• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing the hydration reactivity ofhemi-hydrate phosphogypsum through a morphology-controlled preparation technology☆

    2016-05-30 01:55:02LinYangJianxinCaoCaiyuLi

    Lin Yang ,Jianxin Cao *,Caiyu Li

    1 Schoolof Chemistry and ChemicalEngineering,Guizhou University,Guiyang 550025,China

    2 College ofResource and EnvironmentalEngineering,Guizhou University,Guiyang 550025,China

    3 Guizhou Key Laboratory for Green Chemicaland Clean Energy Technology,Guiyang 550025,China

    1.Introduction

    Wet-process phosphoric acid is an intermediate for producing phosphorus-containing fertilizers.When producing 1 ton of orthophosphoric acid in wet-process phosphoric acid,approximately 5 tons ofby-products are formed,including CaSO4·2H2O,CaSO4·0.5H2O,and CaSO4phosphogypsum[1].With the rapid development of the phosphate fertilizer industry,the output of phosphogypsum has exhibited a trend toward rapid growth.Over 22 million tons ofphosphogypsum are produced annually across China.In 2010,the totalgenerated phosphogypsum in China reached over 100 million tons[2].At present,only 15%of worldwide phosphogypsum production has been used to manufacture building materials,agriculturalfertilizers,soilstabilization amendments,Portland cement retarder,and sulfate acid[3–8].Most phosphogypsum piled up and occupied considerable land resources,which eventually led to serious environmentalcontamination.

    Hemi-hydrate phosphogypsum(HPG)is obtained during the hemihydrate process ofwet-process phosphoric acid[9,10].The main mineral composition ofHPGis type-αhemi-hydrated gypsum(α-HH)thatcorresponds to the gypsumbinding material.Thus,HPGcan be used to produce building materials and gypsumproducts.However,the low hydration reactivity of HPG leads to poor gelling strength,which causes production enterprises to discard HPG.Consequently,the surrounding environment is polluted by this substance[11].Therefore,a research that aimed to enhance the hydration reactivity of HPG could provide considerable practicalvalues to realize resource utilization of HPG.The hydration reaction ofHPGis characterized by a phase transition fromα-HHto dihydrate gypsum.The description ofwater channeloccupation and space group in the crystalstructure ofα-HH has been reported in the literature[12,13].According to severalstudies,α-HHhas a honeycomb-shaped channelstructure.These honeycomb-shaped channels are partly occupied by x H2O(0<x<0.8)[14,15];hence,channels with a diameter ofapproximately 0.03(i.e.,waterchannels)are formed in the honeycomb-shaped channels,through which water molecules from the outside can enterα-HH crystal inside and then hydrate into dihydrate gypsum.In this manner,α-HHcan completely hydrate within a short period[16].

    Many in fluencing factors,such as speci fic surface area and residual phosphorus acid content,play a role in the hydration reactivity of HPG.According to dissolution–crystallization theory,the hydration reactivity of HPG simultaneously increases with speci fic surface area and decreases with residualphosphorus acid content[17].However,in the hemi-hydrate process of wet-process phosphoric acid,the crystalsize of HPG should be generally big,and residualphosphorus acid content should be reduced to improve the filtration strength and recovery rate ofphosphoric acid[18,19].Accordingly,a criticalmethod thatenhanced the hydration reactivity ofHPGby increasing the number ofwaterchannels without considering the increase in its speci fic surface area was proposed.The distribution ofwater channels was eventually re flected on the crystalmorphology;hence,a study on the crystalmorphology ofα-HH was meaningfulto testits in fluence on hydration reactivity.

    In the present study,we theoretically analyzed the distribution of water channels in the crystal morphology ofα-HH,compared the difference in hydration reactivity between industrial HPG and type-α high-strength gypsum,and prepared different crystalmorphologies of HPG in the experiment.Through the contrast between the crystalmorphology and hydration apparentactivation energy of HPG,we could investigate the role of water channels in hydration and provide a theoreticalbasis for the type of HPG morphology that should be controlled in the hemi-hydrate process ofwet-process phosphoric acid to enhance hydration reactivity.

    2.Experimental

    2.1.Materials

    Industrial HPG was obtained from a phosphoric acid plant in Guizhou Province.The chemicalcomposition(calculated for the dry product)was(wt%):CaO 34.16,SO349.81,Fe2O30.05,Al2O30.35,MgO 0.59,SiO24.75,total F 0.70,water-soluble F 0.25,total P2O51.18,water-soluble P2O50.40,and crystal water 7.75.The speci fic surface area determined using the Blaine method was 330 m2·kg-1.

    Type-αhigh-strength gypsum was obtained from Hubei Province.The chemicalcomposition(calculated for the dry product)was(wt%):CaO 37.12,SO351.34,SiO21.75,MgO 1.09,and crystalwater 6.51.The speci fic surface area determined using the Blaine method was 342 m2·kg-1.

    Apatite powders were collected from a phosphoric acid plantin Guizhou Province.The chemicalcomposition(calculated for the dry product)was(wt%):SiO26.29,Fe2O30.31,Al2O30.23,CaO 49.63,MgO 1.04,SO30.67,P2O535.05,F 2.57,and acid non-soluble substance 6.05.The speci fic surface area determined using the Blaine method was 151 m2·kg-1.

    Phosphoric acid(wt%P2O585)and sulfuric acid(wt%H2SO498)were of reagent grade and purchased from Sinopharm Chemical Reagent Co.,Ltd.

    2.2.Experimentmethods

    2.2.1.Theoreticalcalculation ofα-HHgrowth morphology and the distribution ofwater channels

    A single-crystalstructure ofα-HH was obtained from the American Mineralogist Crystal Structural Database.The molecular mimicry software Material Studio[20]was used to build a unit cellstructure ofα-HH.The attachment energy(AE)method regards the growth rate of crystalsurface increases with the attachment energy ofcrystalsurface increase in the crystal growth process;thus,the theoretical growth morphology of the crystalcan be calculated[21].Therefore,we selected the AE morphology module of the molecular mimicry software Material Studio to forecast the growth morphology ofα-HH crystal.Different force fields such as COMPASS,pcff,and cvffwere setasinitialforce fields ofsingle-crystalstructure ofα-HH.

    To investigate the distribution ofwater channels in various crystal planes,3D modeling extended the single-crystalcellstructure ofα-HH to obtain the super cellstructure based on its symmetry×,which was then carved to obtain the planes with slices measuring 2.0 nm thick.

    2.2.2.Measuring hydration reactivity

    Hydration reactivity was characterized by the hydration rate of the hemi-hydrate gypsum.In order to eliminate the effect of watersoluble impurities such as phosphorus and fluorine of industrial HPG on the hydration reactivity,hot water at 90°C was used to wash the industrial HPG untilthe solution was tested to be neutral.The residues were then dried and set as industrial HPG samples.

    The samples were mixed with double pure water(calculated by mass ratio)and placed into a 250 ml Erlenmeyer flask.Thermostatic water bath oscillator was used to maintain the reaction temperature at 20°C.Stirring speed was 100 r·min-1.At a designated time,the samples were removed and filtered;the residues were placed into the vacuum drying oven(temperature 60°C,vacuity 60 kPa)to keep them dry after they were washed with absolute ethylalcohol.When the mass of the residues became constant,the preparation of the hydration samples was finished.The hydration rate was calculated using Eq.(1):

    whereαrefers to the hydration rate,w1and w2represent the crystal water content of the samples before and after hydration,respectively(calculation method refers to GB/T 5484-2000),MH2Orefers to the molecular weight of H2O,MCaSO4×0.5H2Orefers to the molecular weight of hemi-hydrate calcium sulfate,andεindicates the hemi-hydrate gypsum content of industrial HPG or type-αhigh-strength gypsum samples(calculated in the manner of building gypsum phase distribution GB/T 9776-2008).

    2.2.3.Preparing HPG

    The following solutions were prepared:Solution(a):36 wt%P2O5and Solution(b):98 wt%H2SO4.Then,2055 g of Solution(a),315 g of apatite powders,and 288 g of Solution(b)were obtained.

    A smallamount of Solution(b)(calculated by the concentration of liquid-phase SO42-)was poured into Solution(a).The mixed solution with different concentrations of liquid phase SO42-was then placed in a cylindricalreactor(40 cm high,25 cm inside diameter)and heated to 95°C using a thermostatically controlled oilbath.Apatite powders were then slowly and evenly added into the cylindricalreactor within 30 min and stirred at a speed of 135 r·min-1.The remaining Solution(b)was poured into the cylindrical reactor using a separating funnel at a dropping speed of 4.5 g·min-1.After 150 min of allowing crystals to grow,the slurry was filtered to obtain the filtrate,which was the finishing phosphoric acid.The residues were repeatedly washed with 90°C water untilthe washing solution was tested to be neutral.The residues were then dried in a 60°C±1°C oven untiltheir weightwas constant.HPG was produced.

    2.2.4.Calculating hydration apparentactivation energy

    Experimentmethod(Section 2.2.2)was adopted to test the hydration rate of HPG under different temperatures:20,30,and 40°C.The least square method of the Avramicrystallization kinetic equation was used to launch a fitting toward the relation curve between the hydration rate of HPG and the change in hydration time.The Avramicrystallization kinetic equation is shown in Eq.(2):

    where t refers to the hydration time,Z refers to the composite crystallization rate constant,αrefers to the hydration rate that corresponds to the hydration time,and n refers to the Avramiparameter.

    Eq.(2)was transformed into a linear equation,i.e.,Eq.(3):

    Plotting ofln[-ln(1-α)]againstlntgives a straightline with slope n and intercept ln Z.

    The calculation of the hydration apparent activation energy of HPG was based on the Arrhenius equation,as shown in Eq.(4):

    where A refers to the pre-exponentialfactor,Earefers to the hydration apparentactivation energy,R refers to the constant8.314 J·mol-1·K-1,and T refers to the thermodynamic temperature.

    Consequently plotting of ln Z against-1/T gives a straight line with slope Ea/R and interceptln A.We could determine Ea,which is the hydration apparent activation energy of HPG.

    2.2.5.Characterization

    The morphology and particle size of the samples were observed using a scanning electron microscope(SEM,ΣIGMA)and the image analysis software SmartTiff.The crystalstructure of the samples was analyzed via X-ray diffraction(XRD,XPert Powder),and the scanning range 2θ was from 10°to 90°.

    3.Results and Discussion

    3.1.Correlation betweenα-HH morphology and water channels

    XRD patterns ofsingle-crystalstructure ofα-HH(0019827[13]),industrialHPGand type-αhigh-strength gypsumare shown in Fig.1.Itcan be seen that the XRD pattern of the single-crystal structure ofα-HH matches those oftype-αhigh-strength gypsumand industrialHPG.Itindicates thatthe selected single-crystalmodelofα-HHis appropriate.The cellparameters ofα-HHare as follows:space group I2,a=1.20275 nm,b=0.69312 nm,c=1.26919 nm,β =90.18°and Z=12.

    Fig.1.XRD patterns ofsingle-crystalstructure ofα-HH,industrialHPG and type-α highstrength gypsum.

    Fig.2.Unit cellstructure ofα-HH.The colors indicate:green—Ca,yellow—S,red—O,and white—H.The black dash line indicates water channel.1?=0.1 nm.

    The unit cellstructure ofα-HHis shown in Fig.2.12 SO42-,12 Ca2+,and 6 H2O molecules are found in the single-crystalcell.A long chain is constructed by the tetrahedron of SO42-and Ca2+along the z-axis.A honeycombed tunnel with a diameter of 0.5517 nm is constructed using 6 SO42-–Ca2+–SO42-long chains,which is filled with H2O molecules with a length of0.1732 nm and form a channelwith a diameter of 0.3785 nm.This channelallows water molecules from the outside to pass freely;thus,α-HH can easily transform into dihydrate gypsum.

    Table 1 summarizes the comparison of the optimized values ofα-HH unitcellparameters in differentforce fields with the experimentvalues.It shows thatthere are minimum deviation values ofα-HHunitcellparameters using the force field COMPASS as the initialforce field.So the force field COMPASS is a suitable force filed to forecastthe growth morphology ofα-HH crystalusing AE model.

    Fig.3 shows the prediction ofα-HH growth morphology using AE model.It can be seen that the growth morphology ofα-HH is a fourfaced bipyramid short column constructed with 12 crystal planes.Among which,crystalclusters{1 0-1},{101}form the four cylinders ofα-HH crystal,whereas crystal clusters{011},{0-1 1},{110},and{1-1 0}form its conicalsurfaces.

    Attachment energy and area ofgrowth surfaces ofα-HH crystalare displayed in Table 2.Crystalcluster{101}comprises the largest crystal plane area,which accounts for 35.107%.The crystal plane area of{1 0-1}accounts for 33.133%.The crystalplane area of{011}is equal to that of{0–11},which accounts for 7.467%,whereas the crystal plane area of{110}is equal to that of{1-1 0},which accounts for 8.413%.It indicates thatthe growth rates ofcrystalclusters{101}and{1 0-1}ofα-HH are litter than those of other crystalclusters.

    The crystalsurface structures ofα-HH projected along the[001]direction are shown in Fig.4.Cylinders(101),(1 0-1)and conicalsurfaces(011),(0-1 1)form an angle with the water channels,and approximately three water channels are observed.Because conical surfaces(110),(1-1 0)are parallelwith the water channels,no water channel exists on these surfaces.It indicates that water molecules from the outside can only enter theα-HH crystalinside and then hydrate into dihydrate gypsum along the water channels in the four cylinders and the two conicalsurfaces{011},{0-1 1}.By contrast,water molecules from the outside cannotenterthe crystalinside from the two conicalsurfaces{110},{1-1 0}.Thus,the exposures of the cylinders ofα-HHcrystal are positive to hydration reactivity,whereas the exposures of the conical surfaces parallelto the z-axis are negative to hydration reactivity.

    3.2.Comparison ofhydration reactivity and structure between industrial HPG and type-αhigh-strength gypsum

    The hydration rates ofindustrialHPGand type-αhigh-strength gypsum under differenthydration times are shown in Fig.5.The hydration rate of type-αhigh-strength gypsum reaches about 74.72%within 15 min,and its complete hydration is achieved within 60 min.However,the hydration rate ofindustrial HPG is only about 2.76%within 15 min and reaches about 14.36%within 480 min.It can be concluded that the hydration reactivity oftype-αhigh-strength gypsum is considerably higher than that ofindustrial HPG.

    Fig.6 shows the SEMimages ofindustrialHPG.Itcan be seen thatindustrialHPGis made ofirregular oriented crystals ofschistose shape.As shown in Position a in Fig.6,only two cylinders ofindustrialHPGare uncovered.Meanwhile,Position b in Fig.6 shows an obvious embossment of the conical surface.SEM image of type-αhigh-strength gypsum is shown in Fig.7.It can be seen that type-αhigh-strength gypsum has stumpy crystals with 20–40 μm long and length-to-diameter ratios of 2–3:1.In addition,Fig.7 shows thatcylinders of the crystalclearly appear,whereas the conicalsurfaces of the crystalare unapparent.

    Analyzing the XRD pattern enables us to observe the interior structure of the crystal.As shown in Fig.1,the main mineralin both industrial HPG and type-αhigh-strength gypsum is hemi-hydrated gypsum.However,industrialHPGalso contains a smallamountofdihydrate gypsum and quartz.The rank of the diffraction peak strength of type-α high-strength gypsum is(400)>(200)>(310)>(114),which determines the more complete growth of the cylinders compared with thatof the conicalsurfaces.Nevertheless,the decrease in diffraction peak of(400)and(200)in industrial HPG,as wellas the increase in diffraction peak of(310)and(114),indicates thatthe decrease of the crystalcylinders of industrial HPG will allow the conical surfaces to grow better(shown in Fig.6).

    Table 1 Comparison of the optimized values ofα-HH unit cellparameters with the experiment values

    Fig.3.The prediction ofα-HH growth morphology using AE model.

    These data above indicate thatthe increase in exposure degree of the crystalcylinders makes the hydration reactivity oftype-αhigh-strength gypsum considerably above that ofindustrial HPG.It can also be certificated thatwaterchannels are mainly distributed in the crystalcylinders ofα-HH.This finding agrees with the theoreticalcalculations.Therefore,an effective means to enhance the hydration reactivity ofindustrialHPG is to change its crystalmorphology to uncover its crystalcylinders,and thus,increase the number ofits water channels.

    3.3.Morphology controlofHPG

    HPG1 and HPG2 with different crystalmorphologies were prepared by using the following respective concentrations ofliquid-phase SO42-in the mixed solution:20 mg·ml-1and 40 mg·ml-1[22].

    The SEMimages of HPG1 and HPG2 are shown in Fig.8.When concentration ofliquid-phase SO42-is 20 mg·ml-1,HPG1 has stumpy crystals with 5–15 μm long and length-to-diameter ratios of3–5:1.When concentration of liquid-phase SO42-is increased to 40 mg·ml-1,HPG2 is made ofirregular schistose crystals which appear a smallamount of crystalcylinders and become the length-to-diameter ratios less than 1.

    The XRDpatterns ofHPG1 and HPG2 are shown in Fig.9.The diffraction peak intensities of(200)and(400)in HPG2 are lowerthan those in HPG1,whereas the diffraction peak intensities of(310)and(114)in HPG2 are higher than that in HPG1.The result indicates that the length ofcrystalcylinders of HPG is reduced,and conicalsurfaces are prone to appear with the increase in liquid-phase SO42-concentration.

    When preparing HPG,apatite powders were poured into the mixed solution ofphosphoric acid and sulfuric acid,which caused the reaction system to exhibitthe decomposition course ofapatite powders and the crystallization process of HPG.The reaction formulas about the reaction ofapatite powders with phosphoric acid and sulfuric acid are as follows in Eqs.(5)and(6):

    Crystallization ofα-HHcan be identi fied two time regions:a period for the crystalnucleus formation and a crystalgrowth period[23].Thus when the mixed solution is saturated with respect to Ca2+and SO42-ions,this saturated solution becomes supersaturated with respect to α-HH leading to nucleation and crystal growth.After a nucleus has been formed,growth occurs via advancing monolayer steps,predominantly parallelto{1 0-1}and{101}.The step velocity of{110}and{1-1 0}steps are higher,relative to{1 0-1}and{101}steps,which is a result ofa stump shape ofα-HH crystal(seen in Table 2 and Fig.3).

    During the preparation of HPG,the different concentrations of liquid-phase SO42-changed the supersaturation and crystalsurfaces growth rate ofα-HH;thus crystal morphology ofα-HH varied from each other with the change in concentration of liquid-phase SO42-.When the concentration of liquid-phase SO42-was 20 mg·ml-1in initialreaction system,SO42-ions reacted with Ca2+ions to produce a smallquantity ofα-HH,which caused supersaturation ofα-HH to decline.A small number of growth units SO42-and Ca2+ions were superimposed on the crystalclusters ofα-HH,which caused the crystal grains ofα-HH to become small.After the restof the sulfuric acid was poured into the mixed solution,the supersaturation and crystalsurfaces growth rate ofα-HH increased with the concentration ofliquid-phase SO42-increase.Many growth units SO42-and Ca2+ions constantly were superimposed on the crystalclusters ofα-HH,which provided a good opportunity for the crystals to extend along crystalplane clusters{1 0-1}and{101}.Thus the crystalcylinders ofα-HH appear and then the crystal growth morphology eventually present a stumpy shape(seen in Fig.8(a)).

    Table 2 Attachment energy and area ofgrowth surfaces ofα-HH crystal

    Fig.4.Crystalsurface structures ofα-HH projected along the[001]direction.The colors indicate:green—Ca,yellow—S,red—O,and white—H.The black dash line indicates water channel.

    However,when the concentration of liquid-phase SO42-was increased to 40 mg·ml-1,the supersaturation ofα-HH was higher than that ofα-HH in initial reaction system with the concentration of liquid-phase SO42-at20 mg·ml-1.Thus the crystalparticles ofα-HHbecame larger and more easily deposited on the surfaces of apatite particles.The decomposition reaction rate of apatite particles was retarded byα-HH crystals,which caused the concentration ofliquid-phase Ca2+to decrease.Simultaneously,the remaining amount ofsulfuric acid was reduced.The supersaturation and crystalsurfaces growth rate ofα-HH decreased;hence,a smallnumber of growth units SO42-and Ca2+ions were superimposed on the crystalclusters{1 0-1}and{101}ofα-HH,which caused dif ficulty for the crystalcylinders to appear.Therefore,schistose crystals ofα-HH are presented(seen in Fig.8(b)).Based on the aforementioned experimental results,a schematic illustration of HPG morphologicalevolution under different concentrations ofliquidphaseis presented in Fig.10.

    Fig.5.The hydration rates of industrial HPG and type-αhigh-strength gypsum at hydration temperature 20°C.

    3.4.In fluence of crystal morphology on hydration apparent activation energy

    Fig.6.SEMimages ofindustrialHPG.

    Fig.7.SEMimage oftype-αhigh-strength gypsum.

    The hydration rates of HPG1 and HPG2 at different hydration temperatures are shown in Fig.11.When hydration temperature is 20°C,the hydration rate of HPG1 reaches about 67.63%within 15 min and about 86.77%after 480 min of hydration.However,the hydration rate ofHPG2 is low,i.e.,only about19.86%after480 min ofhydration in 20°C water.The results indicate the hydration reactivity of HPG1 is considerably higher than that of HPG2.Fig.11 also shows that the hydration rates of HPG1 and HPG2 decrease with the rise ofhydration temperature,which exhibits a “negative temperature effect”.This is because the hydration ofα-HHis an exothermic reaction.Meanwhile,the supersaturation of theα-HH solution subsides when temperature increases[23,24].

    Hydration kinetics parameters and hydration apparentactivation energies ofHPG1 and HPG2 are displayed respectively in Tables 3 and 4.The strength rank of the hydration apparentactivation energies of HPG is as follows:|Ea(HPG2)|>|Ea(HPG1)|.Based on the activation energy criteria of chemicalreaction and diffusion control[25],E diffusion < 25.12 kJ·mol-1-<E chemical;hence,we can determine whether the hydration of HPG is controlled by chemicalreaction or diffusion.The hydration of HPG1 is controlled by diffusion,whereas the hydration of HPG2 is controlled by chemical reaction.This is because the number of water channels increases with the exposure degree of the crystalcylinders increase.Thus when the length-to-diameter ratio ofα-HH crystals is more than 1,the number of water channels in the crystal increases.Water molecules from the outside enter the crystalinside ofα-HH rapidly and hydrate into dihydrate gypsum;thus the velocity for hydration reactivity of HPG1 is higher than thatfor hydration products dihydrate gypsum diffusion.However,when the length-to-diameter ratio ofα-HHcrystals is less than 1,the numberofwater channels in the crystaldecreases.The velocity for hydration reactivity ofHPG2 is lower than thatfor hydration products dihydrate gypsum diffusion.

    Fig.8.SEMimages of HPG with different crystalmorphologies(a)HPG1,(b)HPG2.

    Fig.9.XRD patterns of HPG1 and HPG2.

    4.Conclusions

    Analysisofgrowth morphology ofα-HHhas shown thatwaterchannels are mainly distributed in the crystalcylinders,whereas no water channelexists in the conicalsurfaces parallelto the z-axis.

    The investigation ofmicro-morphology and hydration reactivity has proved thatthe exposure degree of the crystalcylinders ofα-HHdirectly affects the hydration reactivity of both industrial HPG and type-α high-strength gypsum.The exposures of the crystalcylinders ofα-HH are positive to hydration reactivity,whereas the exposures of the conicalsurfaces are negative to hydration reactivity.By adjusting the concentration ofliquid-phase SO42-makes possible to controlthe growth rate of the crystal cylinders ofα-HH and to obtain HPG having the stumpy crystals ofα-HHand high hydration reactivity.The appropriate concentration ofliquid-phase SO42-is 20 mg·ml-1for the crystallization process of HPG.

    Nomenclature

    Subscripts

    Table 3 Hydration kinetics parameters of HPG1and HPG2

    Table 4 Hydration apparent activation energies of HPG1and HPG2

    Fig.10.Schematic illustration of the HPG morphologicalevolution under different concentrations ofliquid-phase SO4 2-.

    Fig.11.The hydration rates of HPG at different hydration temperatures(a)HPG1,(b)HPG2.

    [1]S.V.Dorozhkin,Fundamentals of the wet-process phosphoric acid production.2.Kinetics and mechanism of CaSO4·0.5H2O surface crystallization and coating formation,Ind.Eng.Chem.Res.36(2)(1997)467–473.

    [2]J.Zhou,H.Gao,Z.Shu,Y.X.Wang,C.J.Yan,Utilization of waste phosphogypsum to prepare non-fired bricks by a novel hydration–recrystallization process,Constr.Build.34(3)(2012)114–119.

    [3]L.P.Ma,P.Ning,S.C.Zheng,X.K.Niu,W.Zhang,Y.L.Du,Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via a solid-state reaction,Ind.Eng.Chem.Res.49(8)(2010)3597–3602.

    [4]K.Sunil,A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development,Constr.Build.16(8)(2002)519–525.

    [5]W.G.Shen,G.J.Gan,R.Dong,H.Chen,Y.Tan,M.K.Zhou,Utilization of solidi fied phosphogypsum as Portland cement retarder,J.Mater.Cycles Waste 14(3)(2012)228–233.

    [6]S.Manjit,Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster,Cem.Concr.Res.33(9)(2003)1363–1369.

    [7]A.Samia,M.Tahar,S.Sami,Sulfate reduction from phosphogypsum using a mixed cultue of sulfate-reducing bacteria,Int.Biodeterior.Biodegrad.56(4)(2005)236–242.

    [8]O.Hentatia,N.Abrantesbd,A.L.Caetanocd,S.Bouguerraaef,F.Gongalvescd,J.R?mbkeg,R.Pereiraef,Phosphogypsum as a soilfertilizer:ecotoxicity of amended soiland elutriates to bacteria,invertebrates,algae and plants,J.Hazard.Mater.294(3)(2015)80–89.

    [9]T.T.Tjioe,H.V.D.Woude,J.Verbiest,P.F.M.Durvilie,G.M.V.Rosmalen,Cadmium incorporation in the crystallization of calcium sulfate hemihydrates from phosphoric acid,Cryst.Res.Technol.21(10)(1986)1287–1297.

    [10]S.V.Dorozhkin,Process ofepitaxialcrystalgrowth for CaSO4·0.5H2O on a surface of dissolving fluorapatite crystals studied scanning electron microscopy,Scanning 18(2)(1996)119–124.

    [11]Z.Valancius,D.Nizeviciene,V.Leskeviviene,N.Kybartiene,In fluence of the technological parameters on the structure and properties of hemi-hydrate phosphogypsum,Ceramics-Silikáty 49(2)(2005)120–125.

    [12]H.J.Kuzel,M.Hauner,Chemicaland crystallographic properties of calcium sulfate hemihydrate and anhydrite III,Zement-Kalp-Gips 40(12)(1987)628–632.

    [13]W.Abriel,R.Nesper,Bestimmung der kristallstruktur von CaSO4(H2O)0.5 mit r?ntgenbeugungsmethoden und mit potentialpro fil-rechnungen,Z.Kristallogr.-New Cryst.Struct.205(1–2)(1993)99–113(in German).

    [14]S.Follner,A.Wolter,A.Preusser,S.Indris,C.Silber,H.Follner,The setting behaviour ofα-andβ-CaSO4·0,5 H2O as a function ofcrystalstructure and morphology,Cryst.Res.Technol.37(10)(2002)1075–1087.

    [15]H.Schmidt,I.Paschke,D.Freyer,W.Voigt,Water channel structure of bassanite at high air humidity:Crystal structure of CaSO4·0.625H2O,Acta Crystallogr.B 67(6)(2011)467–475.

    [16]M.Triollier,B.Guilhot,The hydrate of calcium sulphate hemihydrate,Cem.Concr.Res.6(4)(1976)507–514.

    [17]N.B.Singh,B.Middendorf,Calcium sulphate hemihydrate hydration leading to gypsum crystallization,Prog.Cryst.Growth Charact.53(1)(2007)57–77.

    [18]I.V.Melikhov,I.E.Mikheeva,V.N.Rudin,Mechanism ofcrystallization ofcalcium sulfate hemihydrate under conditions modeling the production of phosphoric acid by the hemihydrate procedure,Theor.Found.Chem.Eng.19(6)(1985)467–473.

    [19]P.Z.Wu,The Wet-Process Phosphoric Acid,first ed.Chemical Industry Press,China,1987.

    [20]Material studio 6.5,Discover/Accelrys Softwrae Inc.,San Diego,California,USA,2007.

    [21]P.Hartman,P.Bennema,The attachment energy as a habit controlling factor theoreticalconsiderations,J.Cryst.Growth 49(1)(1980)145–156.

    [22]L.Yang,J.X.Cao,Y.M.Liu,Study on in fluence of the crystalline,morphology and cementitious properties of hemi-hydrate phosphogypsum,J.Synth.Cryst.44(9)(2015)2460–2467(in chinese).

    [23]X.Q.Wu,S.T.Tong,B.H.Guan,Z.B.Wu,Transformation of flue-gas-desulfurization gypsum toα-hemihydrated gypsum in salt solution at atmospheric pressure,Chin.J.Chem.Eng.19(2)(2011)349–355.

    [24]R.Z.Yuan,Cementitious Materials Science,second ed.Wuhan University ofTechnology Press,China,1996.

    [25]H.Y.Qian,S.Y.Li,M.Deng,S.M.Zhang,Hydration dynamic oflight-burned magnesia,Ind.Miner.Process.36(12)(2007)1–4(in Chinese).

    免费高清在线观看视频在线观看| 午夜视频国产福利| 卡戴珊不雅视频在线播放| 黄色怎么调成土黄色| 成人特级av手机在线观看| 日本av手机在线免费观看| 中文乱码字字幕精品一区二区三区| 国产成人aa在线观看| 亚洲欧美中文字幕日韩二区| 久久午夜福利片| 国产日韩一区二区三区精品不卡 | 日韩亚洲欧美综合| 国产男女内射视频| 日日爽夜夜爽网站| 日韩一区二区三区影片| 国产精品久久久久久久久免| 久久午夜福利片| 国产精品无大码| 如日韩欧美国产精品一区二区三区 | 最近中文字幕高清免费大全6| 久久人人爽人人片av| 99久久人妻综合| 高清在线视频一区二区三区| 日韩亚洲欧美综合| 99九九在线精品视频 | 丝瓜视频免费看黄片| 亚洲精品国产av蜜桃| 最近2019中文字幕mv第一页| 99久国产av精品国产电影| 少妇熟女欧美另类| 亚洲av在线观看美女高潮| 日本黄色片子视频| 国产成人免费无遮挡视频| 国产亚洲午夜精品一区二区久久| 18禁裸乳无遮挡动漫免费视频| 久久久久人妻精品一区果冻| 97精品久久久久久久久久精品| 成人综合一区亚洲| 91午夜精品亚洲一区二区三区| 啦啦啦在线观看免费高清www| 久久精品久久精品一区二区三区| 啦啦啦中文免费视频观看日本| 国产精品无大码| 夜夜看夜夜爽夜夜摸| .国产精品久久| 中文资源天堂在线| 亚洲第一av免费看| 观看免费一级毛片| 狠狠精品人妻久久久久久综合| 三级国产精品片| av不卡在线播放| 成年人午夜在线观看视频| 少妇熟女欧美另类| a级毛色黄片| 99久国产av精品国产电影| 老司机亚洲免费影院| 美女福利国产在线| 一本一本综合久久| 久久6这里有精品| 久久ye,这里只有精品| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产成人久久av| 观看美女的网站| 国产精品人妻久久久影院| 国产黄色免费在线视频| 国产精品偷伦视频观看了| 纵有疾风起免费观看全集完整版| 在线天堂最新版资源| 插逼视频在线观看| 免费av不卡在线播放| 九九在线视频观看精品| 亚洲中文av在线| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产精品999| 黄色欧美视频在线观看| 中文字幕亚洲精品专区| 老女人水多毛片| 日日摸夜夜添夜夜添av毛片| 久久精品熟女亚洲av麻豆精品| 亚洲av综合色区一区| 大话2 男鬼变身卡| 全区人妻精品视频| 91精品一卡2卡3卡4卡| 国产午夜精品一二区理论片| 亚洲在久久综合| 亚洲性久久影院| 老司机影院毛片| 一级毛片黄色毛片免费观看视频| 日本黄色日本黄色录像| 大香蕉久久网| 久久女婷五月综合色啪小说| 女人久久www免费人成看片| 日本黄色日本黄色录像| 五月开心婷婷网| 男女免费视频国产| 精品国产乱码久久久久久小说| 免费高清在线观看视频在线观看| 欧美精品一区二区大全| 亚洲精品久久久久久婷婷小说| av播播在线观看一区| 亚洲av欧美aⅴ国产| 亚洲精品亚洲一区二区| 在线观看免费日韩欧美大片 | 最黄视频免费看| 国产精品国产三级专区第一集| 国产精品偷伦视频观看了| av又黄又爽大尺度在线免费看| 国产成人精品婷婷| 七月丁香在线播放| 五月玫瑰六月丁香| 亚洲精品乱久久久久久| 久久人人爽人人爽人人片va| 美女xxoo啪啪120秒动态图| 国产视频首页在线观看| 精品少妇内射三级| 91精品国产国语对白视频| 人人妻人人添人人爽欧美一区卜| 国产综合精华液| 一二三四中文在线观看免费高清| 国产av国产精品国产| 在现免费观看毛片| 亚洲成人一二三区av| 亚洲国产成人一精品久久久| 自线自在国产av| 日韩精品免费视频一区二区三区 | 亚洲av成人精品一区久久| 亚洲精品一区蜜桃| 日韩精品免费视频一区二区三区 | 最近2019中文字幕mv第一页| 在线免费观看不下载黄p国产| av不卡在线播放| 人妻人人澡人人爽人人| 国产成人aa在线观看| 久久精品久久久久久久性| 妹子高潮喷水视频| 国产精品蜜桃在线观看| 国产高清不卡午夜福利| √禁漫天堂资源中文www| 能在线免费看毛片的网站| 日本黄色片子视频| 男人爽女人下面视频在线观看| a级毛色黄片| 国产高清三级在线| 亚洲在久久综合| 国产在线免费精品| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区黑人 | 日韩人妻高清精品专区| 看非洲黑人一级黄片| 一级a做视频免费观看| 久久6这里有精品| 久久6这里有精品| 一区二区三区乱码不卡18| 国产日韩欧美视频二区| 美女中出高潮动态图| 中文资源天堂在线| 久久av网站| 国产欧美亚洲国产| 国产精品一区二区性色av| 日本色播在线视频| 久久人人爽av亚洲精品天堂| 99久久精品国产国产毛片| 99九九在线精品视频 | 欧美激情国产日韩精品一区| 你懂的网址亚洲精品在线观看| 大话2 男鬼变身卡| 国产午夜精品久久久久久一区二区三区| 美女国产视频在线观看| 国产成人免费观看mmmm| 久久国产亚洲av麻豆专区| 丁香六月天网| 69精品国产乱码久久久| 夜夜骑夜夜射夜夜干| 人妻 亚洲 视频| 国产亚洲5aaaaa淫片| 亚洲一级一片aⅴ在线观看| 2018国产大陆天天弄谢| 色视频在线一区二区三区| 久久午夜福利片| 另类精品久久| 国产色爽女视频免费观看| 久久久国产一区二区| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲网站| 亚洲国产成人一精品久久久| 日韩视频在线欧美| 国产一区二区三区综合在线观看 | 久久99热这里只频精品6学生| 狠狠精品人妻久久久久久综合| 久久鲁丝午夜福利片| 婷婷色麻豆天堂久久| 亚洲欧美成人综合另类久久久| 亚洲精品乱久久久久久| 欧美另类一区| 97精品久久久久久久久久精品| 日韩一区二区三区影片| 国产日韩欧美亚洲二区| 日本黄色日本黄色录像| 亚洲欧美一区二区三区黑人 | 国产精品成人在线| 99热网站在线观看| 亚洲国产精品专区欧美| 日韩三级伦理在线观看| 国产 一区精品| 我的女老师完整版在线观看| a级毛片免费高清观看在线播放| 观看美女的网站| 精品人妻熟女av久视频| 狠狠精品人妻久久久久久综合| 日本欧美视频一区| 一个人看视频在线观看www免费| 亚洲精品自拍成人| 国产伦精品一区二区三区视频9| 成人18禁高潮啪啪吃奶动态图 | 最近中文字幕2019免费版| 在线观看三级黄色| 在线观看www视频免费| 国产精品.久久久| 免费观看a级毛片全部| 成人18禁高潮啪啪吃奶动态图 | 婷婷色麻豆天堂久久| 日韩制服骚丝袜av| 777米奇影视久久| 亚洲欧美清纯卡通| 91精品国产九色| 赤兔流量卡办理| 91午夜精品亚洲一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 国产成人免费无遮挡视频| 老司机亚洲免费影院| 欧美一级a爱片免费观看看| 中文资源天堂在线| 男女啪啪激烈高潮av片| av免费在线看不卡| 91精品国产国语对白视频| 一级毛片aaaaaa免费看小| 亚洲精品自拍成人| av一本久久久久| 久久人人爽av亚洲精品天堂| 一级毛片我不卡| 欧美成人精品欧美一级黄| 亚洲,欧美,日韩| 老司机影院毛片| 中文欧美无线码| 成人漫画全彩无遮挡| 热99国产精品久久久久久7| 如何舔出高潮| 久久久久国产网址| 亚洲美女黄色视频免费看| 2018国产大陆天天弄谢| 五月天丁香电影| 香蕉精品网在线| 精品一品国产午夜福利视频| 黄色日韩在线| 26uuu在线亚洲综合色| 免费观看无遮挡的男女| 人妻系列 视频| 一级毛片aaaaaa免费看小| 高清午夜精品一区二区三区| 久久99蜜桃精品久久| 观看美女的网站| 国模一区二区三区四区视频| 久热久热在线精品观看| 欧美人与善性xxx| 久久久午夜欧美精品| 亚洲精品色激情综合| 亚洲精品成人av观看孕妇| 日本免费在线观看一区| 在线观看免费高清a一片| 亚洲丝袜综合中文字幕| 国产精品无大码| 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 涩涩av久久男人的天堂| 看十八女毛片水多多多| 免费观看a级毛片全部| 99久久综合免费| 特大巨黑吊av在线直播| 国产精品不卡视频一区二区| 男人舔奶头视频| 多毛熟女@视频| 老司机亚洲免费影院| 亚洲久久久国产精品| 高清av免费在线| 国产精品久久久久久久久免| 国产白丝娇喘喷水9色精品| 草草在线视频免费看| 99九九线精品视频在线观看视频| 久久久久精品性色| 午夜影院在线不卡| 国产成人午夜福利电影在线观看| 欧美精品人与动牲交sv欧美| 一本—道久久a久久精品蜜桃钙片| 午夜老司机福利剧场| 免费黄网站久久成人精品| 岛国毛片在线播放| 亚洲怡红院男人天堂| 中文字幕av电影在线播放| 国产精品久久久久久精品古装| 国产精品.久久久| 五月伊人婷婷丁香| 精品少妇久久久久久888优播| 日本黄色片子视频| 免费看光身美女| 成人毛片a级毛片在线播放| 久久久久久久久大av| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久久久免| 成人午夜精彩视频在线观看| 纵有疾风起免费观看全集完整版| 亚洲欧洲日产国产| 人妻少妇偷人精品九色| 亚洲第一av免费看| 欧美激情国产日韩精品一区| 亚洲真实伦在线观看| 偷拍熟女少妇极品色| 国产 精品1| 秋霞伦理黄片| 男女免费视频国产| 亚洲怡红院男人天堂| 高清欧美精品videossex| 成人美女网站在线观看视频| .国产精品久久| 久久久国产一区二区| 国产精品熟女久久久久浪| 涩涩av久久男人的天堂| 午夜福利在线观看免费完整高清在| 精品久久久久久久久av| 久久午夜福利片| 十八禁高潮呻吟视频 | 亚洲国产欧美在线一区| 中文乱码字字幕精品一区二区三区| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91 | 一本色道久久久久久精品综合| 熟女人妻精品中文字幕| 少妇被粗大的猛进出69影院 | 亚洲av男天堂| 亚洲婷婷狠狠爱综合网| 99热6这里只有精品| 亚洲国产日韩一区二区| 日本色播在线视频| 久久97久久精品| 自线自在国产av| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 成年美女黄网站色视频大全免费 | 欧美另类一区| 最后的刺客免费高清国语| 国产一区有黄有色的免费视频| 国产女主播在线喷水免费视频网站| 99九九线精品视频在线观看视频| 国产69精品久久久久777片| 亚洲经典国产精华液单| 最新中文字幕久久久久| 嫩草影院入口| 特大巨黑吊av在线直播| 高清午夜精品一区二区三区| 在线观看国产h片| 丝袜喷水一区| 一区在线观看完整版| 一级毛片我不卡| h视频一区二区三区| 日产精品乱码卡一卡2卡三| 激情五月婷婷亚洲| 亚洲成人一二三区av| 精品酒店卫生间| xxx大片免费视频| 精品久久久精品久久久| 亚洲国产毛片av蜜桃av| 日产精品乱码卡一卡2卡三| 亚洲,一卡二卡三卡| 极品少妇高潮喷水抽搐| 亚洲av欧美aⅴ国产| 欧美 亚洲 国产 日韩一| 黑丝袜美女国产一区| 国产综合精华液| 亚洲精品456在线播放app| 高清午夜精品一区二区三区| 日韩制服骚丝袜av| av不卡在线播放| 人人妻人人看人人澡| 成人国产麻豆网| 国产中年淑女户外野战色| 亚洲经典国产精华液单| 国产亚洲欧美精品永久| 亚洲精品第二区| 精品少妇黑人巨大在线播放| 哪个播放器可以免费观看大片| 卡戴珊不雅视频在线播放| 欧美+日韩+精品| 国产高清国产精品国产三级| 精品人妻一区二区三区麻豆| 亚洲av欧美aⅴ国产| 中文字幕av电影在线播放| 啦啦啦啦在线视频资源| 日本黄色日本黄色录像| 各种免费的搞黄视频| 国产乱来视频区| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 欧美丝袜亚洲另类| 久久久久久久久久人人人人人人| 十分钟在线观看高清视频www | 亚洲精品乱码久久久v下载方式| 国产极品粉嫩免费观看在线 | 久久久久久人妻| 久久久久久久久久久久大奶| 啦啦啦中文免费视频观看日本| 狠狠精品人妻久久久久久综合| 国产成人精品久久久久久| 高清av免费在线| 亚洲精品国产av蜜桃| 日韩人妻高清精品专区| 亚洲精品久久午夜乱码| 中文字幕人妻熟人妻熟丝袜美| 久久99精品国语久久久| 高清不卡的av网站| 国产色婷婷99| 国产一区亚洲一区在线观看| av专区在线播放| 国产精品一区二区在线不卡| 久热这里只有精品99| 少妇人妻久久综合中文| 在线观看www视频免费| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 精品久久久噜噜| 一区在线观看完整版| 99久国产av精品国产电影| 十八禁网站网址无遮挡 | 热99国产精品久久久久久7| 麻豆成人av视频| 国产精品国产三级国产av玫瑰| 色视频www国产| 夜夜看夜夜爽夜夜摸| 王馨瑶露胸无遮挡在线观看| 日本黄色日本黄色录像| 国产精品一区二区在线不卡| 97在线人人人人妻| 亚洲精品日韩av片在线观看| 久久久久精品性色| 精品人妻熟女毛片av久久网站| 又粗又硬又长又爽又黄的视频| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 亚洲av国产av综合av卡| 18禁在线播放成人免费| 国产中年淑女户外野战色| 最近中文字幕2019免费版| 偷拍熟女少妇极品色| 人妻 亚洲 视频| av免费在线看不卡| 国产成人精品婷婷| 一级片'在线观看视频| 狠狠精品人妻久久久久久综合| 久久久午夜欧美精品| 国产片特级美女逼逼视频| 免费av不卡在线播放| 亚洲欧洲精品一区二区精品久久久 | 精品一品国产午夜福利视频| 18禁在线播放成人免费| 在线精品无人区一区二区三| 日韩欧美精品免费久久| 纵有疾风起免费观看全集完整版| 免费看av在线观看网站| 国产成人免费观看mmmm| 亚洲人成网站在线观看播放| 啦啦啦视频在线资源免费观看| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 久久这里有精品视频免费| av免费在线看不卡| 亚洲av综合色区一区| 成人毛片60女人毛片免费| 日日爽夜夜爽网站| 国产成人午夜福利电影在线观看| 黑人高潮一二区| 国产精品久久久久久精品古装| 亚洲国产精品一区二区三区在线| 免费观看无遮挡的男女| 国产精品.久久久| 一本一本综合久久| 只有这里有精品99| av在线app专区| 精品午夜福利在线看| 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 国产色爽女视频免费观看| 国产一区有黄有色的免费视频| 男的添女的下面高潮视频| 在线 av 中文字幕| 亚洲欧美精品自产自拍| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 日韩一区二区三区影片| 欧美精品一区二区免费开放| 中文字幕亚洲精品专区| 人人妻人人澡人人看| 中文字幕亚洲精品专区| 哪个播放器可以免费观看大片| 色视频www国产| 欧美精品一区二区免费开放| 亚洲av综合色区一区| 亚洲精品日韩av片在线观看| 高清毛片免费看| 亚洲精品乱久久久久久| 国产伦精品一区二区三区四那| 黑人猛操日本美女一级片| 人妻一区二区av| 在线观看免费高清a一片| 大陆偷拍与自拍| 亚洲欧美清纯卡通| 国产女主播在线喷水免费视频网站| 国产淫片久久久久久久久| 伊人亚洲综合成人网| 黄色视频在线播放观看不卡| 久久热精品热| 狂野欧美白嫩少妇大欣赏| 我的老师免费观看完整版| 一本大道久久a久久精品| 国产女主播在线喷水免费视频网站| 人妻少妇偷人精品九色| 国产亚洲5aaaaa淫片| 三上悠亚av全集在线观看 | 久久久久网色| 日本黄大片高清| 乱系列少妇在线播放| 国产极品天堂在线| 欧美日韩亚洲高清精品| 如日韩欧美国产精品一区二区三区 | 国产成人免费观看mmmm| 免费少妇av软件| 欧美国产精品一级二级三级 | 欧美国产精品一级二级三级 | 搡老乐熟女国产| 欧美人与善性xxx| 91久久精品国产一区二区成人| 精品少妇黑人巨大在线播放| 国产高清有码在线观看视频| 国产欧美亚洲国产| 久久韩国三级中文字幕| 亚洲精品日本国产第一区| 久久久久国产网址| 少妇猛男粗大的猛烈进出视频| 一个人看视频在线观看www免费| 一级毛片久久久久久久久女| 内射极品少妇av片p| 啦啦啦中文免费视频观看日本| 国产欧美亚洲国产| 亚洲成人手机| 久久久久久久久久人人人人人人| av国产久精品久网站免费入址| 国产黄片美女视频| 嫩草影院入口| 熟女电影av网| 日韩亚洲欧美综合| 大话2 男鬼变身卡| 国产在视频线精品| 亚洲欧美精品自产自拍| 亚洲欧美中文字幕日韩二区| 国产永久视频网站| 99热6这里只有精品| 只有这里有精品99| 特大巨黑吊av在线直播| 日韩制服骚丝袜av| 国产高清三级在线| 亚洲色图综合在线观看| 久久久亚洲精品成人影院| 九九爱精品视频在线观看| 多毛熟女@视频| 国产在线视频一区二区| 国产成人免费无遮挡视频| 国产在线视频一区二区| av卡一久久| 美女脱内裤让男人舔精品视频| 好男人视频免费观看在线| 国产高清不卡午夜福利| 美女福利国产在线| 人人妻人人澡人人爽人人夜夜| 啦啦啦中文免费视频观看日本| 波野结衣二区三区在线| 精品久久久精品久久久| 永久免费av网站大全| 夜夜骑夜夜射夜夜干| 欧美日韩一区二区视频在线观看视频在线| 日日摸夜夜添夜夜爱| av天堂中文字幕网| 亚洲国产精品成人久久小说| 九草在线视频观看| 成人漫画全彩无遮挡| 人妻 亚洲 视频| 观看美女的网站| 久久久国产精品麻豆| 一本久久精品| 日本-黄色视频高清免费观看| 久久久久精品性色| 这个男人来自地球电影免费观看 | 天天操日日干夜夜撸| 日韩亚洲欧美综合| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲网站| 少妇丰满av| 又爽又黄a免费视频| 亚州av有码| 久久这里有精品视频免费| 我要看日韩黄色一级片| 99国产精品免费福利视频| 国产成人a∨麻豆精品| 国产男女超爽视频在线观看| 欧美 亚洲 国产 日韩一| freevideosex欧美| 国产精品伦人一区二区| 一区二区av电影网| 成人综合一区亚洲|