jié)構(gòu)不清且有部分崩解,嵴斷裂消失,部分呈空泡化。C組神經(jīng)元核膜較清晰,染色質(zhì)密度均勻;內(nèi)質(zhì)網(wǎng)輕度擴張;線粒體腫脹程度有所減輕,結(jié)構(gòu)基本完整,但嵴內(nèi)隙增大。D組神經(jīng)元細胞核、內(nèi)質(zhì)網(wǎng)結(jié)構(gòu)基本正常;胞質(zhì)內(nèi)有少許水腫空白區(qū),線粒體形態(tài)大致正常。見圖2。
2.4SOD和MDA
各組間海馬組織SOD、MDA水平有非常高度顯著性差異(P<0.001)。與A組相比,B組大鼠海馬SOD顯著降低,MDA顯著升高(P<0.001)。與B組相比,C 組SOD增高,MDA降低(P<0.05);D組SOD顯著升高,MDA顯著降低(P<0.001);D組與A組間SOD、MDA水平無顯著性差異(P>0.05)。見表1。
圖2 各組海馬CA3區(qū)神經(jīng)元及其線粒體超微結(jié)構(gòu)(25000×)
表1 各組海馬CA3區(qū)細胞凋亡數(shù)、SOD和MDA水平比較
細胞凋亡和氧化應(yīng)激是癲癇病理生理機制中的重要過程。本研究顯示,癲癇后大鼠海馬組織產(chǎn)生大量的脂質(zhì)過氧化產(chǎn)物,抗氧化酶系明顯減少,抗氧化能力明顯削弱,使海馬處于氧化應(yīng)激狀態(tài)。與文獻報道一致[14-16]。
氧化應(yīng)激可導(dǎo)致細胞內(nèi)線粒體膜電位明顯下降[17-18]。而線粒體不僅是細胞內(nèi)ATP的生成中心,在細胞凋亡中也扮演重要角色。細胞凋亡級聯(lián)反應(yīng)的初期即出現(xiàn)線粒體膜電位喪失,進而導(dǎo)致線粒體膜破裂[19]。細胞色素C、caspase-3和蛋白激酶原等調(diào)亡因子釋放到細胞質(zhì)中,進一步破壞核膜、內(nèi)質(zhì)網(wǎng)等膜性結(jié)構(gòu),從而使整個細胞結(jié)構(gòu)被破壞,功能紊亂,最后細胞變成凋亡小體而凋亡[20]。
本研究顯示,癲癇發(fā)作持續(xù)60 min后,海馬神經(jīng)元凋亡數(shù)顯著高于對照組,且表現(xiàn)出典型的神經(jīng)元凋亡超微結(jié)構(gòu)損傷特征,核膜、線粒體、內(nèi)質(zhì)網(wǎng)等膜性結(jié)構(gòu)破壞明顯,線粒體表現(xiàn)出明顯腫脹、膜結(jié)構(gòu)不清且有部分崩解、嵴斷裂消失,部分呈空泡化。
褪黑素是由Aaron Lerner等在1958年首次從動物的松果體中提取出的一種吲哚類激素[21]。近年來,越來越多的證據(jù)表明,褪黑素在抗癲癇過程中發(fā)揮重要作用。褪黑素可以明顯抑制海人酸所誘導(dǎo)的癲癇發(fā)作時間和發(fā)作的程度[22];腦缺血和癲癇動物模型中均發(fā)現(xiàn)內(nèi)源性褪黑素分缺乏可顯著增加實驗動物的神經(jīng)退行性改變[23]。褪黑素作為內(nèi)源性自由基清除劑,易通過血腦屏障和細胞膜,既能直接清除羥自由基,又能通過增強體內(nèi)自由基清除酶的活性,產(chǎn)生抗氧化應(yīng)激作用[24-26]。本研究顯示,給予外源性褪黑素可明顯減少癲癇大鼠海馬神經(jīng)元凋亡細胞數(shù),減輕神經(jīng)元及線粒體超微結(jié)構(gòu)損傷,減少海馬組織MDA,增加SOD,且高劑量組作用優(yōu)于低劑量組。
綜上所述,給予一定劑量外源性褪黑素可明顯減少癲癇大鼠海馬神經(jīng)元凋亡,其機制可能包括對抗海馬氧化應(yīng)激反應(yīng),減輕神經(jīng)元線粒體損傷,從而抑制神經(jīng)元凋亡。褪黑素有可能成為癲癇輔助治療中的腦保護劑。
[參考文獻]
[1]Johannessen Landmark C.Antiepileptic drugs in non-epilepsy disorders:relations between mechanisms of action and clinical efficacy[J]. CNS Drugs,2008,22(1):27-47.
[2]Hamed SA.The multimodal prospects for neuroprotection and disease modification in epilepsy:relationship to its challenging neurobiology[J].Restor Neurol Neurosci,2010,28(3):323-348.
[3]Halbsgut LR,F(xiàn)ahim E,Kapoor K,et al.Certain secondary antiepileptic drugs can rescue hippocampal injury following a critical growth period despite poor anticonvulsant activity and cognitive deficits[J].Epilepsy Behav,2013,29(3):466-477.
[4]Brzezinski A.Melatonin in Humans[J].N Engl J Med,1997,336(3): 186-195.
[5]Molina-Carballo A,Mu?oz-Hoyos A,Sánchez-Forte M,et al.Melatonin increases following convulsive seizures may be related to its anticonvulsant properties at physiological concentrations[J].Neuropediatrics,2007,38(3):122-125.
[6]Ardura J,Andres J,Garmendia JR,et al.Melatonin in epilepsy and febrile seizures[J].J Child Neurol,2010,25(7):888-891.
[7]Mahyar A,Ayazi P,Dalirani R,et al.Melatonin's effect in febrile seizures and epilepsy[J].Iran J Child Neurol,2014,8(3):24-29.
[8]Wang Y,Zhou D,Wang B,et al.A kindling model of pharmacoresistant temporal lobe epilepsy in Sprague-Dawley rats induced by coriaria lactone and its possible mechanism[J].Epilepsia,2003,44(4):475-488.
[9]Pang Z,Wang D,Hao J,et al.The effect of coriaria lactone on NMDA receptor mediated currents in rat hippocampal CA1 neurons[J].J Tongji Med Univ,2000,20(1):6-9.
[10]Zhu X,Zhu C,Wu Y.Coriaria lactone on gamma-aminobutyric acid secretion and glutamic acid decarboxylase and its receptor binding in rat[J].Zhonghua Yi Xue Za Zhi,1995,75(6):363-365,384.
[11]Zhang Q,Lai X,Liao D,et al.Coriaria lactone increased the intracellular level of calcium through the voltage-gated calcium channels in rat hippocampal neurons[J].Neurochem Res,2009,34(7):1332-1342.
[12]Méndez-Armenta M,Nava-Ruíz C,Juárez-Rebollar D,et al.Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy[J].Oxid Med Cell Longev,2014,2014:293689.
[13]Racine RJ.Modification of seizure activity by electrical stimulation.I. After-discharge threshold[J].Electroencephalogr Clin Neurophysiol,1972,32(3):269-279.
[14]Gulati K,Ray A,Pal G,et al.Possible role of free radicals in theophylline-induced seizures in mice[J].Pharmacol Biochem Behav,2005,82 (1):241-245.
[15]Sobaniec W,Solowiej E,Kulak W,et al.Evaluation of the influence of antiepileptic therapy on antioxidant enzyme activity and lipid peroxidation in erythrocytes of children with epilepsy[J].J Child Neurol,2006,21(7):558-562.
[16]Long Q,F(xiàn)an C,Kai W,et al.Hypoxia inducible factor-1α expression is associated with hippocampal apoptosis during epileptogenesis[J]. Brain Res,2014,1590:20-30.
[17]Waldbaum S,Patel M.Mitochondria,oxidative stress,and temporal lobe epilepsy[J].Epilepsy Res,2010,88(1):23-45.
[18]Milder J,Patel M.Modulation of oxidative stress and mitochondrial function by the ketogenic diet[J].Epilepsy Res,2012,100(3):295-303.
[19]Barbu EM,Shirazi F,McGrath DM,et al.An antimicrobial peptidomimetic induces Mucorales cell death through mitochondria-mediated apoptosis[J].PLoS One,2013,8(10):e76981.
[20]Tajes M,Eraso-Pichot A,Rubio-Moscardó F,et al.Methylglyoxal reduces mitochondrial potential and activates Bax and caspase-3 in neurons:Implications for Alzheimer's disease[J].Neurosci Lett,2014,580:78-82.
[21]Ekmekcioglu C.Melatonin receptors in humans:biological role and clinical relevance[J].Biomed Pharmacother,2006,60(3):97-108.
[22]Reiter RJ.Interractioms of the pineal hormone melatonin with oxygen-centered free radicals:a brief review[J].Braz J Med Biol Res,1993,26(11):1141-1155.
[23]Manev H,Uz T,Kharlamov A,et al.Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats[J].FASEB J,1996,10(13):1546-1551.
[24]Ozsoy O,Yildirim FB,Ogut E,et al.Melatonin is protective against 6-hydroxydopamine-induced oxidative stress in a hemiparkinsonian rat model[J].Free Radic Res,2015,49(8):1004-1014.
[25]Medina-Leendertz S,Paz M,Mora M,et al.Longterm melatonin administration alleviates paraquat mediated oxidative stress in Drosophila melanogaster[J].Invest Clin,2014,55(4):352-364.
[26]El-Missiry MA,Othman AI,Al-Abdan MA,et al.Melatonin ameliorates oxidative stress,modulates death receptor pathway proteins,and protects the rat cerebrum against bisphenol-A-induced apoptosis[J].J Neurol Sci,2014,347(1-2):251-256.
Effects of Melatonin on Oxidative Stress and NeuronalApoptosis in Hippocampus of Rats with Epilepsy
WU Li-na1,GAN Yan-feng2,SU Bing-yin1
1.Chengdu Medical College,Chengdu,Sichuan 610081,China;2.Hospital of Chengdu Office of People's Government of TibetanAutonomous Region,Chengdu,Sichuan 610000,China
Correspondence to SU Bing-yin.E-mail:subingyinn@163.com
Abstract:Objective To investigate the effects of melatonin on oxidative stress and neuronal apoptosis in hippocampus of epileptic rats and the mechanism.Methods Seventy-two adult male Sprague-Dawley rats were equally divided into control group,model group,low dose group and high dose group.The model group was injected coriamyrtin 50 μg/kg in the lateral ventricle,while the low dose group and high dose group were injected melatonin 20 mg/kg and 60 mg/kg,respectively,30 minutes before injection of coriamyrtin.The contents of malondialdehyde(MDA)and superoxide dismutase(SOD)were detected with ultraviolet spectrophotometer,the apoptosis was detected with TUNEL,and the ultrastructural changes of neurons and mitochondria in hippocampal CA3 region were observed with electron microscopy,after 60 minutes of epilepsy.Results The neurons and mitochondria in hippocampus were damaged,the number of apoptotic cells significantly increased(P<0.001),the content of SOD decreased(P<0.001),and the content of MDA increased(P<0.001)in the model group,compared with the control group.In the low dose group,the ultrastructural damage relieved,the number of apoptotic cells decreased(P<0.01),the content of SOD increased(P<0.05),and the content of MDA decreased(P<0.05);and for the high dose group,the ultrastructural damage relieved very much,the number of apoptotic cells decreased(P<0.001)and was not significantly different from the control group(P>0.05),SOD increased(P<0.001),and MDA decreased(P<0.001),compared with the model group.Conclusion Exogenous melatonin may significantly reduce neuronal apoptosis in rat hippocampal after epilepsy,and high dose is more effective,which may relate with resistance of oxidative stress,alleviate neuronal mitochondrial damage.
Key words:epilepsy;melatonin;oxidative stress;apoptosis;ultrastructure;rats
DOI:10.3969/j.issn.1006-9771.2016.05.010
[中圖分類號]R742.1
[文獻標(biāo)識碼]A
[文章編號]1006-9771(2016)05-0535-05
基金項目:1.發(fā)育與再生四川省重點實驗室基金(No.SYS10-005);2.成都醫(yī)學(xué)院?;穑∟o.CYZ14-009)。
作者簡介:伍麗娜(1978-),女,漢族,四川遂寧市人,碩士,講師,主要研究方向:神經(jīng)系統(tǒng)發(fā)育、再生及退行性疾病。通訊作者:蘇炳銀(1962-),男,教授,博士生導(dǎo)師,主要研究方向:神經(jīng)系統(tǒng)發(fā)育、再生及退行性疾病。E-mail:subingyinn@163.com。
收稿日期:(2015-11-25修回日期:2016-02-01)