• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ synthesis ofhydrophobic magnesium hydroxide nanoparticles in a novelimpinging stream-rotating packed bed reactor☆

    2016-05-30 01:55:04HongyanShenYouzhiLiu
    關(guān)鍵詞:工分工種習(xí)慣性

    Hongyan Shen,Youzhi Liu*

    ShanxiProvince Key Laboratory of Higee-Oriented ChemicalEngineering,College ofChemicalEngineering and Environment,North University ofChina,Taiyuan 030051,China

    1.Introduction

    Magnesium hydroxide[Mg(OH)2],as an environmentally benign flame retardant,has recently attracted increased attention because of its high decomposition temperature,smoke suppressibility,flame retardancy,nontoxicity,and neutralization with acid gas from polymer combustion[1–10].However,the hydrophilic surfaces of Mg(OH)2are not favorable for their dispersion in hydrophobic polymer matrices,requiring addition levels ofup to 60 wt%to achieve high flame-retardant ef ficiency.Such high addition could negatively affect the mechanical properties of the resulting flame retardant polymeric composites[11–14].Therefore,improving the dispersibility and compatibility between Mg(OH)2and the polymer matrix is necessary[15–17].

    Surface modi fication has been proposed to solve the problems associated with Mg(OH)2use.Zhang et al.successfully surface modi fied micro Mg(OH)2by means ofan ultrasonic method with stearic acid as a modi fier[12].Yan etal.prepared hydrophobic Mg(OH)2nanoparticles via PMMA grafting by dispersion polymerization after oleic acid(OA)surface modi fication[18].However,these methods often require several reaction steps and are too complex to synthesize hydrophobic Mg(OH)2in large scale.

    Higee equipmenthas been successfully applied to prepare Mg(OH)2nanoparticles.There are two types of Higee equipment,e.g.,the rotating packed bed(RPB)and the spinning disk reactor(SDR).They were able to generate a high gravity environment that can intensify micromixing and mass transfer,and this is very helpfulfor achieving uniform supersaturation in a precipitation process.According to the above mentioned advantages,Song etal.successfully prepared lamellar Mg(OH)2nanoparticles with 20 nm to 80 nm size in an RPB at temperatures between 60 °C and 160 °C[19].Tai et al.successfully synthesized lamellar Mg(OH)2nanoparticles with 50 nm to 80 nm in length and 10 nm in thickness using SDR[8].However,the preparation of hydrophobic Mg(OH)2nanoparticles by one step precipitation through higee equipment has not been reported.

    A novelhigee equipment,impinging stream-rotating packed bed(IS-RPB)reactor was proposed by Liu(2009)[20].In the IS-RPB,the two reactant solutions flow along the same axis in the opposite direction into collision to change the liquid non-uniform distribution of RPB,which primarily intensi fies micromixing and mass transfer.As the result ofsuch a collision,the fringe of the impinging surface region is then dispersed into the rotating packing,which intensi fies the micromixing of the two liquid reactants secondly.Therefore,uniform supersaturation and homogeneous nucleation occur,yielding relatively smallparticles with a narrow size distribution with limited agglomeration.

    In this work,we have successfully prepared hydrophobic Mg(OH)2nanoparticles with good dispersibility and compatibility in organic phase by one step precipitation in IS-RPB using OA as a modi fier.The obtained hydrophobic Mg(OH)2nanoparticles were characterized and the surface properties of Mg(OH)2nanoparticles were investigated.The results indicated that the proposed method had the potentialapplicability to produce hydrophobic Mg(OH)2nanoparticles in large scale.

    2.Experimental

    2.1.Materials

    Magnesium chloride hexahydrate(MgCl2·6H2O),OA,absolute ethanol,and liquid paraf fin were purchased from Tianjin Guangfu Chemical Reagent Factory(China).Sodium hydroxide(NaOH)was purchased from Tianjin Dalu Chemical Reagent Factory(China).All of the above chemicalreagents were analytically pure and used as received without further puri fication.High-purity water was prepared by a water puri fication system(GWA-UN,China)and used in all procedures.

    2.2.Synthesis ofhydrophobic Mg(OH)2 nanoparticles

    Fig.1(a)shows a photograph of the IS-RPB reactor applied to prepare Mg(OH)2nanoparticles.The IS-RPB reactor included an impinging stream liquid distributor containing a straight tube with a 1.5 mm hole on one end and an L-type tube with a 1.5 mm hole on the inside of its front end.The packed bed in the IS-RPB reactor had an inner radius of 50 mm,an outer radius of 125 mm,and an axial height of 210 mm.The reactor was packed with stainless steelwire mesh 0.3 mmin diameter and with 0.96 porosity.

    Fig.1(b)schematically depicts the experimentalsetup for preparing Mg(OH)2nanoparticles.Predetermined masses of OA and MgCl2were dissolved in 2 L of a deionized water/absolute ethanolmixture(10:23,v/v);here,the concentration of Mg2+was fixed to 0.75 mol·L-1.Tank A contained this as-prepared solution.NaOH was dissolved in 2 L ofdeionized water to achieve a fixed OH-concentration of1.5 mol·L-1.This solution was then placed in tank B.The reaction temperature,rotation speed,and liquid flow rate were maintained at 60°C,800 rpm,and 40 L·h-1,respectively.The MgCl2and NaOH solutions were simultaneously and continuously pumped from tanks A and B into the IS-RPB reactor,where both solutions were mixed and reacted with each other and the obtained suspension was separated in a centrifuge.The precipitate was washed three times with deionized water and then three times with absolute ethanolto remove residualimpurities.The wet particles were dried in a vacuum oven at 60°C for 6 h.Finally,the ethanolin the mother liquor was recovered by distillto reduce operation costs.

    2.3.Characterization

    A field-emission scanning electron microscope(FESEM;JSM-6700F,JEOL,Tokyo,Japan)was used to observe the morphologies of the Mg(OH)2nanoparticles.The phase purity and crystallographic structures of the samples were examined by X-ray diffraction(XRD,Bruker D8 Advance diffractometer)using CuKα(λ =0.15406 nm)radiation at an operation voltage and currentof40 kV and 40 mA,respectively.Fourier transform infrared spectroscopy(FTIR)was performed by a Spectrum Two spectrometer employing the KBr pellet method.The thermalbehavior of the Mg(OH)2nanoparticles was determined on a STA 449F3 simultaneous thermal analyzer(Netzsch,Germany)undera nitrogen atmosphere from 35 °C to 600 °C ata heating rate of10℃·min-1.

    Fig.1.Preparation of Mg(OH)2 nanoparticles:(a)photograph of IS-RPB and(b)the experimentalsetup.

    2.4.Surface property of Mg(OH)2 nanoparticles

    2.4.1.Surface wettability property

    The surface wettability of the nanoparticles was characterized in terms of water contact angle.Water contact angle tests were carried outusing a contactangle analyzer(JC2000D1,China).The powder samples were pressed into thin pellets under 10 MPa and contact angles were measured by the sessile drop method.The probe fluid used was reverse osmosis-puri fied water.

    2.4.2.Dispersion characteristics of Mg(OH)2in liquid paraf fin

    Exactly 0.1 g ofpowder and 10 mlofliquid paraf fin were placed into a testtube and dispersed by ultrasonication for 3 min.The obtained suspension was dropped onto a crystal flake and observed using a bioopticalmicroscope(OPTEC BK 300).

    2.4.3.Sedimentation characteristics of Mg(OH)2in water and liquid paraf fin

    Exactly 0.1 g ofpowder was mixed into 10 mlofwater or liquid paraf fin and the sedimentation of the nanoparticles was observed.

    十隊(duì)是在60年代末由兩個(gè)生產(chǎn)隊(duì)合并而成,所以,在日常勞作中,社員總會(huì)習(xí)慣性地分成兩組。為了公正記錄工分,兩邊各推選一名記分員記錄對(duì)方的工分,同時(shí)還另選一名總記工員,兩位記分員每天都要把各個(gè)社員的工分匯總到總記工員處。由于社員在一天內(nèi)經(jīng)常做不同的工種,如果自己記了本組社員的工分,另一個(gè)記分員則要把他們的工分、工種抄回去,所以我們?cè)诠し植旧峡吹胶芏唷啊獭?。?dāng)時(shí)出工就畫一個(gè)圈,不出工則打個(gè)叉,并作相關(guān)說(shuō)明,以免社員日后翻舊賬。

    3.Results and Discussion

    3.1.FTIR analysis

    The FTIR spectra of the modi fier OA,blank Mg(OH)2,and hydrophobic Mg(OH)2are shown in Fig.2(a)–(c).In blank Mg(OH)2,the peak appearing at 3699 cm-1is matched to–OH stretching vibrations.The broad peak appearing at 3440 cm-1is attributed to the stretching vibrations of O–H bonds,while the peak appearing in the range of 1450–1650 cm-1is associated with the bending vibrations of O–H bond.These peaks are attributed to the water absorbed by Mg(OH)2nanoparticles.

    Fig.2.FTIR spectra of(a)the modi fier OA,(b)blank Mg(OH)2,and(c)hydrophobic Mg(OH)2.

    Fig.3.FESEMimages of MH(a),(b)blank Mg(OH)2 and(c),(d)hydrophobic Mg(OH)2.

    In agent OA,peaks at2925 and 2855 cm-1are ascribed to the vibrations of–CH2– and –CH3groups.The sharp peak at 1705 cm-1corresponds to–COOH vibrations.In hydrophobic Mg(OH)2,peaks at 2925 and 2855 cm-1,which are attributed to –CH2– and CH3groups,clearly suggest the presence of OA on the surface of Mg(OH)2nanoparticles.Peaks corresponding to the–COOH groups of OA and magnesium carboxylate are absent from the spectrum ofhydrophobic Mg(OH)2.This result indicates that OA molecules were notabsorbed on the surface of Mg(OH)2nanocrystals;instead,OA substituted the surface-absorbed–OH groups of Mg(OH)2.The two peaks at 1576 and 1465 cm-1in Fig.2(c)are due to the symmetric and asymmetric COO stretching vibrations of carboxylate bonds.These observations indicate that OA was bonded on the surface ofMg(OH)2through the interaction between the–COOH group of OA and the–OH group on the surface of Mg(OH)2.

    3.2.SEM analysis

    The morphology ofblank and hydrophobic Mg(OH)2samples were examined by FESEM.Fig.3 showsthe FESEMimages ofblank and hydrophobic Mg(OH)2.Compared with the blank Mg(OH)2nanoparticles,hydrophobic Mg(OH)2nanoparticles exhibit a more regular morphology(hexagonallamella),smaller mean diameter ofabout30 nm,and better dispersibility without obvious agglomeration.This contrast demonstrates that OA can effectively modify the morphology of Mg(OH)2nanoparticles.Thus,addition of OA to the synthesis system favors the production ofsmaller-sized Mg(OH)2nanoparticles with even crystal growth.These observations are consistent with the XRD results.

    3.3.TEManalysis

    Fig.4.TEMimages of MH(a)blank Mg(OH)2 and(b)hydrophobic Mg(OH)2.

    The morphology of blank and hydrophobic Mg(OH)2samples was further analyzed by TEM(shown in Fig.4).As can be observed,the hydrophobic Mg(OH)2nanoparticles had a more regular shape(hexagonallamella)and uniform particle size distribution with particle size ofaround 30 nmin comparison with irregularly shaped large particles of the blank Mg(OH)2sample.This contrast demonstrates that the addition of OA is favourable to obtain smaller sized Mg(OH)2nanoparticles with regular hexagonal lamella and uniform particle size distribution.

    3.4.XRD analysis

    The crystal phases and crystallinity of blank and hydrophobic Mg(OH)2nanoparticles were determined by XRD.As shown in Fig.5,the interaction between Mg(OH)2and OA may also be observed from the XRD patterns.The positions of diffraction peaks in Fig.5(a)and 5(b)showed no changes and were in accordance with the standard data(JCPDS Card No.7-239),thereby illustrating that the structure of the Mg(OH)2was hexagonalin nature.However,between the XRDpatterns ofblank Mg(OH)2and hydrophobic Mg(OH)2,allof the peaks,except that of(001)lattice plan,have no obvious difference in intensity.Comparing I001/I101ratios,hydrophobic Mg(OH)2(I001/I101ratio,0.86)exhibited obviously higher crystallinity than blank Mg(OH)2(I001/I101ratio,0.63),which indicates that OA was grafted onto the(001)lattice plane of Mg(OH)2.The dispersion properties ofhydrophobic Mg(OH)2also improved because of the increase in its I001/I101.The XRD findings were in accordance with the FESEMresults.

    The crystallite size(D)of the Mg(OH)2samples could be calculated according to their XRDpatterns by the using the Debye–Scherrerformula[21],which is given in Eq.(1)

    The D derived from the(001),(101),and(100)crystalfaces of the Mg(OH)2samples are listed in Table 1.The crystallite size ofhydrophobic Mg(OH)2crystals is smaller than that ofblank Mg(OH)2crystals.

    The XRDdata were processed for Rietveld re finementofstructure by Re flex program.Fig.6 shows the Rietveld re finement of XRD data,and Table 2 lists the Rietveld re finement parameters,and crystallite size.The quality of the re finementwas quanti fied by weighted pro file residual Rwp.As can be seen from Fig.6 and Table 2,the blank Mg(OH)2and hydrophobic Mg(OH)2with space group P_-3_m_1,and the crystallite size of hydrophobic Mg(OH)2crystals is smaller than that of blank Mg(OH)2crystals,this result may be attributed to the large number of OA molecules present on the surface of Mg(OH)2nanoparticles,which can effectively avoid the agglomeration of the particles,thereby the addition of OA is favourable to obtain smaller sized Mg(OH)2nanoparticles.

    3.5.TG-DSC analysis

    Fig.7 shows the TG and DTG curves of blank and hydrophobic Mg(OH)2.The results obtained con firm the signi ficant improvement of the thermal stability of hydrophobic Mg(OH)2in comparison with that of the blank sample.Blank Mg(OH)2exhibits two mass loss steps in the temperature range of 89–376.2 °C.The first step of 2.31%may be attributed to desorption of water physisorbed on Mg(OH)2.The second-step mass loss(28.51%)begins at 340.2°C and ends at 376.2°C;this step can be attributed to the thermaldecomposition of Mg(OH)2.The theoreticalmass loss of the Mg(OH)2→MgO transformation is 30.8%,slightly larger than the observed 28.51%.This discrepancy in mass loss is ascribed to the incomplete decomposition of the sample in the temperature range studied.

    Fig.6.Finalplots of the Rietveld re finement,showing the experimental(circles)and calculated(line)intensities of(a)blank Mg(OH)2 and(b)hydrophobic Mg(OH)2.The lower curve is the difference diagram.

    Table 2 Crystallite size and Rietveld re finement parameters of blank Mg(OH)2 and hydrophobic Mg(OH)2.

    In the hydrophobic Mg(OH)2sample,decomposition occurred in three steps from 89 °C to 485.1 °C.The mass loss from 89 °C to 250 °C(1.59%)is due to desorption of adsorbed water.The mass loss from 320.8 °Cto 346.7 °C(26.29%)corresponds to the thermaldecomposition of magnesium hydroxide.The mass loss from 425.9 °C to 485.1 °C(11.14%)corresponds to the decomposition of OA.The totalpercentage ofmass loss ofhydrophobic Mg(OH)2was 40.88%,higher than that of blank Mg(OH)2(33.18%).This result suggests that a certain amount of OA is bonded to the surface of the Mg(OH)2nanoparticles,which could decrease the endothermic decomposition temperature of the Mg(OH)2nanoparticles,and enhance their thermalstability.

    Fig.8.DSC curves of blank and hydrophobic Mg(OH)2.

    Fig.7.TG and DTG curves ofblank and hydrophobic Mg(OH)2.

    Fig.9.Behavior of water droplets on the surface ofthin Mg(OH)2 nanoparticle pellets:(a)blank Mg(OH)2 and(b)hydrophobic Mg(OH)2.

    The DSC curves of blank and hydrophobic Mg(OH)2are shown in Fig.8.Because the thermal decomposition of Mg(OH)2is an endothermic reaction,the DSC curve ofhydrophobic Mg(OH)2shows an endothermic peak at 341.1°C that is sharper than that of blank Mg(OH)2(368.2°C).There is another small endothermic peak at 458.6°C for hydrophobic Mg(OH)2,which may be caused by the presence of OA on the surface of Mg(OH)2nanoparticles.This conclusion is in accordance to the TG result.

    3.6.Surface property of Mg(OH)2 nanoparticles

    Fig.10.Photographs ofblank Mg(OH)2 in(a)water and(d,e)in liquid paraf fin and hydrophobic Mg(OH)2 in(b)water and(c,f)liquid paraf fin.

    The surface wettability of blank and hydrophobic Mg(OH)2was characterized in terms of water contact angles,as shown in Fig.9.When a water droplet is applied to the surface of the blank Mg(OH)2sample,as shown in Fig.9(a),no stable drop shape was formed;this result indicates that blank Mg(OH)2nanoparticles are hydrophilic and easily wetted by water.The water contact angle of hydrophobic Mg(OH)2was 110.4°;this result demonstrates that the surface polarity of the sample was weak and its surface energy was low.These observations may be attributed to the large number of OA molecules presenton the surface of the hydrophobic Mg(OH)2nanoparticles with alkylchains predominantly exposed to the air–water interface.

    To evaluate the hydrophobic nature of Mg(OH)2nanoparticles,the sedimentation behavior of the nanoparticles was observed in water.Fig.10(a)and 10(b)respectively illustrate the sedimentation of blank and hydrophobic Mg(OH)2nanoparticles in water.Blank Mg(OH)2nanoparticles sank into the water after 10 min,while hydrophobic Mg(OH)2nanoparticles floated on the water for 30 d.Fig.10(c)and 10(d)respectively show the sedimentation of blank and hydrophobic Mg(OH)2nanoparticles in liquid paraf fin.The blank Mg(OH)2showed rapid sedimentation because its hydrophilic surface was poorly wetted by the liquid paraf fin and its suspension in the liquid was achieved by agglomeration into large particles as shown in Fig.10(e).By contrast,hydrophobic Mg(OH)2dispersed very well through the liquid paraf fin,as shown in Fig.10(f).These results indicate that OA modi fication of Mg(OH)2surfaces can yield hydrophobic Mg(OH)2with signi ficantly improved compatibility with various organic phases.

    4.Conclusions

    In this study,we proposed an in situ surface modi fication method to synthesize hydrophobic Mg(OH)2nanoparticles in IS-RPB using OA as a surface modi fier.SEM images showed that the obtained nanoparticles present regular hexagonal lamellae with an average diameter of 30 nm.XRD revealed that the high-purity Mg(OH)2product presents a brucite structure and the I001/I101ofhydrophobic Mg(OH)2(0.86)was higher than that ofblank Mg(OH)2(0.63).FTIR analysis showed that the OA interacted with Mg(OH)2via chemical bonding.Compared with the blank Mg(OH)2product,the productobtained via the proposed method exhibited a higher water contactangle(101.4°)and better dispersion in liquid paraf fin.The improved hydrophobicity and surface dispersibility ofMg(OH)2nanoparticles were also veri fied by sedimentation tests.TG/DSC analysis indicated that the total percentage of weight loss of hydrophobic Mg(OH)2(40.88%)was higher than that of blank Mg(OH)2(33.18%),which indicates improved flame-retardant effectiveness.Considering these results,the proposed in situ surface modi fication method in IS-RPB presents potentialapplicability to the large-scale production of Mg(OH)2.

    [1]X.L.Chen,J.Yu,S.Y.Guo,Surface modi fication of magnesium hydroxide and its application in flame retardant polypropylene composites,J.Mater.Sci.44(2009)1324–1332.

    [2]H.Hu,X.R.Deng,Preparation and properties ofsuper fine Mg(OH)2flame retardant,Trans.Nonferrous Metals Soc.China 16(2006)488–492.

    [3]H.Ma,Z.X.Chen,Z.P.Mao,Controlled growth ofmagnesium hydroxide crystals and its effect on the high-temperature properties ofcotton/magnesium hydroxide composites,Vacuum 95(2013)1–5.

    [4]Y.H.Hu,S.F.Li,The effects of magnesium hydroxide on flash pyrolysis of polystyrene,J.Anal.Appl.Pyrolysis 78(2007)32–39.

    [5]G.W.Beall,E.-S.M.Duraia,F.El-Tantawy,Rapid fabrication of nanostructured magnesium hydroxide and hydromagnesite via microwave-assisted technique,Powder Technol.234(2013)26–31.

    [6]X.Li,T.X.Shi,P.Chang,Preparation of magnesium hydroxide flame retardant from light calcined powder by ammonia circulation method,Powder Technol.260(2014)98–104.

    [7]J.P.Hsu,A.Nacu,Preparation ofsubmicron-sized Mg(OH)2particles through precipitation,Colloids Surf.A Physicochem.Eng.Asp.262(220–231)(2005).

    [8]C.Y.Tai,C.T.Tai,M.H.Chang,Synthesis ofmagnesium hydroxide and oxide nanoparticles using a spinning disk reactor,Ind.Eng.Chem.Res.46(2007)5536–5541.

    [9]C.Henrist,J.P.Mathieu,C.Vogels,Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution,J.Cryst.Growth 249(2003)321–330.

    [10]X.Li,C.Ma,J.Y.Zhao,Preparation ofmagnesium hydroxide nanoplates using a bubbling setup,Powder Technol.198(2010)292–297.

    [11]C.M.Liauw,G.C.Lees,S.J.Hurst,Effectofsilane-based filler surface treatmentformulation on the interfacial properties of impact modi fied polypropylene/magnesium hydroxide composites,Compos.A:Appl.Sci.Manuf.29(1998)1313–1318.

    [12]F.Z.Zhang,H.Zhang,Z.X.Su,Surface treatmentofmagnesium hydroxide to improve its dispersion in organic phase by the ultrasonic technique,Appl.Surf.Sci.253(2007)7393–7397.

    [13]D.M.An,L.L.Wang,Y.H.Zheng,In situ preparation and surface modi fication ofmagnesium hydroxide nanoparticles,Colloids Surf.A Physicochem.Eng.Asp.348(9–13)(2009).

    [14]P.P.Wang,C.H.Li,H.Y.Gong,Morphology controland growth mechanism ofmagnesium hydroxide nanoparticles via a simple wet precipitation method,Ceram.Int.37(2011)3365–3370.

    [15]X.T.Lv,H.Bala,M.G.Li,In situ synthesis ofnanolamellas ofhydrophobic magnesium hydroxide,Colloids Surf.A Physicochem.Eng.Asp.296(97–103)(2007).

    [16]Y.F.Yang,X.F.Wu,G.S.Hua,Effects of stearic acid on synthesis of magnesium hydroxide via direct precipitation,J.Cryst.Growth 310(2008)3557–3560.

    [17]G.L.Song,S.D.Ma,G.Y.Tang,Ultrasonic-assisted synthesis of hydrophobic magnesium hydroxide nanoparticles,Colloids Surf.A Physicochem.Eng.Asp.364(99–104)(2010).

    [18]H.Yan,X.H.Zhang,L.Q.Wei,Hydrophobic magnesium hydroxide nanoparticles via oleic acid and poly(methyl methacrylate)-grafting surface modi fication,Powder Technol.193(2009)125–129.

    [19]Song,Y.H.,Chen,C.M.,Chen,C.F.,A new technology of preparation of nanosized magnesium hydroxide flame retardant materials,China Pat,CN 1128199C(2003).

    [20]Y.Z.Liu,ChemicalEngineering Process and Technology in High Gravity,NationalDefense Industry Press,Beijing,2009 172–253.

    [21]C.C.Lin,J.M.Ho,Structural analysis and catalytic cactivity of Fe3O4nanoparticles prepared by a facile co-precipitation method in a rotating packed bed,Ceram.Int.40(2014)10275–10282.

    猜你喜歡
    工分工種習(xí)慣性
    Use AI to predict earthquakes使用人工智能來(lái)預(yù)測(cè)地震
    老年習(xí)慣性便秘該如何治療
    特殊工種提前退休問(wèn)題探析
    掙工分的日子
    金秋(2018年17期)2018-12-19 01:07:46
    我能按照從事有毒有害特殊工種辦理提前退休嗎
    人事天地(2017年6期)2017-06-12 18:07:50
    新形勢(shì)下如何實(shí)行特殊工種提前退休政策
    老年習(xí)慣性便秘的蒙醫(yī)護(hù)理
    對(duì)于權(quán)力,人為什么會(huì)習(xí)慣性服從
    海峽姐妹(2016年7期)2016-02-27 15:21:32
    特殊工種提前退休有哪些規(guī)定?
    “600工分”的故事
    老年世界(2013年15期)2013-08-13 09:14:02
    久久精品国产99精品国产亚洲性色| 免费av不卡在线播放| 成人毛片a级毛片在线播放| 18禁黄网站禁片免费观看直播| 高清日韩中文字幕在线| 九九久久精品国产亚洲av麻豆| 18禁在线播放成人免费| 国产黄色视频一区二区在线观看 | 亚洲一区高清亚洲精品| 日韩欧美在线乱码| 成人毛片a级毛片在线播放| 亚洲综合色惰| 久久久久九九精品影院| 观看免费一级毛片| 精品熟女少妇av免费看| 一区福利在线观看| 久久6这里有精品| 国产69精品久久久久777片| 麻豆一二三区av精品| 国内精品美女久久久久久| 免费av毛片视频| 久久6这里有精品| 国产精品久久久久久久久免| 日韩成人伦理影院| 亚洲乱码一区二区免费版| 有码 亚洲区| 男插女下体视频免费在线播放| 少妇熟女欧美另类| 午夜精品国产一区二区电影 | 少妇高潮的动态图| 丝袜喷水一区| 性欧美人与动物交配| 一本一本综合久久| 亚洲最大成人手机在线| 欧美在线一区亚洲| 22中文网久久字幕| 无遮挡黄片免费观看| 国产av在哪里看| 美女大奶头视频| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美 国产精品| 久久热精品热| 久久这里只有精品中国| 久久久精品欧美日韩精品| 精品久久久久久久末码| 午夜老司机福利剧场| 欧美xxxx性猛交bbbb| 一本精品99久久精品77| 极品教师在线视频| 观看免费一级毛片| 看片在线看免费视频| 日韩成人伦理影院| 亚洲国产精品合色在线| 午夜福利在线观看免费完整高清在 | 亚洲五月天丁香| 午夜精品在线福利| 成年av动漫网址| 欧美激情久久久久久爽电影| 成人三级黄色视频| 一个人观看的视频www高清免费观看| 久久草成人影院| 免费av观看视频| 国产精品综合久久久久久久免费| 国产高清视频在线观看网站| 一级黄片播放器| 久久久欧美国产精品| 婷婷精品国产亚洲av在线| 久久精品综合一区二区三区| 免费看日本二区| 国产探花极品一区二区| 嫩草影视91久久| 久久久精品94久久精品| 久久精品国产亚洲网站| 午夜a级毛片| 久久久成人免费电影| 久久久精品欧美日韩精品| 欧美色视频一区免费| 蜜桃久久精品国产亚洲av| 精品久久久久久久久久久久久| 国产精品不卡视频一区二区| 国产探花极品一区二区| 亚洲欧美精品自产自拍| 国产真实伦视频高清在线观看| 99久久精品热视频| 美女xxoo啪啪120秒动态图| 插阴视频在线观看视频| 国产精品一二三区在线看| 黄色欧美视频在线观看| 成人精品一区二区免费| 成人特级黄色片久久久久久久| 国产成人91sexporn| 97热精品久久久久久| 真实男女啪啪啪动态图| 日韩av不卡免费在线播放| 色综合站精品国产| 成年免费大片在线观看| 国语自产精品视频在线第100页| 亚洲综合色惰| 中文字幕精品亚洲无线码一区| 小蜜桃在线观看免费完整版高清| 美女大奶头视频| 免费人成视频x8x8入口观看| 99热这里只有是精品50| 欧美又色又爽又黄视频| 久久天躁狠狠躁夜夜2o2o| 成年女人毛片免费观看观看9| 日本一本二区三区精品| 天堂av国产一区二区熟女人妻| 日韩国内少妇激情av| 久久欧美精品欧美久久欧美| 精品国产三级普通话版| 我的女老师完整版在线观看| 色综合亚洲欧美另类图片| 国产高清激情床上av| 久久99热这里只有精品18| 午夜激情福利司机影院| 午夜精品国产一区二区电影 | 亚洲国产高清在线一区二区三| 久久久精品大字幕| 亚洲在线观看片| 伊人久久精品亚洲午夜| 精品福利观看| 国产女主播在线喷水免费视频网站 | 国产精品亚洲一级av第二区| av天堂在线播放| 亚洲性夜色夜夜综合| 免费看日本二区| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 秋霞在线观看毛片| 亚洲最大成人中文| 免费av毛片视频| 99在线视频只有这里精品首页| 成人精品一区二区免费| 丰满的人妻完整版| 最近手机中文字幕大全| 午夜日韩欧美国产| 少妇被粗大猛烈的视频| 69av精品久久久久久| 久久久a久久爽久久v久久| 午夜福利高清视频| 99国产精品一区二区蜜桃av| 黄色欧美视频在线观看| 村上凉子中文字幕在线| 一级毛片我不卡| 观看免费一级毛片| 熟女电影av网| www.色视频.com| 亚洲天堂国产精品一区在线| 精品久久久久久久久久久久久| 真人做人爱边吃奶动态| 黄色一级大片看看| 亚洲av五月六月丁香网| 亚洲国产高清在线一区二区三| 99国产极品粉嫩在线观看| 又粗又爽又猛毛片免费看| 少妇被粗大猛烈的视频| 久久久成人免费电影| 97在线视频观看| 99国产精品一区二区蜜桃av| 精品人妻熟女av久视频| 一边摸一边抽搐一进一小说| 夜夜夜夜夜久久久久| 日韩成人伦理影院| 人人妻人人澡欧美一区二区| 亚洲性夜色夜夜综合| 能在线免费观看的黄片| 大又大粗又爽又黄少妇毛片口| 国产精品亚洲一级av第二区| 久久99热这里只有精品18| 美女xxoo啪啪120秒动态图| 91久久精品国产一区二区成人| 99在线视频只有这里精品首页| 欧美中文日本在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 人妻制服诱惑在线中文字幕| 久久精品人妻少妇| 国产伦精品一区二区三区视频9| 欧美性感艳星| 色视频www国产| av黄色大香蕉| 老熟妇仑乱视频hdxx| 一夜夜www| 日本一本二区三区精品| 欧美bdsm另类| 最近2019中文字幕mv第一页| 国产老妇女一区| 91久久精品国产一区二区三区| 晚上一个人看的免费电影| 黄色日韩在线| 18禁在线播放成人免费| 联通29元200g的流量卡| 亚洲自拍偷在线| 男插女下体视频免费在线播放| 国产精品不卡视频一区二区| 波多野结衣高清作品| 麻豆乱淫一区二区| 国产亚洲精品久久久久久毛片| 国产av不卡久久| 亚洲精品456在线播放app| 99视频精品全部免费 在线| 中文字幕熟女人妻在线| 夜夜夜夜夜久久久久| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 久久久精品大字幕| 99久久精品热视频| 91精品国产九色| 免费在线观看影片大全网站| 最近视频中文字幕2019在线8| 亚洲美女搞黄在线观看 | 97热精品久久久久久| 午夜免费男女啪啪视频观看 | 别揉我奶头 嗯啊视频| 99久久久亚洲精品蜜臀av| 美女xxoo啪啪120秒动态图| 中文在线观看免费www的网站| 国产男靠女视频免费网站| 一区二区三区免费毛片| 国产伦一二天堂av在线观看| 日日撸夜夜添| 亚洲精品456在线播放app| 不卡一级毛片| 男女视频在线观看网站免费| 两性午夜刺激爽爽歪歪视频在线观看| 女生性感内裤真人,穿戴方法视频| 特大巨黑吊av在线直播| 欧美+亚洲+日韩+国产| 中国美女看黄片| 亚洲中文日韩欧美视频| 香蕉av资源在线| 少妇熟女欧美另类| 国产免费一级a男人的天堂| 观看美女的网站| 精品午夜福利视频在线观看一区| 尾随美女入室| 欧美+亚洲+日韩+国产| 亚洲自偷自拍三级| 狂野欧美白嫩少妇大欣赏| 中文资源天堂在线| 国产女主播在线喷水免费视频网站 | 干丝袜人妻中文字幕| 99久久精品一区二区三区| 又黄又爽又免费观看的视频| 国产乱人视频| 国产av不卡久久| 欧美色视频一区免费| 久久久久久久亚洲中文字幕| 大香蕉久久网| eeuss影院久久| 欧美xxxx黑人xx丫x性爽| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费| 日韩欧美免费精品| 色尼玛亚洲综合影院| 欧美日韩一区二区视频在线观看视频在线 | 一级黄片播放器| 欧美一级a爱片免费观看看| 国产熟女欧美一区二区| 十八禁网站免费在线| 春色校园在线视频观看| 尤物成人国产欧美一区二区三区| 成年版毛片免费区| 日本五十路高清| 噜噜噜噜噜久久久久久91| 久久精品夜色国产| 日韩在线高清观看一区二区三区| 少妇人妻一区二区三区视频| 美女xxoo啪啪120秒动态图| 欧美丝袜亚洲另类| 国产视频一区二区在线看| 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| 一区福利在线观看| 如何舔出高潮| 精品人妻视频免费看| 久久国内精品自在自线图片| 三级经典国产精品| 校园人妻丝袜中文字幕| 国产在线男女| 国国产精品蜜臀av免费| 国内精品久久久久精免费| 日韩精品有码人妻一区| 精品日产1卡2卡| 日本五十路高清| 亚洲国产精品成人久久小说 | 久久精品国产亚洲av香蕉五月| 99热这里只有是精品在线观看| 国产老妇女一区| 国产高清有码在线观看视频| 波多野结衣巨乳人妻| 亚州av有码| 国产91av在线免费观看| 日本与韩国留学比较| 日韩 亚洲 欧美在线| 亚洲人成网站在线播放欧美日韩| 69av精品久久久久久| 日日摸夜夜添夜夜添av毛片| 激情 狠狠 欧美| 国产欧美日韩精品一区二区| 床上黄色一级片| 天堂影院成人在线观看| 久久久久久伊人网av| 色av中文字幕| 在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 老熟妇仑乱视频hdxx| 美女cb高潮喷水在线观看| 国产黄片美女视频| 日日干狠狠操夜夜爽| 尾随美女入室| 免费大片18禁| 中国美白少妇内射xxxbb| 国产精品日韩av在线免费观看| 尤物成人国产欧美一区二区三区| 亚洲综合色惰| 中文在线观看免费www的网站| 日本 av在线| 99热这里只有是精品在线观看| 日本免费一区二区三区高清不卡| 欧美xxxx黑人xx丫x性爽| 国产伦精品一区二区三区四那| 精品人妻视频免费看| av在线天堂中文字幕| 国产 一区 欧美 日韩| 日韩一本色道免费dvd| 97在线视频观看| 免费看av在线观看网站| 天天一区二区日本电影三级| 国产 一区精品| 少妇裸体淫交视频免费看高清| 美女 人体艺术 gogo| 国产午夜精品论理片| 日韩制服骚丝袜av| 最近2019中文字幕mv第一页| 人妻制服诱惑在线中文字幕| www.色视频.com| 禁无遮挡网站| 大又大粗又爽又黄少妇毛片口| 村上凉子中文字幕在线| 色播亚洲综合网| 免费人成在线观看视频色| 村上凉子中文字幕在线| 卡戴珊不雅视频在线播放| 欧美国产日韩亚洲一区| 日本黄大片高清| 欧美性猛交╳xxx乱大交人| 亚洲美女搞黄在线观看 | 别揉我奶头 嗯啊视频| 欧美bdsm另类| 欧洲精品卡2卡3卡4卡5卡区| 国产成人91sexporn| 久久精品国产亚洲av天美| 一级a爱片免费观看的视频| 欧美中文日本在线观看视频| 欧美日韩精品成人综合77777| 亚洲精品456在线播放app| 色在线成人网| 成熟少妇高潮喷水视频| 国产伦精品一区二区三区视频9| 精品99又大又爽又粗少妇毛片| 欧美日韩在线观看h| 久久久久性生活片| 精品人妻视频免费看| 国产单亲对白刺激| 男人舔女人下体高潮全视频| 在线播放国产精品三级| 免费不卡的大黄色大毛片视频在线观看 | 人人妻,人人澡人人爽秒播| 亚洲国产色片| 久久热精品热| 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 成人性生交大片免费视频hd| 波多野结衣高清无吗| 欧美xxxx性猛交bbbb| 国产三级中文精品| 99热全是精品| 亚洲成人精品中文字幕电影| 99久国产av精品| 黄片wwwwww| 欧美另类亚洲清纯唯美| 久久久久久久久大av| 久久久久精品国产欧美久久久| 久久久久久久久大av| 老师上课跳d突然被开到最大视频| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 色哟哟·www| 中文字幕av在线有码专区| 97在线视频观看| 欧美高清成人免费视频www| 乱人视频在线观看| 国产免费男女视频| av视频在线观看入口| 免费无遮挡裸体视频| 久久天躁狠狠躁夜夜2o2o| 免费黄网站久久成人精品| 三级男女做爰猛烈吃奶摸视频| 变态另类丝袜制服| 蜜桃久久精品国产亚洲av| 天天躁夜夜躁狠狠久久av| 亚洲aⅴ乱码一区二区在线播放| 免费观看精品视频网站| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 国产伦精品一区二区三区视频9| 亚洲av免费高清在线观看| 国产探花极品一区二区| 免费av毛片视频| 国产中年淑女户外野战色| 国产黄片美女视频| 亚洲精品色激情综合| 免费在线观看成人毛片| 国产精品1区2区在线观看.| 国产精品精品国产色婷婷| 国产91av在线免费观看| ponron亚洲| 在线观看美女被高潮喷水网站| 精品久久久久久成人av| 国产乱人视频| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 亚洲欧美成人综合另类久久久 | 成人国产麻豆网| 国产精品一二三区在线看| 欧美一区二区精品小视频在线| 亚洲精品国产av成人精品 | 18禁在线无遮挡免费观看视频 | 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 亚洲综合色惰| 别揉我奶头 嗯啊视频| 欧美日本亚洲视频在线播放| 国产人妻一区二区三区在| 国产高清不卡午夜福利| 国产精品免费一区二区三区在线| 精品人妻熟女av久视频| 不卡一级毛片| 亚洲欧美日韩卡通动漫| 欧美绝顶高潮抽搐喷水| 偷拍熟女少妇极品色| 精品久久久久久久人妻蜜臀av| 国产av不卡久久| 亚洲人成网站高清观看| 日韩制服骚丝袜av| 国产精品久久电影中文字幕| 婷婷色综合大香蕉| 一进一出抽搐动态| 久久热精品热| 国产麻豆成人av免费视频| 久久精品国产亚洲av香蕉五月| 美女大奶头视频| 国产精品伦人一区二区| 波多野结衣高清无吗| 非洲黑人性xxxx精品又粗又长| 小说图片视频综合网站| 国产成人影院久久av| 在线a可以看的网站| 欧美成人a在线观看| 国产精品乱码一区二三区的特点| 观看美女的网站| 内射极品少妇av片p| 亚洲七黄色美女视频| 搞女人的毛片| or卡值多少钱| 看片在线看免费视频| 久久人人爽人人爽人人片va| 男女那种视频在线观看| 婷婷色综合大香蕉| 欧美中文日本在线观看视频| 日韩精品青青久久久久久| 1024手机看黄色片| 身体一侧抽搐| 最近在线观看免费完整版| 国产亚洲精品久久久久久毛片| 久久韩国三级中文字幕| 国产伦在线观看视频一区| АⅤ资源中文在线天堂| 亚洲精品乱码久久久v下载方式| 美女免费视频网站| 校园春色视频在线观看| 久久精品久久久久久噜噜老黄 | 人人妻人人澡人人爽人人夜夜 | 久久99热6这里只有精品| 国产老妇女一区| 淫秽高清视频在线观看| 国产在视频线在精品| 亚洲成人精品中文字幕电影| 久久久色成人| 在线a可以看的网站| 亚洲婷婷狠狠爱综合网| 网址你懂的国产日韩在线| 狠狠狠狠99中文字幕| 成人高潮视频无遮挡免费网站| 日韩成人av中文字幕在线观看 | 亚洲自拍偷在线| aaaaa片日本免费| 2021天堂中文幕一二区在线观| a级毛片a级免费在线| 免费看av在线观看网站| 九九爱精品视频在线观看| 国产成人91sexporn| 亚洲人成网站高清观看| 国产精品三级大全| 日韩在线高清观看一区二区三区| 综合色丁香网| 亚洲经典国产精华液单| 亚洲五月天丁香| 亚洲第一区二区三区不卡| 午夜爱爱视频在线播放| 嫩草影视91久久| 久久精品国产亚洲网站| 最好的美女福利视频网| 精品午夜福利视频在线观看一区| 在线观看一区二区三区| 日本在线视频免费播放| 亚洲av.av天堂| 中文在线观看免费www的网站| 少妇的逼好多水| 中文字幕av在线有码专区| 免费观看人在逋| 变态另类成人亚洲欧美熟女| 男人和女人高潮做爰伦理| 22中文网久久字幕| 美女高潮的动态| 全区人妻精品视频| 男人和女人高潮做爰伦理| 欧美又色又爽又黄视频| 亚洲精品456在线播放app| 久久99热这里只有精品18| 国产色婷婷99| 综合色av麻豆| 日韩国内少妇激情av| 男女视频在线观看网站免费| 久久精品91蜜桃| 在线免费观看不下载黄p国产| 色在线成人网| 久久久久久久久久久丰满| 国产精品国产三级国产av玫瑰| 国产av麻豆久久久久久久| 久久久久久大精品| 天天一区二区日本电影三级| 成人无遮挡网站| 丝袜喷水一区| 高清日韩中文字幕在线| 日本一本二区三区精品| 久久精品影院6| 看黄色毛片网站| 嫩草影院新地址| 欧美不卡视频在线免费观看| 中国美女看黄片| 国产午夜福利久久久久久| 简卡轻食公司| 欧美又色又爽又黄视频| 成熟少妇高潮喷水视频| 日韩欧美三级三区| 国产av麻豆久久久久久久| 欧美性猛交╳xxx乱大交人| 久久鲁丝午夜福利片| 一级毛片我不卡| 22中文网久久字幕| 免费看av在线观看网站| 少妇丰满av| 观看免费一级毛片| 国产男人的电影天堂91| a级一级毛片免费在线观看| 国产精品精品国产色婷婷| 亚洲欧美日韩东京热| 久久天躁狠狠躁夜夜2o2o| 国产午夜福利久久久久久| 国产精品美女特级片免费视频播放器| 日本五十路高清| 校园春色视频在线观看| 高清日韩中文字幕在线| 久久久精品大字幕| 亚洲精品国产成人久久av| 两性午夜刺激爽爽歪歪视频在线观看| 性插视频无遮挡在线免费观看| 一级黄色大片毛片| 精品一区二区三区视频在线| 国产男靠女视频免费网站| 色av中文字幕| 高清日韩中文字幕在线| 日韩一区二区视频免费看| 免费观看人在逋| 欧美最新免费一区二区三区| 欧美色视频一区免费| 自拍偷自拍亚洲精品老妇| 亚洲精品乱码久久久v下载方式| 亚洲自偷自拍三级| 久久久欧美国产精品| 一区二区三区四区激情视频 | 国产免费男女视频| 精品熟女少妇av免费看| 成人无遮挡网站| 我的老师免费观看完整版| 久久国内精品自在自线图片| 欧美一区二区精品小视频在线| 久久久久性生活片| 精华霜和精华液先用哪个| 国产v大片淫在线免费观看| av国产免费在线观看| 极品教师在线视频| 最新中文字幕久久久久| 乱码一卡2卡4卡精品| 97超视频在线观看视频| 观看免费一级毛片| 哪里可以看免费的av片| 在线国产一区二区在线| 国产精品爽爽va在线观看网站| 午夜视频国产福利| 超碰av人人做人人爽久久| 日韩精品中文字幕看吧|