• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ synthesis ofhydrophobic magnesium hydroxide nanoparticles in a novelimpinging stream-rotating packed bed reactor☆

    2016-05-30 01:55:04HongyanShenYouzhiLiu
    關(guān)鍵詞:工分工種習(xí)慣性

    Hongyan Shen,Youzhi Liu*

    ShanxiProvince Key Laboratory of Higee-Oriented ChemicalEngineering,College ofChemicalEngineering and Environment,North University ofChina,Taiyuan 030051,China

    1.Introduction

    Magnesium hydroxide[Mg(OH)2],as an environmentally benign flame retardant,has recently attracted increased attention because of its high decomposition temperature,smoke suppressibility,flame retardancy,nontoxicity,and neutralization with acid gas from polymer combustion[1–10].However,the hydrophilic surfaces of Mg(OH)2are not favorable for their dispersion in hydrophobic polymer matrices,requiring addition levels ofup to 60 wt%to achieve high flame-retardant ef ficiency.Such high addition could negatively affect the mechanical properties of the resulting flame retardant polymeric composites[11–14].Therefore,improving the dispersibility and compatibility between Mg(OH)2and the polymer matrix is necessary[15–17].

    Surface modi fication has been proposed to solve the problems associated with Mg(OH)2use.Zhang et al.successfully surface modi fied micro Mg(OH)2by means ofan ultrasonic method with stearic acid as a modi fier[12].Yan etal.prepared hydrophobic Mg(OH)2nanoparticles via PMMA grafting by dispersion polymerization after oleic acid(OA)surface modi fication[18].However,these methods often require several reaction steps and are too complex to synthesize hydrophobic Mg(OH)2in large scale.

    Higee equipmenthas been successfully applied to prepare Mg(OH)2nanoparticles.There are two types of Higee equipment,e.g.,the rotating packed bed(RPB)and the spinning disk reactor(SDR).They were able to generate a high gravity environment that can intensify micromixing and mass transfer,and this is very helpfulfor achieving uniform supersaturation in a precipitation process.According to the above mentioned advantages,Song etal.successfully prepared lamellar Mg(OH)2nanoparticles with 20 nm to 80 nm size in an RPB at temperatures between 60 °C and 160 °C[19].Tai et al.successfully synthesized lamellar Mg(OH)2nanoparticles with 50 nm to 80 nm in length and 10 nm in thickness using SDR[8].However,the preparation of hydrophobic Mg(OH)2nanoparticles by one step precipitation through higee equipment has not been reported.

    A novelhigee equipment,impinging stream-rotating packed bed(IS-RPB)reactor was proposed by Liu(2009)[20].In the IS-RPB,the two reactant solutions flow along the same axis in the opposite direction into collision to change the liquid non-uniform distribution of RPB,which primarily intensi fies micromixing and mass transfer.As the result ofsuch a collision,the fringe of the impinging surface region is then dispersed into the rotating packing,which intensi fies the micromixing of the two liquid reactants secondly.Therefore,uniform supersaturation and homogeneous nucleation occur,yielding relatively smallparticles with a narrow size distribution with limited agglomeration.

    In this work,we have successfully prepared hydrophobic Mg(OH)2nanoparticles with good dispersibility and compatibility in organic phase by one step precipitation in IS-RPB using OA as a modi fier.The obtained hydrophobic Mg(OH)2nanoparticles were characterized and the surface properties of Mg(OH)2nanoparticles were investigated.The results indicated that the proposed method had the potentialapplicability to produce hydrophobic Mg(OH)2nanoparticles in large scale.

    2.Experimental

    2.1.Materials

    Magnesium chloride hexahydrate(MgCl2·6H2O),OA,absolute ethanol,and liquid paraf fin were purchased from Tianjin Guangfu Chemical Reagent Factory(China).Sodium hydroxide(NaOH)was purchased from Tianjin Dalu Chemical Reagent Factory(China).All of the above chemicalreagents were analytically pure and used as received without further puri fication.High-purity water was prepared by a water puri fication system(GWA-UN,China)and used in all procedures.

    2.2.Synthesis ofhydrophobic Mg(OH)2 nanoparticles

    Fig.1(a)shows a photograph of the IS-RPB reactor applied to prepare Mg(OH)2nanoparticles.The IS-RPB reactor included an impinging stream liquid distributor containing a straight tube with a 1.5 mm hole on one end and an L-type tube with a 1.5 mm hole on the inside of its front end.The packed bed in the IS-RPB reactor had an inner radius of 50 mm,an outer radius of 125 mm,and an axial height of 210 mm.The reactor was packed with stainless steelwire mesh 0.3 mmin diameter and with 0.96 porosity.

    Fig.1(b)schematically depicts the experimentalsetup for preparing Mg(OH)2nanoparticles.Predetermined masses of OA and MgCl2were dissolved in 2 L of a deionized water/absolute ethanolmixture(10:23,v/v);here,the concentration of Mg2+was fixed to 0.75 mol·L-1.Tank A contained this as-prepared solution.NaOH was dissolved in 2 L ofdeionized water to achieve a fixed OH-concentration of1.5 mol·L-1.This solution was then placed in tank B.The reaction temperature,rotation speed,and liquid flow rate were maintained at 60°C,800 rpm,and 40 L·h-1,respectively.The MgCl2and NaOH solutions were simultaneously and continuously pumped from tanks A and B into the IS-RPB reactor,where both solutions were mixed and reacted with each other and the obtained suspension was separated in a centrifuge.The precipitate was washed three times with deionized water and then three times with absolute ethanolto remove residualimpurities.The wet particles were dried in a vacuum oven at 60°C for 6 h.Finally,the ethanolin the mother liquor was recovered by distillto reduce operation costs.

    2.3.Characterization

    A field-emission scanning electron microscope(FESEM;JSM-6700F,JEOL,Tokyo,Japan)was used to observe the morphologies of the Mg(OH)2nanoparticles.The phase purity and crystallographic structures of the samples were examined by X-ray diffraction(XRD,Bruker D8 Advance diffractometer)using CuKα(λ =0.15406 nm)radiation at an operation voltage and currentof40 kV and 40 mA,respectively.Fourier transform infrared spectroscopy(FTIR)was performed by a Spectrum Two spectrometer employing the KBr pellet method.The thermalbehavior of the Mg(OH)2nanoparticles was determined on a STA 449F3 simultaneous thermal analyzer(Netzsch,Germany)undera nitrogen atmosphere from 35 °C to 600 °C ata heating rate of10℃·min-1.

    Fig.1.Preparation of Mg(OH)2 nanoparticles:(a)photograph of IS-RPB and(b)the experimentalsetup.

    2.4.Surface property of Mg(OH)2 nanoparticles

    2.4.1.Surface wettability property

    The surface wettability of the nanoparticles was characterized in terms of water contact angle.Water contact angle tests were carried outusing a contactangle analyzer(JC2000D1,China).The powder samples were pressed into thin pellets under 10 MPa and contact angles were measured by the sessile drop method.The probe fluid used was reverse osmosis-puri fied water.

    2.4.2.Dispersion characteristics of Mg(OH)2in liquid paraf fin

    Exactly 0.1 g ofpowder and 10 mlofliquid paraf fin were placed into a testtube and dispersed by ultrasonication for 3 min.The obtained suspension was dropped onto a crystal flake and observed using a bioopticalmicroscope(OPTEC BK 300).

    2.4.3.Sedimentation characteristics of Mg(OH)2in water and liquid paraf fin

    Exactly 0.1 g ofpowder was mixed into 10 mlofwater or liquid paraf fin and the sedimentation of the nanoparticles was observed.

    十隊(duì)是在60年代末由兩個(gè)生產(chǎn)隊(duì)合并而成,所以,在日常勞作中,社員總會(huì)習(xí)慣性地分成兩組。為了公正記錄工分,兩邊各推選一名記分員記錄對(duì)方的工分,同時(shí)還另選一名總記工員,兩位記分員每天都要把各個(gè)社員的工分匯總到總記工員處。由于社員在一天內(nèi)經(jīng)常做不同的工種,如果自己記了本組社員的工分,另一個(gè)記分員則要把他們的工分、工種抄回去,所以我們?cè)诠し植旧峡吹胶芏唷啊獭?。?dāng)時(shí)出工就畫一個(gè)圈,不出工則打個(gè)叉,并作相關(guān)說(shuō)明,以免社員日后翻舊賬。

    3.Results and Discussion

    3.1.FTIR analysis

    The FTIR spectra of the modi fier OA,blank Mg(OH)2,and hydrophobic Mg(OH)2are shown in Fig.2(a)–(c).In blank Mg(OH)2,the peak appearing at 3699 cm-1is matched to–OH stretching vibrations.The broad peak appearing at 3440 cm-1is attributed to the stretching vibrations of O–H bonds,while the peak appearing in the range of 1450–1650 cm-1is associated with the bending vibrations of O–H bond.These peaks are attributed to the water absorbed by Mg(OH)2nanoparticles.

    Fig.2.FTIR spectra of(a)the modi fier OA,(b)blank Mg(OH)2,and(c)hydrophobic Mg(OH)2.

    Fig.3.FESEMimages of MH(a),(b)blank Mg(OH)2 and(c),(d)hydrophobic Mg(OH)2.

    In agent OA,peaks at2925 and 2855 cm-1are ascribed to the vibrations of–CH2– and –CH3groups.The sharp peak at 1705 cm-1corresponds to–COOH vibrations.In hydrophobic Mg(OH)2,peaks at 2925 and 2855 cm-1,which are attributed to –CH2– and CH3groups,clearly suggest the presence of OA on the surface of Mg(OH)2nanoparticles.Peaks corresponding to the–COOH groups of OA and magnesium carboxylate are absent from the spectrum ofhydrophobic Mg(OH)2.This result indicates that OA molecules were notabsorbed on the surface of Mg(OH)2nanocrystals;instead,OA substituted the surface-absorbed–OH groups of Mg(OH)2.The two peaks at 1576 and 1465 cm-1in Fig.2(c)are due to the symmetric and asymmetric COO stretching vibrations of carboxylate bonds.These observations indicate that OA was bonded on the surface ofMg(OH)2through the interaction between the–COOH group of OA and the–OH group on the surface of Mg(OH)2.

    3.2.SEM analysis

    The morphology ofblank and hydrophobic Mg(OH)2samples were examined by FESEM.Fig.3 showsthe FESEMimages ofblank and hydrophobic Mg(OH)2.Compared with the blank Mg(OH)2nanoparticles,hydrophobic Mg(OH)2nanoparticles exhibit a more regular morphology(hexagonallamella),smaller mean diameter ofabout30 nm,and better dispersibility without obvious agglomeration.This contrast demonstrates that OA can effectively modify the morphology of Mg(OH)2nanoparticles.Thus,addition of OA to the synthesis system favors the production ofsmaller-sized Mg(OH)2nanoparticles with even crystal growth.These observations are consistent with the XRD results.

    3.3.TEManalysis

    Fig.4.TEMimages of MH(a)blank Mg(OH)2 and(b)hydrophobic Mg(OH)2.

    The morphology of blank and hydrophobic Mg(OH)2samples was further analyzed by TEM(shown in Fig.4).As can be observed,the hydrophobic Mg(OH)2nanoparticles had a more regular shape(hexagonallamella)and uniform particle size distribution with particle size ofaround 30 nmin comparison with irregularly shaped large particles of the blank Mg(OH)2sample.This contrast demonstrates that the addition of OA is favourable to obtain smaller sized Mg(OH)2nanoparticles with regular hexagonal lamella and uniform particle size distribution.

    3.4.XRD analysis

    The crystal phases and crystallinity of blank and hydrophobic Mg(OH)2nanoparticles were determined by XRD.As shown in Fig.5,the interaction between Mg(OH)2and OA may also be observed from the XRD patterns.The positions of diffraction peaks in Fig.5(a)and 5(b)showed no changes and were in accordance with the standard data(JCPDS Card No.7-239),thereby illustrating that the structure of the Mg(OH)2was hexagonalin nature.However,between the XRDpatterns ofblank Mg(OH)2and hydrophobic Mg(OH)2,allof the peaks,except that of(001)lattice plan,have no obvious difference in intensity.Comparing I001/I101ratios,hydrophobic Mg(OH)2(I001/I101ratio,0.86)exhibited obviously higher crystallinity than blank Mg(OH)2(I001/I101ratio,0.63),which indicates that OA was grafted onto the(001)lattice plane of Mg(OH)2.The dispersion properties ofhydrophobic Mg(OH)2also improved because of the increase in its I001/I101.The XRD findings were in accordance with the FESEMresults.

    The crystallite size(D)of the Mg(OH)2samples could be calculated according to their XRDpatterns by the using the Debye–Scherrerformula[21],which is given in Eq.(1)

    The D derived from the(001),(101),and(100)crystalfaces of the Mg(OH)2samples are listed in Table 1.The crystallite size ofhydrophobic Mg(OH)2crystals is smaller than that ofblank Mg(OH)2crystals.

    The XRDdata were processed for Rietveld re finementofstructure by Re flex program.Fig.6 shows the Rietveld re finement of XRD data,and Table 2 lists the Rietveld re finement parameters,and crystallite size.The quality of the re finementwas quanti fied by weighted pro file residual Rwp.As can be seen from Fig.6 and Table 2,the blank Mg(OH)2and hydrophobic Mg(OH)2with space group P_-3_m_1,and the crystallite size of hydrophobic Mg(OH)2crystals is smaller than that of blank Mg(OH)2crystals,this result may be attributed to the large number of OA molecules present on the surface of Mg(OH)2nanoparticles,which can effectively avoid the agglomeration of the particles,thereby the addition of OA is favourable to obtain smaller sized Mg(OH)2nanoparticles.

    3.5.TG-DSC analysis

    Fig.7 shows the TG and DTG curves of blank and hydrophobic Mg(OH)2.The results obtained con firm the signi ficant improvement of the thermal stability of hydrophobic Mg(OH)2in comparison with that of the blank sample.Blank Mg(OH)2exhibits two mass loss steps in the temperature range of 89–376.2 °C.The first step of 2.31%may be attributed to desorption of water physisorbed on Mg(OH)2.The second-step mass loss(28.51%)begins at 340.2°C and ends at 376.2°C;this step can be attributed to the thermaldecomposition of Mg(OH)2.The theoreticalmass loss of the Mg(OH)2→MgO transformation is 30.8%,slightly larger than the observed 28.51%.This discrepancy in mass loss is ascribed to the incomplete decomposition of the sample in the temperature range studied.

    Fig.6.Finalplots of the Rietveld re finement,showing the experimental(circles)and calculated(line)intensities of(a)blank Mg(OH)2 and(b)hydrophobic Mg(OH)2.The lower curve is the difference diagram.

    Table 2 Crystallite size and Rietveld re finement parameters of blank Mg(OH)2 and hydrophobic Mg(OH)2.

    In the hydrophobic Mg(OH)2sample,decomposition occurred in three steps from 89 °C to 485.1 °C.The mass loss from 89 °C to 250 °C(1.59%)is due to desorption of adsorbed water.The mass loss from 320.8 °Cto 346.7 °C(26.29%)corresponds to the thermaldecomposition of magnesium hydroxide.The mass loss from 425.9 °C to 485.1 °C(11.14%)corresponds to the decomposition of OA.The totalpercentage ofmass loss ofhydrophobic Mg(OH)2was 40.88%,higher than that of blank Mg(OH)2(33.18%).This result suggests that a certain amount of OA is bonded to the surface of the Mg(OH)2nanoparticles,which could decrease the endothermic decomposition temperature of the Mg(OH)2nanoparticles,and enhance their thermalstability.

    Fig.8.DSC curves of blank and hydrophobic Mg(OH)2.

    Fig.7.TG and DTG curves ofblank and hydrophobic Mg(OH)2.

    Fig.9.Behavior of water droplets on the surface ofthin Mg(OH)2 nanoparticle pellets:(a)blank Mg(OH)2 and(b)hydrophobic Mg(OH)2.

    The DSC curves of blank and hydrophobic Mg(OH)2are shown in Fig.8.Because the thermal decomposition of Mg(OH)2is an endothermic reaction,the DSC curve ofhydrophobic Mg(OH)2shows an endothermic peak at 341.1°C that is sharper than that of blank Mg(OH)2(368.2°C).There is another small endothermic peak at 458.6°C for hydrophobic Mg(OH)2,which may be caused by the presence of OA on the surface of Mg(OH)2nanoparticles.This conclusion is in accordance to the TG result.

    3.6.Surface property of Mg(OH)2 nanoparticles

    Fig.10.Photographs ofblank Mg(OH)2 in(a)water and(d,e)in liquid paraf fin and hydrophobic Mg(OH)2 in(b)water and(c,f)liquid paraf fin.

    The surface wettability of blank and hydrophobic Mg(OH)2was characterized in terms of water contact angles,as shown in Fig.9.When a water droplet is applied to the surface of the blank Mg(OH)2sample,as shown in Fig.9(a),no stable drop shape was formed;this result indicates that blank Mg(OH)2nanoparticles are hydrophilic and easily wetted by water.The water contact angle of hydrophobic Mg(OH)2was 110.4°;this result demonstrates that the surface polarity of the sample was weak and its surface energy was low.These observations may be attributed to the large number of OA molecules presenton the surface of the hydrophobic Mg(OH)2nanoparticles with alkylchains predominantly exposed to the air–water interface.

    To evaluate the hydrophobic nature of Mg(OH)2nanoparticles,the sedimentation behavior of the nanoparticles was observed in water.Fig.10(a)and 10(b)respectively illustrate the sedimentation of blank and hydrophobic Mg(OH)2nanoparticles in water.Blank Mg(OH)2nanoparticles sank into the water after 10 min,while hydrophobic Mg(OH)2nanoparticles floated on the water for 30 d.Fig.10(c)and 10(d)respectively show the sedimentation of blank and hydrophobic Mg(OH)2nanoparticles in liquid paraf fin.The blank Mg(OH)2showed rapid sedimentation because its hydrophilic surface was poorly wetted by the liquid paraf fin and its suspension in the liquid was achieved by agglomeration into large particles as shown in Fig.10(e).By contrast,hydrophobic Mg(OH)2dispersed very well through the liquid paraf fin,as shown in Fig.10(f).These results indicate that OA modi fication of Mg(OH)2surfaces can yield hydrophobic Mg(OH)2with signi ficantly improved compatibility with various organic phases.

    4.Conclusions

    In this study,we proposed an in situ surface modi fication method to synthesize hydrophobic Mg(OH)2nanoparticles in IS-RPB using OA as a surface modi fier.SEM images showed that the obtained nanoparticles present regular hexagonal lamellae with an average diameter of 30 nm.XRD revealed that the high-purity Mg(OH)2product presents a brucite structure and the I001/I101ofhydrophobic Mg(OH)2(0.86)was higher than that ofblank Mg(OH)2(0.63).FTIR analysis showed that the OA interacted with Mg(OH)2via chemical bonding.Compared with the blank Mg(OH)2product,the productobtained via the proposed method exhibited a higher water contactangle(101.4°)and better dispersion in liquid paraf fin.The improved hydrophobicity and surface dispersibility ofMg(OH)2nanoparticles were also veri fied by sedimentation tests.TG/DSC analysis indicated that the total percentage of weight loss of hydrophobic Mg(OH)2(40.88%)was higher than that of blank Mg(OH)2(33.18%),which indicates improved flame-retardant effectiveness.Considering these results,the proposed in situ surface modi fication method in IS-RPB presents potentialapplicability to the large-scale production of Mg(OH)2.

    [1]X.L.Chen,J.Yu,S.Y.Guo,Surface modi fication of magnesium hydroxide and its application in flame retardant polypropylene composites,J.Mater.Sci.44(2009)1324–1332.

    [2]H.Hu,X.R.Deng,Preparation and properties ofsuper fine Mg(OH)2flame retardant,Trans.Nonferrous Metals Soc.China 16(2006)488–492.

    [3]H.Ma,Z.X.Chen,Z.P.Mao,Controlled growth ofmagnesium hydroxide crystals and its effect on the high-temperature properties ofcotton/magnesium hydroxide composites,Vacuum 95(2013)1–5.

    [4]Y.H.Hu,S.F.Li,The effects of magnesium hydroxide on flash pyrolysis of polystyrene,J.Anal.Appl.Pyrolysis 78(2007)32–39.

    [5]G.W.Beall,E.-S.M.Duraia,F.El-Tantawy,Rapid fabrication of nanostructured magnesium hydroxide and hydromagnesite via microwave-assisted technique,Powder Technol.234(2013)26–31.

    [6]X.Li,T.X.Shi,P.Chang,Preparation of magnesium hydroxide flame retardant from light calcined powder by ammonia circulation method,Powder Technol.260(2014)98–104.

    [7]J.P.Hsu,A.Nacu,Preparation ofsubmicron-sized Mg(OH)2particles through precipitation,Colloids Surf.A Physicochem.Eng.Asp.262(220–231)(2005).

    [8]C.Y.Tai,C.T.Tai,M.H.Chang,Synthesis ofmagnesium hydroxide and oxide nanoparticles using a spinning disk reactor,Ind.Eng.Chem.Res.46(2007)5536–5541.

    [9]C.Henrist,J.P.Mathieu,C.Vogels,Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,J.Cryst.Growth 249(2003)321–330.

    [10]X.Li,C.Ma,J.Y.Zhao,Preparation ofmagnesium hydroxide nanoplates using a bubbling setup,Powder Technol.198(2010)292–297.

    [11]C.M.Liauw,G.C.Lees,S.J.Hurst,Effectofsilane-based filler surface treatmentformulation on the interfacial properties of impact modi fied polypropylene/magnesium hydroxide composites,Compos.A:Appl.Sci.Manuf.29(1998)1313–1318.

    [12]F.Z.Zhang,H.Zhang,Z.X.Su,Surface treatmentofmagnesium hydroxide to improve its dispersion in organic phase by the ultrasonic technique,Appl.Surf.Sci.253(2007)7393–7397.

    [13]D.M.An,L.L.Wang,Y.H.Zheng,In situ preparation and surface modi fication ofmagnesium hydroxide nanoparticles,Colloids Surf.A Physicochem.Eng.Asp.348(9–13)(2009).

    [14]P.P.Wang,C.H.Li,H.Y.Gong,Morphology controland growth mechanism ofmagnesium hydroxide nanoparticles via a simple wet precipitation method,Ceram.Int.37(2011)3365–3370.

    [15]X.T.Lv,H.Bala,M.G.Li,In situ synthesis ofnanolamellas ofhydrophobic magnesium hydroxide,Colloids Surf.A Physicochem.Eng.Asp.296(97–103)(2007).

    [16]Y.F.Yang,X.F.Wu,G.S.Hua,Effects of stearic acid on synthesis of magnesium hydroxide via direct precipitation,J.Cryst.Growth 310(2008)3557–3560.

    [17]G.L.Song,S.D.Ma,G.Y.Tang,Ultrasonic-assisted synthesis of hydrophobic magnesium hydroxide nanoparticles,Colloids Surf.A Physicochem.Eng.Asp.364(99–104)(2010).

    [18]H.Yan,X.H.Zhang,L.Q.Wei,Hydrophobic magnesium hydroxide nanoparticles via oleic acid and poly(methyl methacrylate)-grafting surface modi fication,Powder Technol.193(2009)125–129.

    [19]Song,Y.H.,Chen,C.M.,Chen,C.F.,A new technology of preparation of nanosized magnesium hydroxide flame retardant materials,China Pat,CN 1128199C(2003).

    [20]Y.Z.Liu,ChemicalEngineering Process and Technology in High Gravity,NationalDefense Industry Press,Beijing,2009 172–253.

    [21]C.C.Lin,J.M.Ho,Structural analysis and catalytic cactivity of Fe3O4nanoparticles prepared by a facile co-precipitation method in a rotating packed bed,Ceram.Int.40(2014)10275–10282.

    猜你喜歡
    工分工種習(xí)慣性
    Use AI to predict earthquakes使用人工智能來(lái)預(yù)測(cè)地震
    老年習(xí)慣性便秘該如何治療
    特殊工種提前退休問(wèn)題探析
    掙工分的日子
    金秋(2018年17期)2018-12-19 01:07:46
    我能按照從事有毒有害特殊工種辦理提前退休嗎
    人事天地(2017年6期)2017-06-12 18:07:50
    新形勢(shì)下如何實(shí)行特殊工種提前退休政策
    老年習(xí)慣性便秘的蒙醫(yī)護(hù)理
    對(duì)于權(quán)力,人為什么會(huì)習(xí)慣性服從
    海峽姐妹(2016年7期)2016-02-27 15:21:32
    特殊工種提前退休有哪些規(guī)定?
    “600工分”的故事
    老年世界(2013年15期)2013-08-13 09:14:02
    久久久久精品性色| 精品国产露脸久久av麻豆 | 少妇猛男粗大的猛烈进出视频 | 91精品一卡2卡3卡4卡| 精品一区二区三区人妻视频| 男人舔女人下体高潮全视频| 一级毛片久久久久久久久女| 最近的中文字幕免费完整| 亚洲国产精品国产精品| 成年版毛片免费区| 国产一区二区三区av在线| 国产精品日韩av在线免费观看| 亚洲最大成人手机在线| 高清在线视频一区二区三区| 欧美最新免费一区二区三区| 亚洲av成人精品一二三区| 午夜亚洲福利在线播放| 久热久热在线精品观看| 观看免费一级毛片| 老师上课跳d突然被开到最大视频| 国产69精品久久久久777片| 好男人在线观看高清免费视频| 国产麻豆成人av免费视频| 午夜精品国产一区二区电影 | 少妇被粗大猛烈的视频| 青青草视频在线视频观看| 午夜激情欧美在线| 亚洲欧美成人精品一区二区| av播播在线观看一区| 激情五月婷婷亚洲| 亚洲成人一二三区av| 日韩成人伦理影院| 男人舔奶头视频| 欧美精品国产亚洲| 日韩 亚洲 欧美在线| 国产淫语在线视频| 神马国产精品三级电影在线观看| 超碰av人人做人人爽久久| 麻豆乱淫一区二区| 国产成人freesex在线| 自拍偷自拍亚洲精品老妇| 丰满乱子伦码专区| 美女高潮的动态| 亚洲欧美成人精品一区二区| 亚洲精品日韩av片在线观看| 国产精品久久久久久av不卡| 国产大屁股一区二区在线视频| 国产精品1区2区在线观看.| 26uuu在线亚洲综合色| 免费观看性生交大片5| 超碰97精品在线观看| 91狼人影院| av在线观看视频网站免费| av一本久久久久| 51国产日韩欧美| 日本免费在线观看一区| 日韩人妻高清精品专区| 成人特级av手机在线观看| 午夜爱爱视频在线播放| 欧美+日韩+精品| 亚洲乱码一区二区免费版| 乱人视频在线观看| 麻豆av噜噜一区二区三区| 91精品一卡2卡3卡4卡| 神马国产精品三级电影在线观看| 综合色丁香网| 欧美 日韩 精品 国产| 成人高潮视频无遮挡免费网站| 亚洲熟女精品中文字幕| 美女内射精品一级片tv| 欧美一级a爱片免费观看看| 寂寞人妻少妇视频99o| xxx大片免费视频| 日本欧美国产在线视频| 日韩欧美一区视频在线观看 | 在线免费十八禁| 联通29元200g的流量卡| 日产精品乱码卡一卡2卡三| 中国国产av一级| 99热全是精品| 九草在线视频观看| 免费电影在线观看免费观看| 精品人妻熟女av久视频| 不卡视频在线观看欧美| 男女下面进入的视频免费午夜| 一个人观看的视频www高清免费观看| 精品99又大又爽又粗少妇毛片| 亚洲在久久综合| 欧美三级亚洲精品| 中文字幕av成人在线电影| 久久久精品94久久精品| 建设人人有责人人尽责人人享有的 | 在线a可以看的网站| 久久99热这里只有精品18| 国模一区二区三区四区视频| 老女人水多毛片| 国产午夜福利久久久久久| 亚洲av成人av| 最后的刺客免费高清国语| 在线免费十八禁| 精品人妻熟女av久视频| 最近的中文字幕免费完整| 精品久久久久久久末码| 一级毛片我不卡| 国产亚洲一区二区精品| 亚洲av不卡在线观看| 精品一区二区三卡| 精品酒店卫生间| 22中文网久久字幕| 免费播放大片免费观看视频在线观看| 国模一区二区三区四区视频| 国产在线男女| 久久99蜜桃精品久久| 久久97久久精品| 99久久人妻综合| 国产精品久久久久久久电影| 日韩强制内射视频| 九九爱精品视频在线观看| 色网站视频免费| xxx大片免费视频| 97精品久久久久久久久久精品| 亚洲精品一二三| 国产午夜精品久久久久久一区二区三区| 日本免费a在线| 狠狠精品人妻久久久久久综合| 一个人看的www免费观看视频| 免费电影在线观看免费观看| 狂野欧美白嫩少妇大欣赏| 欧美激情国产日韩精品一区| 国产成人免费观看mmmm| 精品一区二区三区视频在线| 熟妇人妻久久中文字幕3abv| 亚洲一级一片aⅴ在线观看| 国产精品熟女久久久久浪| 免费观看精品视频网站| 日本午夜av视频| 美女内射精品一级片tv| 国产伦精品一区二区三区四那| 久久99蜜桃精品久久| 午夜福利视频精品| 人人妻人人看人人澡| 哪个播放器可以免费观看大片| 久久韩国三级中文字幕| 一级爰片在线观看| 久久国产乱子免费精品| 2021少妇久久久久久久久久久| 波多野结衣巨乳人妻| 97人妻精品一区二区三区麻豆| 午夜福利视频精品| 国产又色又爽无遮挡免| 久久久成人免费电影| 99久国产av精品国产电影| 天堂av国产一区二区熟女人妻| 国产三级在线视频| 天天躁日日操中文字幕| 波多野结衣巨乳人妻| 精华霜和精华液先用哪个| 一区二区三区免费毛片| 久久精品熟女亚洲av麻豆精品 | 亚洲va在线va天堂va国产| av专区在线播放| 美女大奶头视频| av国产久精品久网站免费入址| 国产色婷婷99| 精品久久久久久久久亚洲| 久久久久九九精品影院| 少妇的逼水好多| 哪个播放器可以免费观看大片| 国语对白做爰xxxⅹ性视频网站| 99久久精品一区二区三区| 神马国产精品三级电影在线观看| 一本久久精品| 中国美白少妇内射xxxbb| 国产精品av视频在线免费观看| 高清欧美精品videossex| 狠狠精品人妻久久久久久综合| 成年版毛片免费区| 一级片'在线观看视频| 国产成人a∨麻豆精品| 老师上课跳d突然被开到最大视频| 久久精品人妻少妇| 成人无遮挡网站| av专区在线播放| 欧美日韩精品成人综合77777| 免费观看的影片在线观看| 黄片无遮挡物在线观看| 欧美日韩国产mv在线观看视频 | 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 日日摸夜夜添夜夜爱| 亚洲人成网站高清观看| 久久精品久久久久久噜噜老黄| 一本一本综合久久| 99re6热这里在线精品视频| 亚洲国产精品专区欧美| 国产精品一区www在线观看| 黄色配什么色好看| 精品一区在线观看国产| 尤物成人国产欧美一区二区三区| 亚洲欧美一区二区三区黑人 | 亚洲电影在线观看av| 我要看日韩黄色一级片| 免费观看精品视频网站| 免费av毛片视频| 97精品久久久久久久久久精品| 久久久久久久久久久免费av| 国产精品精品国产色婷婷| 中文在线观看免费www的网站| 亚洲av中文av极速乱| 国产精品久久视频播放| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 亚洲一区高清亚洲精品| 久久热精品热| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 99热这里只有是精品在线观看| 欧美日韩综合久久久久久| 91久久精品国产一区二区三区| 亚洲精品乱码久久久v下载方式| 久久久亚洲精品成人影院| 亚洲国产精品成人综合色| 日韩欧美一区视频在线观看 | 午夜视频国产福利| 日韩大片免费观看网站| 内地一区二区视频在线| 久久99蜜桃精品久久| 午夜福利视频1000在线观看| www.av在线官网国产| 国产av不卡久久| 亚洲国产成人一精品久久久| 午夜福利在线在线| av女优亚洲男人天堂| 国产毛片a区久久久久| 有码 亚洲区| 日本三级黄在线观看| 日产精品乱码卡一卡2卡三| 国语对白做爰xxxⅹ性视频网站| 日日摸夜夜添夜夜添av毛片| 日韩av免费高清视频| 成人亚洲精品av一区二区| 国产女主播在线喷水免费视频网站 | 一级毛片aaaaaa免费看小| 国产不卡一卡二| 最近的中文字幕免费完整| 欧美区成人在线视频| 青春草亚洲视频在线观看| 国产成人a区在线观看| 日本午夜av视频| 国产黄色视频一区二区在线观看| 老司机影院毛片| 国产精品一区二区三区四区久久| 亚洲国产色片| 成年av动漫网址| 特级一级黄色大片| 亚洲精品亚洲一区二区| av播播在线观看一区| 麻豆国产97在线/欧美| 国产片特级美女逼逼视频| 国产亚洲av片在线观看秒播厂 | 国产精品国产三级国产av玫瑰| 国产精品熟女久久久久浪| 午夜视频国产福利| 久久99蜜桃精品久久| 欧美zozozo另类| 九九爱精品视频在线观看| 一级毛片黄色毛片免费观看视频| 久久久国产一区二区| 国产中年淑女户外野战色| 国产亚洲精品av在线| 亚洲成人中文字幕在线播放| 亚洲av一区综合| 亚洲精品乱码久久久v下载方式| 国产亚洲5aaaaa淫片| 在现免费观看毛片| 国产av码专区亚洲av| 亚洲精品久久午夜乱码| 日韩成人伦理影院| 国国产精品蜜臀av免费| 亚洲av成人精品一区久久| 免费播放大片免费观看视频在线观看| 国产v大片淫在线免费观看| 国内少妇人妻偷人精品xxx网站| 午夜老司机福利剧场| 人妻制服诱惑在线中文字幕| 超碰av人人做人人爽久久| 天堂av国产一区二区熟女人妻| 丰满人妻一区二区三区视频av| 国产精品久久久久久久久免| 国产一区二区三区av在线| 亚洲人与动物交配视频| 身体一侧抽搐| 国语对白做爰xxxⅹ性视频网站| 免费大片黄手机在线观看| or卡值多少钱| 成人午夜精彩视频在线观看| 日韩av免费高清视频| 观看免费一级毛片| 国产 亚洲一区二区三区 | 日本黄色片子视频| av在线蜜桃| 日韩欧美精品免费久久| 色网站视频免费| 免费观看无遮挡的男女| 真实男女啪啪啪动态图| 国产精品人妻久久久久久| 啦啦啦啦在线视频资源| 乱码一卡2卡4卡精品| 欧美不卡视频在线免费观看| 色综合亚洲欧美另类图片| 国内精品宾馆在线| 亚洲精品久久午夜乱码| 成年av动漫网址| 色网站视频免费| 亚洲国产欧美人成| 亚洲av不卡在线观看| 亚洲电影在线观看av| 嫩草影院精品99| 国产久久久一区二区三区| 欧美日韩在线观看h| 亚洲欧美一区二区三区国产| 在线观看av片永久免费下载| 简卡轻食公司| 天堂中文最新版在线下载 | 深爱激情五月婷婷| 尾随美女入室| 欧美一区二区亚洲| 亚洲性久久影院| 舔av片在线| 少妇人妻精品综合一区二区| 亚洲精品视频女| 能在线免费观看的黄片| 日韩av不卡免费在线播放| 老司机影院成人| 一级毛片黄色毛片免费观看视频| 高清欧美精品videossex| 欧美日韩综合久久久久久| 天天躁日日操中文字幕| 成人亚洲欧美一区二区av| 国产成人a∨麻豆精品| 大香蕉久久网| 亚洲欧美日韩卡通动漫| www.av在线官网国产| 免费观看性生交大片5| 内射极品少妇av片p| 免费大片18禁| 伊人久久精品亚洲午夜| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 激情 狠狠 欧美| 80岁老熟妇乱子伦牲交| 丰满乱子伦码专区| 中文资源天堂在线| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添av毛片| 午夜亚洲福利在线播放| 国产一区二区三区综合在线观看 | 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 夫妻午夜视频| 国产精品人妻久久久久久| 精品一区在线观看国产| 日日摸夜夜添夜夜添av毛片| 日本av手机在线免费观看| 91狼人影院| 偷拍熟女少妇极品色| 国产精品不卡视频一区二区| 一个人免费在线观看电影| 91狼人影院| 亚洲av一区综合| 精品少妇黑人巨大在线播放| 日韩av在线大香蕉| 亚洲av二区三区四区| 亚洲婷婷狠狠爱综合网| 高清午夜精品一区二区三区| 国内精品宾馆在线| 边亲边吃奶的免费视频| 嫩草影院入口| 精品少妇黑人巨大在线播放| 免费观看a级毛片全部| 啦啦啦韩国在线观看视频| 欧美精品一区二区大全| 女人十人毛片免费观看3o分钟| 极品少妇高潮喷水抽搐| 午夜福利高清视频| 男女视频在线观看网站免费| 中国美白少妇内射xxxbb| 国产欧美另类精品又又久久亚洲欧美| 又爽又黄无遮挡网站| 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 久久久久久久久中文| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 国产有黄有色有爽视频| 欧美日韩视频高清一区二区三区二| 大又大粗又爽又黄少妇毛片口| 婷婷六月久久综合丁香| 国产亚洲一区二区精品| 国内精品美女久久久久久| 国产av国产精品国产| 亚洲欧美成人精品一区二区| xxx大片免费视频| 色尼玛亚洲综合影院| 欧美精品一区二区大全| 日本一二三区视频观看| 99久久九九国产精品国产免费| 国产视频首页在线观看| 丝袜喷水一区| 日韩不卡一区二区三区视频在线| 免费看av在线观看网站| 亚洲精品久久久久久婷婷小说| 美女cb高潮喷水在线观看| .国产精品久久| 免费观看性生交大片5| 中文资源天堂在线| 日本猛色少妇xxxxx猛交久久| 成人综合一区亚洲| 丰满乱子伦码专区| 国产一区二区三区综合在线观看 | 黑人高潮一二区| 日韩电影二区| 18禁在线播放成人免费| 欧美激情久久久久久爽电影| 亚洲va在线va天堂va国产| 成人毛片60女人毛片免费| 最近的中文字幕免费完整| 久久99蜜桃精品久久| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 国产一区有黄有色的免费视频 | 99热这里只有精品一区| 久久久久久久久久黄片| 国语对白做爰xxxⅹ性视频网站| 欧美另类一区| 亚洲精品乱码久久久v下载方式| 亚洲欧美精品专区久久| 国产中年淑女户外野战色| 身体一侧抽搐| 精品久久久精品久久久| 国产精品一区二区三区四区免费观看| 淫秽高清视频在线观看| 欧美潮喷喷水| 国产一区二区三区av在线| 男女视频在线观看网站免费| 久久久久久久久久成人| 一级毛片 在线播放| 久99久视频精品免费| 国产免费一级a男人的天堂| 插阴视频在线观看视频| av福利片在线观看| 国产av国产精品国产| 久久久久久久久久人人人人人人| 国产精品嫩草影院av在线观看| 精品人妻偷拍中文字幕| 国产精品一区二区性色av| 少妇熟女欧美另类| 亚洲欧洲国产日韩| 青春草视频在线免费观看| 噜噜噜噜噜久久久久久91| 九草在线视频观看| 亚洲最大成人手机在线| 人人妻人人澡欧美一区二区| 内地一区二区视频在线| 2018国产大陆天天弄谢| 人妻一区二区av| 男女视频在线观看网站免费| 两个人的视频大全免费| 国产精品伦人一区二区| 丰满人妻一区二区三区视频av| 80岁老熟妇乱子伦牲交| 欧美性感艳星| 黄色日韩在线| 久久久久精品性色| 婷婷色综合大香蕉| 国产色爽女视频免费观看| av一本久久久久| 岛国毛片在线播放| 大香蕉97超碰在线| av播播在线观看一区| 国产在线一区二区三区精| 少妇的逼好多水| 高清视频免费观看一区二区 | 91狼人影院| 国产精品久久视频播放| 男女啪啪激烈高潮av片| 精品久久久久久成人av| 中文精品一卡2卡3卡4更新| 国产伦理片在线播放av一区| 丰满少妇做爰视频| 日日啪夜夜撸| 亚洲av在线观看美女高潮| 国产av不卡久久| 欧美激情国产日韩精品一区| 亚洲欧美清纯卡通| 亚洲乱码一区二区免费版| 直男gayav资源| 男女边吃奶边做爰视频| 国产精品不卡视频一区二区| 97热精品久久久久久| 91午夜精品亚洲一区二区三区| 午夜福利成人在线免费观看| 久久久国产一区二区| 国产探花极品一区二区| 亚洲av免费高清在线观看| 黄片无遮挡物在线观看| 十八禁国产超污无遮挡网站| 嫩草影院精品99| av福利片在线观看| 少妇熟女欧美另类| 精品久久久久久电影网| 精品久久久久久久人妻蜜臀av| 免费观看性生交大片5| 天堂中文最新版在线下载 | 极品少妇高潮喷水抽搐| 噜噜噜噜噜久久久久久91| av福利片在线观看| 免费在线观看成人毛片| 久久99热这里只有精品18| 午夜视频国产福利| 精品久久久久久久末码| 午夜福利在线在线| videos熟女内射| 综合色av麻豆| 老司机影院毛片| 亚洲精品成人av观看孕妇| 男女下面进入的视频免费午夜| 国产淫语在线视频| 色播亚洲综合网| 精品人妻偷拍中文字幕| 国产久久久一区二区三区| 久久久久久久午夜电影| 老司机影院毛片| 韩国av在线不卡| 精华霜和精华液先用哪个| 国产色婷婷99| 一二三四中文在线观看免费高清| 国产永久视频网站| 成年av动漫网址| 97在线视频观看| 国产精品.久久久| 亚洲欧美中文字幕日韩二区| 日韩中字成人| 天堂av国产一区二区熟女人妻| 久久韩国三级中文字幕| 午夜日本视频在线| 极品少妇高潮喷水抽搐| 国产精品女同一区二区软件| 肉色欧美久久久久久久蜜桃 | 国产一区二区三区综合在线观看 | 亚洲四区av| av免费观看日本| 美女被艹到高潮喷水动态| 一区二区三区四区激情视频| 欧美精品一区二区大全| 亚洲精品乱码久久久v下载方式| a级毛片免费高清观看在线播放| 亚洲av二区三区四区| 麻豆乱淫一区二区| 久久久久久久久久黄片| 久久鲁丝午夜福利片| 能在线免费观看的黄片| www.色视频.com| 亚洲欧美成人精品一区二区| 精品久久久精品久久久| 国产真实伦视频高清在线观看| 日韩视频在线欧美| 毛片一级片免费看久久久久| 蜜臀久久99精品久久宅男| 又黄又爽又刺激的免费视频.| 在线观看美女被高潮喷水网站| 国产精品一区二区性色av| 精品99又大又爽又粗少妇毛片| 精品一区在线观看国产| 你懂的网址亚洲精品在线观看| 亚洲精品456在线播放app| 国产国拍精品亚洲av在线观看| h日本视频在线播放| 久久人人爽人人片av| 国产精品一及| 少妇熟女aⅴ在线视频| 最近2019中文字幕mv第一页| 精品久久久久久电影网| 久久久久久久久久成人| 国产人妻一区二区三区在| 久久这里只有精品中国| 久久久久免费精品人妻一区二区| 亚洲国产最新在线播放| 久久国产乱子免费精品| 午夜免费观看性视频| 18禁在线无遮挡免费观看视频| 日本与韩国留学比较| 亚洲在线观看片| 男女视频在线观看网站免费| 只有这里有精品99| 精品国内亚洲2022精品成人| 18禁在线无遮挡免费观看视频| av播播在线观看一区| 一级毛片aaaaaa免费看小| 成人无遮挡网站| 哪个播放器可以免费观看大片| 精品久久久久久久人妻蜜臀av| 国产在视频线精品| 国产不卡一卡二| 国产亚洲精品av在线| 中文乱码字字幕精品一区二区三区 | 三级毛片av免费| 在线免费观看的www视频| 欧美不卡视频在线免费观看| a级毛色黄片| 亚洲内射少妇av| 国产老妇女一区| 嘟嘟电影网在线观看| 国产一区二区亚洲精品在线观看|