• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and characterization ofcopolymers ofpoly(m-xylylene adipamide)and poly(ethylene terephthalate)oligomers by melt copolycondensation

    2016-05-30 01:55:02FengleiBiJianqiangShaoZhenhaoXiLingZhaoDiLiu

    FengleiBi,Jianqiang Shao ,Zhenhao Xi,Ling Zhao ,*,DiLiu

    1 ShanghaiKey Laboratory of Multiphase Materials ChemicalEngineering,East China University ofScience and Technology,Shanghai200237,China

    2 Beijing Sanlian Hope Shin-Gosen TechnicalService Co.,Ltd.,Beijing 100102,China

    1.Introduction

    Poly(m-xylylene adipamide)(MXD6)isa kind ofsemi-aromatic crystalline nylon resin with distinguished properties such as high rigidity and strength,high modulus,good dimensionalstability,and prepared by the polycondensation of adipic acid with m-xylylenediamine(MXDA)[1].The most remarkable peculiarity of MXD6 is concerned by its excellent gas barrier properties against O2and CO2,which is much lower than that of other conventionalpolyamide resins,ethylene-vinylalcoholcopolymers(EVOH)and poly(vinylidene chloride)copolymers(PVDC)etc.[2].Owing to this excellent gas barrier properties,especially in high humidity conditions,MXD6 can offer important processing bene fits by blending with other polymers,such as polyethylene,polypropylene,and poly(ethylene terephthalate)(PET).It can also be appropriately used as engineering structuralmaterials,in particular,when reinforced with glass fiber[3–7].Therefore,MXD6 is attracted in the technical,scienti fic and commercialinterest,especially in the field ofmultilayer food packaging material application such as multilayer and stretch-blown bottles[3],molding compounds and nono filaments[2].However MXD6 is easy to be fractured in the processing process,especially in molding process,so it is important to improve the toughness of MXD6.

    Polymer blends and copolymerization are the most conventional methods which can improve many properties including elasticity,toughness,melting temperature,glass transition temperature etc.There have been remarkable numbers ofresearch studies ofpolymer blending that occur between polyamide and polyester,such as poly(butylene terephthalate)/nylon-6(PBT/PA6)[8–12],poly(butylene terephthalate)/nylon-66(PBT/PA66)[13–16],poly(ethylene terephthalate)/nylon-6(PET/PA6)[17–19],PET/nylon-66(PET/PA66)[18,20],and PET/Poly(m-xylylene adipamide)(PET/MXD6)[4,21–25].But it is found that polyamide/polyester blends are incompatible and proper compatibilizers are needed,or the copolymers can be got with the help ofan appropriate catalyst[4,9–12,22–24,26–31],for example sodium p-toluene sulfonic acid.Chemicalinterchange reactions may be occurred when polycondensates such as polyamides,polyesters and polymers with reactive functionalgroups at the chain terminals or in the backbone are mixed in the molten state,leading to the formation of random,block,segmented,or grafted copolymers,and then affecting the properties of the originalpolycondensates[27].But most polymer blending or copolymerization are occurred between higher molecular weightpolymers in melting state,thermaldegradation usually cannot be neglected,which would result in breaking polymer chain linkage as wellas some side reactions to reduce the quality ofpolymer products.Since polymer oligomers,bearing more reactive function groups atthe chain ends or in the backbone,such as polyester oligomer and polyamide oligomer,could directly react with each other[32,33],that might achieve polymer product with quite good quality.

    In fact,some features ofPET are very close to thatofMXD6,including almost the same reaction temperature and vacuum condition in polycondensation process,similar rheologicaland crystallization behavior and temperature processing window of PET and MXD6 overlapping[2].Furthermore,PET is easy to form fiber and has good toughness,the MXD6/PET copolymers by copolycondensation with a smallamount of PET oligomers should have improved toughness compared to neat MXD6.In this work,PET oligomers are added during MXD6 oligomer polycondensation process to synthesize MXD6/PET copolymers,and then the thermaland mechanicalproperties ofprepared MXD6/PET copolymers are evaluated.

    2.Experimental

    2.1.Materials

    Pure terephthalic acid(PTA;polymer grade),ethylene glycol(EG;polymer grade),adipic acid(≥99.5%,analytical reagent),sulphuric acid(H2SO4;95%–98%,analytical reagent),methanoic acid(CH2O2;≥98%,analyticalreagent),phenol(crystallization point≥40 °C,analyticalreagent)and 1,1,2,2-tetrachloroethane(Cl2CHCHCl2;≥99.0%,analyticalreagent)were supplied by Lingfeng Chemical Reagent(Shanghai)Co.,Ltd.m-xylylenediamine(MXDA;99.5%,polymer grade)was purchased from CAC ShanghaiChemicalCo.,Ltd.Antimony trioxide(Sb2O3;analyticalreagent)used as the catalyst was purchased from Aladdin.

    2.2.Synthesis of PET oligomers

    PET oligomers were synthesized through two stages,namely,direct esteri fication and prepolycondensation process.In the firststage,a mixture of83.06 g PTA,62.07 g EG,and the catalyst Sb2O3(200μg·g-1PTA)was vigorously stirred at temperature of 230°C in a 500 ml flask equipped with Vigreux column at the atmospheric pressure under the nitrogen atmosphere for nearly 9 h,and small molecule by-product(H2O)was removed out of the system.Then the esters being exposed to a vacuum of4.3 kPa were polymerized for another 2 h at 260°C in the second stage to obtain PET oligomers with a certain molecular weight.

    2.3.Synthesis of MXD6 oligomers

    MXD6 oligomers were prepared by directly melting polycondensation and adding 68.1 g MXDAto 73.1 g molten adipic acid atatmospheric pressure.The reaction was also carried out in a 500 ml flask equipped with Vigreux column at the atmospheric pressure under the nitrogen atmosphere.When the adipic acid was completely melted at 165°C,MXDAwas slowly dropped into and the temperature ofreaction system gradually rose with the continued removalofby-product H2Oforabout 1.5 h.Then the reaction was further carried out for another 0.5 h at 260°C to get the MXD6 oligomers.

    2.4.Copolycondensation of MXD6/PET

    A small amount of the prepared PET oligomers(1–5 g·(100 g MXDA)-1)were added into MXD6 oligomers melt.The oligomer mixture was stirred for another 0.5 h at 260°C under the nitrogen atmosphere,then gradually exposed to vacuum condition of1.4 kPa for 1 h and about400 Pa for another 1.5 h respectively to obtain MXD6/PET copolymers finally.MXD6 oligomers also experienced the same process to produce pure MXD6 with high molecular weightas a reference sample.

    3.Characterization

    Before the characterization,the MXD6/PET copolymer samples was puri fied to eliminate the unreacted PET oligomers,thatwas,the obtained copolymer was dissolved in formic acid,re-precipitated in methanol,filtered,adequately washed by deionized water and dried for 24 h at 90°C in vacuum oven.

    3.1.FTIR spectroscopy

    FTIR spectra ofallthe samples were acquired with Nicolet5700 Fourier Transform Infrared Spectrometer(U.S.Thermo Nicolet Company Electron Corporation)and collected in the region of 4000–400 cm-1.The measurements were carried outby applying 32 scans with a resolution of4 cm-1.

    3.2.NMR spectroscopy

    The structures of the resulting copolycondensation polymers were performed with a BRUKERAVANCE 400 Superconducting Fourier Transform Nuclear Magnetic Resonance Spectrometer(Germany)at 400 MHz,using deuterated tri fluoroacetic acid(CF3COOD)as a solvent.

    3.3.Intrinsic viscosity

    The intrinsic viscosity of PET oligomers was carried out at a concentration of 0.5 g·dl-1solution in a phenol-1,1,2,2-tetrachloroethane(1:1,w/w)using an Ubbelohde viscometer placed in a water bath at 25°C.

    The relation ofintrinsic viscosity([η])and number-average molecular weightfor PET was expressed by the empirical equation,as follows[34]

    The relative viscosity of the MXD6 oligomers and MXD6/PET copolymers was performed at a concentration of 1 g·dl-1[35]solution in concentrated H2SO4also with an Ubbelohde viscometer placed in a water bath at 25°C.

    An empirical linear correlation between relative viscosity(ηr)and number-average molecular weightfor MXD6 was reported as follows[35]:

    3.4.Differentialscanning calorimetry(DSC)

    The thermalbehaviorsofpolymerand copolymerswere analyzed on a NETZSCH DSC 204 HP with the Thermal Analysis Data Station which provided the thermalanalysis data under nitrogen atmosphere.Dried samples of about 10 mg placed in aluminum crucible were heated from room temperature to 270 °C at 10 °C·min-1and held for 5 min to erase any prior thermal history before cooling to 30°C at 5 °C·min-1.The samples were then reheated up to 300 °C and cooled down to 30 °C at10 °C·min-1and 5 °C·min-1,respectively.

    Isothermalcrystallization behaviors were performed that the samples were firstly heated from 30 °C to 270 °C at10 °C·min-1and maintained for 5 min to erase any prior thermal history.And then,these melted samples were rapidly cooled from 270°C to the speci fied isothermal crystallization temperatures at 160,180,185,190,195 and 200°C,respectively.These crystallization behaviors were recorded as function of time.The samples were held at each selected temperature for adequate time to allow complete crystallization to occur.After that,the samples were continuously cooled down to 30°C,and then were re-heated from 30 °C to 300 °C at10 °C·min-1to record the melting behaviors of the previously formed crystallinity.

    The melt crystallization temperature Tmc,melting temperature Tmwere determined from the DSC curves of the second heating cycle.

    3.5.Mechanicalproperties analysis

    The specimens for mechanicalproperties testing were prepared by injection molding using Haake Minilab,Minijet(Thermo Fisher).The tensile properties of polymer and copolymer samples were tested following ASTMD638–2003 test method.And the testing was carried on an American Instron Corporation 3300 Series Dual Column desktop electronic universaltesting machine.The Izod notched impact strength ofpolycondensates and copolymers was tested following ASTMD-256 test method.Eight specimens were tested for each sample and the average results were reported.

    3.6.Scanning electron micrographs

    Scanning electron micrographs of impact fracture surfaces were observed on a NOVA Nano SEM 450 scanning electron microscope(SEM)operating atacceleration voltage of3 kV.Allthe sample surfaces were made conductive before testing by the deposition ofa layerofgold for 1 min on a United Kingdom Quorum Technologies Ltd.,Q150RS.

    4.Results and Discussion

    4.1.Interchange reaction between MXD6 oligomers and PET oligomers

    The number-average molecular weight of synthesized PET oligomers was about 3100 g·mol-1,and the one MXD6 oligomer was about 12300 g·mol-1.

    It is wellknown that,exchange reactions taking place between two bifunctional condensation polymers with different chemical nature could generate a four-component copolycondensate[36–38].PET oligomers and MXD6 oligomers are mixed under reaction conditions and could yield ester interchange reactions to form copolymers.Two possible exchange reaction routes[26]may be followed,namely,outer amide-inner carbonyl interchange reaction and inner amide-inner carbonylinterchange reaction.For a particular case of the MXD6/PET system,when ester-amide exchange reactions occur between one bifunctional polyamide A1B1 and another bifunctionalpolyester A2B2 can lead to the following structuralchanges presented in Fig.1.

    This interchange reaction between MXD6 oligomers and PET oligomers and the structure of MXD6/PET copolymers were characterized using the FTIR technique.The FTIR spectra for PET oligomers,MXD6 and MXD6/PET copolymers are shown in Fig.2,respectively.Itis clear that the neat PET oligomers have a strong absorption band at 1719 cm-1corresponding to the stretching vibration ofcarbonylgroups(-C=O)from the repeated ester units.And the infrared spectrum of neat MXD6 reveals the characteristic absorption bands of–CONH–group[39].The intense band at 1646 cm-1is assigned to the amide I vibration which mainly involves the C=O stretching vibration peak,and the bands at 1546 cm-1and 1251 cm-1are assigned to the amide IIvibrations which correspond to the coupled N–H in-plane deformation and C–N stretching modes.Compared with the neat polymers,it should be pointed out that another new peak with MXD6/PET copolymers at 1723 cm-1(indicated by the arrows)near to the –CONH– stretching vibration peak(1646 cm-1and 1546 cm-1)of MXD6 has been observed which has been proved to be the C=O stretching vibration peak of PET oligomers in Fig.2.This indicates that the interchange reaction do happen between these two oligomers to form copolymer(A1B2),as shown in Fig.1.Moreover,the intensity of the new peak gradually enhances with the adding content of PET oligomers.

    Fig.2.Infrared spectra of synthesized PET oligomers,MXD6/PET copolymers and neat MXD6 polymer.Note the peaks in the 1720 cm-1(indicated by the arrows)of copolymers.

    Fig.1.Scheme ofstructuralchanges expected from the ester-amide interchange reaction.

    Polymersamples ofneatMXD6,PET oligomers and the various crude and puri fied MXD6/PET copolymers were further con firmed using1H NMR spectroscopy.Spectra of a and b in Fig.3 show the typical 400 MHz1H NMR spectra of the neat PET oligomers and MXD6 in the deuterated tri fluoroacetic acid(TFA-d)respectively,while spectra ofa and b in Fig.4 displayed the1H NMR spectra of crude and puri fied MXD6/PET copolymers respectively.

    It can be seen that allpeaks originate from the polymer MXD6 in Fig.3(b)atthe following position:δ=8.52(singlet),δ=7.31(singlet),δ=7.20(singlet),δ=4.53(singlet),δ=2.62(singlet),δ=1.80(singlet)in Fig.4(a).There are two new peaks for MXD6/PET copolymers which appear atδ=8.09 andδ=7.87 in Fig.4(a),while at δ=8.17 andδ=7.95 in Fig.4(b).Allof these signals belong to benzene ring protons of the neat PET oligomers in the copolymer.Furthermore,the distance between the two new peaks is all0.22,as shown in Fig.4.That means the interchange reactions had surely occurred between MXD6 oligomers and PET oligomers.It is con firmed that the amide groups along the MXD6 oligomers chains are able to attack the carboxylic ends or ester groups of PET oligomers[27].It can also be seen that there is a peak appeared atδ=8.52 both the neat MXD6 and raw copolymers,but it disappears in the puri fied copolymers,that is because of the reaction between amino group-terminated(δ=8.52)and formic acid when the crude copolymers are puri fied.

    Fig.3.1H NMR spectra of PET oligomers(a)and MXD6(b).

    Fig.4.1H NMR spectra for crude(a)and puri fied(b)5 wt%MXD6/PET copolymers.

    1H NMR spectra of the synthesized copolymers with differently adding content of PET oligomers are also shown in Fig.5.It can be seen that the peak intensity ofbenzene ring of PET(δ=8.09,δ=7.87)increases with the increasing contents of PET oligomers while the peak intensity ofamino group-terminated(δ=8.52)accordingly decreases.Itcan be attributed that more amino group-terminated should be reacted with PET oligomers and more PET chain segments willbe contained in the copolymers with the increasing contents of PET oligomers.

    Based on the previous discussion,itcan be considered the formation of A1B2(m-xylylene units/terephthalate units)sequences by linking MXD6 and PET blocks in the formed block copolymer,which has been described four-component copolycondensate(shown in Fig.1).

    Fig.5.Sections of the 1H NMR spectra of synthesized copolymers with different mass ratios of PET oligomers to MXDA:(a)5%;(b)3%;(c)1%.

    4.2.Thermalproperties of MXD6/PET copolymer

    The effectofPET oligomers on the melting temperature Tmand crystallization temperature Tmcof the MXD6/PET copolymerswasexamined by DSC thermograms.The second heating scans of the neat MXD6 polymers and the MXD6/PET copolymers are presented in Figs.6 and 7,respectively.All the samples of the MXD6/PET copolymers have the similar intrinsic viscosity values,so there is a smallin fluence of the molecular weightdifferences on the thermalbehaviors.The corresponding glass transition temperature,peak crystallization temperature,peak melting temperature and their enthalpies are listed in Table 1.

    Fig.6.The melt temperature curves of MXD6 polymer and copolymers.

    Fig.7.The crystallization temperature curves of MXD6 polymer and copolymers.

    Table 1 The thermalproperties ofcopolymer and oligomers

    As seen in Table 1,the relative viscosity ofMXD6/PET copolymers is decreased compared with the neat MXD6,that is because the melting MXD6 blocks are in fluenced by the presence of the PET blocks and/or above all the formed heterosequence of the aromatic amide mxylylene terephthalamide units(A1B2)by exchange reactions[27].There isa slightdifference among the relative viscosity ofMXD6/PET copolymers,it also indicates that the average molar masses of the formed copolymers does not have much variation.

    Due to the low contentof PET segments in copolymers as wellas the relatively small difference between the Tgof neat MXD6(89°C)and neat PET(80°C)[27],there is only a single Tgthat appeared in the heating scans of the copolymers,and almost identicalto the values of neat MXD6.Only one melting endothermpeak existed in MXD6/PET copolymers in Fig.6,indicating that the PET segments have been introduced the structure of MXD6 and there is a single phase in MXD6/PET copolymers.The PET segments are introduced into MXD6 matrix which will break the regularity of neat MXD6,and then reduces the crystallinity of copolymers.Decreased△Hcis associated to the lower crystallinity of the copolymers.The reduction of△Hmis for the same reason as the decreased△Hc,both of which can be attributed to the lower crystallinity of the copolymers.

    Itis wellknown thatthe velocity ofcrystallization process for MXD6 is inferior to thatof PA6 and PA66 because of the weak symmetry and steric hindrance of meta-oriented aromatic ring in its main chain.A broader crystallization peak could show the crystallization feature of MXD6 in Fig.7.Cooling thermograms clearly show the effectofPET oligomer blocks on the crystallization process ofmelting MXD6.The degree ofsupercooling(△Tmc)is decreased and melting crystallization temperature(Tmc)of copolymers is gradually increased with increasing PET oligomer content,as seen from Table 1,itis conducive to crystallization and enhances the crystallization rate for MXD6/PET copolymer.When the meltcopolymer is cooling from high temperature,partof PET firstly forms solid particles in the melt and acts as the heterogeneous crystal nucleus for MXD6 continuous phases.As heterogeneous nucleation is dominated,the nucleation and crystallization are quickly completed in the high temperature range,and then sharpened peak shape and sped the crystallization rate.While there are homogeneous and heterogeneousnucleation in the system with increasing PET componentcontent,and due to the heterogeneous nucleation is prior to the homogeneous nucleation in the melt crystallization process,it leads to the increased MXD6 crystallization temperature.Compared with that of the neat MXD6,the range ofcrystallization is narrower and the peak is sharper for MXD6/PET copolymers in Fig.7.Atthe same time the more PET symmetricalstructures are introduced into the MXD6 matrix,the crystallization of copolymers becomes much easier,the crystallization performance is much better and the crystallization velocity is faster than that of the neat MXD6.

    According to the reports[40,41],the equilibriummelting temperature Tm0of a crystallizable polymer is important in the analysis of crystal growth rate data in order to establish the degree of supercooling,because it is used as a reference temperature from which the driving force for crystallization is observed.Therefore,the equilibrium melting temperature is also determined for MXD6/PET copolymers.

    Isothermally crystallized MXD6 has been found to existtwo melting peaks[42],when crystallized in the lower temperature range from 170 to 180°C.In the higher crystallization temperature range,from 185 to 195°C,itdisplays three melting peaks.PET also generally exhibits three melting peaks[43],when it is isothermally crystallized at temperatures from 180 to 205°C.These peaks have been designated as Tm1,Tm2and Tm3.However,there are many different interpretations of the observed multiple melting peaks.According to the common interpretation[40],the first melting peak Tm1may represent smallportions ofmetastable crystalline material,the second melting peak Tm2stands for the quality of crystalline structures formed during primary crystallization and the third peak Tm3represents the reorganization and recrystallization that occurs during heating at the programmed rate in the DSC.The second peak is used to provide data used for extrapolation to the intercept(Tm0)with a theoreticalline based on equivalent melting and crystallization temperatures[40].

    Fig.9.Variation with crystallization temperature ofmultiple melting peaks:T m1,T m2,and T m3 for the 5 wt%MXD6/PET copolymer after complete isothermal crystallization.Extrapolation of the T m2 line is used for determination of T m 0.

    Fig.8 displays the DSC thermalphenomena for MXD6/PET copolymer samples recorded after complete crystallization from the melt state at different crystallization temperatures ranging from 160°C to 200°C.These endothermic peaks are assigned as Tm1,Tm2and Tm3for the lowest,medium and highesttemperature melting endotherms,respectively.The results show clearly that the melting behaviors strongly depend on the crystallization temperature Tc.Isothermally crystallized copolymers,processing at the lower crystallization temperature 160°C,have also been found to exhibittwo melting peaks.But,itclearly shows three melting peaks for isothermally crystallized copolymers at the higher crystallization temperature range from 180 to 200°C.This thermal phenomenon is similar to the isothermally crystallized PET[43]and MXD6[42].

    Fig.9 shows the plot of the melting temperatures as the function of crystallization temperature for MXD6/PET copolymers.It can be seen that both peaks Tm1and Tm2moved towards higher temperatures with the increasing crystallization temperatures,while peak Tm3almost does notchange with the crystallization temperature and is constant.It is also noticed that the difference between Tm1and Tcis fairly constant and equals to(10±0.5)°C.Then the equilibrium melting temperature Tm0can be determined by extrapolating the Tm2line to higher temperature which willintercept with the Tm=Tcline.On basic of the calculation method of Hoffman and Weeks[41],the intersection of the least-squared fit with the line Tm=Tcprovides the value of equilibrium melting temperature.Then,the equilibrium melting temperaturecan be evaluated to be equal to 251.8°C,which is relatively close to the values ofneat MXD6(250 ±2)°C[42].

    4.3.Mechanicalproperties of MXD6/PET copolymer

    The values of mechanicalproperties of MXD6/PET copolymers are listed in Table 2.As seen from Table 2,it is clear that some mechanical properties of the copolymers increased obviously after adding a small amount of the PET oligomers.Since PET has a better tensile property than that of MXD6,so that PET chain segments being introduced intoMXD6 blocks can improve the tensile property of copolymers.Meanwhile,PET oligomers destroy the homopolymer regularity of MXD6 chain and lead to the lower crystallinity,the arrangement of molecular chain is looser,and the impact strengths ofcopolymers are also improved.

    Table 2 The mechanicalproperties of MXD6 and MXD6/PET copolymers

    Fig.10.Scanning electron micrographs of MXD6(a)1 wt%(b)3 wt%(c)and 5 wt%(d)MXD6/PET copolymer.

    Scanning electron micrographs chosen at same magni fication under identicalconditions of the impact fracture surfaces of MXD6,1 wt%,3 wt%and 5 wt%MXD6/PET copolymers are given in Fig.10 respectively.

    It can be seen that the neat MXD6 has a homogeneous structure,while the MXD6/PET copolymers are obviously somewhat different.The micro fibrilstructures in the impact fracture surface are generated for MXD6/PET copolymers as shown in Fig.10(b)to(d),and more micro fibril structure can be formed with the increasing contents of PET oligomers.When the samples suffer the externalforce,the micro fibril can absorb lots of energy and enhance the material toughness,which reveals the features ofductile fracture for MXD6/PET copolymers.Meanwhile,the formed copolymers can contribute to improve the compatibility ofMXD6 and PET,which makesa good interface adhesion.That should be a proof why the mechanical properties of MXD6/PET copolymers are improved than those ofneat MXD6.

    5.Conclusions

    MXD6/PET copolymers containing 1wt%–5 wt%PET are synthesized by the interchange reactions between MXD6 oligomers and PET oligomers in molten state.The chemicalstructure of the synthesized copolymers has been characterized by FT-IR and1H NMR.It proves that the formation of A1B2(m-xylylene units/terephthalate units)sequences by link MXD6 and PET blocks in the formed MXD6/PET copolymers.

    The measurement of thermal properties of copolymers indicates that the melting temperature of MXD6/PET copolymers decreases,while the crystallization temperature of copolymers increases with the increasing ofadding amount of PET oligomers.Isothermalcrystallization behavioralresults indicate that the equilibrium temperature Tm0of 5 wt%MXD6/PET copolymers is evaluated to be equalto 251.8°C,which is close to that ofneat MXD6.

    The measurement of the mechanical properties of MXD6/PET copolymers compared with that of neat MXD6 indicates that both of the tensile stress at maximum and the notched impact strength of MXD6/PET copolymers are improved almost 50%than that of neat MXD6.Morphological examination reveals that the micro fibril structures are generated in the impact fracture surface of MXD6/PET copolymers,which leads to the ductile fracture for copolymers.

    [1]E.F.Carlston,F.G.Lum,m-Xylylenediamine polyamide resins,Ind.Eng.Chem.49(8)(1957)1239–1240.

    [2]Mitsubishi Gas Chemical Catalog,MX-Nylon,Vol.52000.

    [3]Z.H.Xi,L.K.Chen,Y.Zhao,L.Zhao,Experimental and modeling study of melt polycondensation process of PA-MXD6,Macromol.Symp.333(1)(2013)172–179.

    [4]Y.S.Hu,V.Prattipati,A.Hiltner,E.Baer,S.Mehta,Improving gas barrier of PET by blending with aromatic polyamides,Polymer 46(8)(2005)2685–2698.

    [5]P.J.Cahill,J.A.Richardson,R.V.Wass,Copolyamide active-passive oxygen barrier resins,US Pat.,6506463(2003).

    [6]R.Germonprez,Y.J.Kim,Barrier compositions and film made therefrom having improved opticaland oxygen barrier properties,US Pat.,5314987(1994).

    [7]Y.J.Kim,R.Germonprez,R.L.Kaas,A.Mehta,Barrier compositions and articles made therefrom,US Pat.,6239210(1999).

    [8]F.Samperi,M.Montaudo,C.Puglisi,R.Alicata,G.Montaudo,Essential role of chain ends in the Ny6/PBT exchange.A combined NMR and MALDIapproach,Macromolecules 36(19)(2003)7143–7154.

    [9]N.Wakita,Melt elasticity of incompatible blends of poly(butylene terephthalate)(PBT)and polyamide 6(PA6),Polym.Eng.Sci.33(13)(1993)781–788.

    [10]R.Scaffaro,L.Botta,F.P.La,Mantia,P.Magagnini,D.Acierno,M.Gleria,R.Bertani,Effect ofadding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends.I:preliminary study in a batch mixer,Polym.Degrad.Stab.90(2)(2005)234–243.

    [11]R.Scaffaro,L.Botta,F.P.La,Mantia,M.Gleria,R.Bertani,F.Samperi,G.Scaltro,Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends.II:Effect of different polyamides on the properties of extruded samples,Polym.Degrad.Stab.91(10)(2006)2265–2274.

    [12]R.Jeziórska,Studies on reactive compatibilisation of polyamide 6/poly(butylene terephthalate)blends by low molecular weight bis-oxazoline,Polym.Degrad.Stab.90(2)(2005)224–233.

    [13]C.C.Huang,F.C.Chang,Reactive compatibilization of polymer blends of poly(butylene terephthalate)(PBT)and polyamide-6,6(PA66):1.Rheological and thermalproperties,Polymer 38(9)(1997)2135–2141.

    [14]C.C.Huang,F.C.Chang,Reactive compatibilization of polymer blends of poly(butylene terephthalate)and polyamide 6,6:2.Morphologicaland mechanical properties,Polymer 38(17)(1997)4287–4293.

    [15]X.L.Xie,S.C.Tjong,R.K.Y.Li,Study on in situ reinforcing and toughening of a semiflexible thermotropic copolyesteramide in PBT/PA66 blends,J.Appl.Polym.Sci.77(9)(2000)1975–1988.

    [16]J.John,M.Bhattacharya,Synthesis and properties of reactively compatibilized polyester and polyamide blends,Polym.Int.49(8)(2000)860–866.

    [17]S.Fakirov,M.Evstatiev,S.Petrovich,Micro fibrillar reinforced composites from binary and ternary blends of polyesters and nylon 6,Macromolecules 26(19)(1993)5219–5226.

    [18]Z.Denchev,H.R.Kricheldorf,S.Fakirov,Sequentialreordering in condensation copolymers,6.Average block lengths in poly(ethylene terephthalate)–polyamide 6 copolymers as revealed by NMR spectroscopy,Macromol.Chem.Phys.202(4)(2001)574–586.

    [19]F.Samperi,C.Puglisi,R.Alicata,G.Montando,Essential role of chain ends in the nylon-6/poly(ethylene terephthalate)exchange,J.Polym.Sci.Polym.Chem.41(18)(2003)2778–2793.

    [20]X.G.Xie,D.C.Wu,X.L.Xie,DSC analysis of PET/PA66 blends and study on their compatibility,J.Wuhan Inst.Chem.Technol.2(1)(2003)7–10.

    [21]Y.S.Hu,V.Prattipati,A.Hiltner,E.Baer,S.Mehta,Improving transparency of stretched PET/MXD6 blends by modifying PET with isophthalate,Polymer 46(14)(2005)5202–5210.

    [22]V.Prattipati,Y.S.Hu,S.Bandi,D.A.Schiraldi,A.Hiltner,E.Baer,S.Mehta,Effect of compatibilization on the oxygen-barrier properties of poly(ethylene terephthalate)/poly(m-xylylene adipamide)blends,J.Appl.Polym.Sci.97(3)(2005)1361–1370.

    [23]V.Prattipati,Y.S.Hu,S.Bandi,S.Mehta,D.A.Schiraldi,A.Hiltner,E.Baer,Improving the transparency of stretched poly(ethylene terephthalate)/polyamide blends,J.Appl.Polym.Sci.99(1)(2006)225–235.

    [24]M.Fereydoon,S.H.Tabatabaei,A.Ajji,Rheological,crystalstructure,barrier,and mechanicalproperties ofPA6 and MXD6 nanocomposite films,J.Polym.Eng.Sci.54(11)(2014)2617–2631.

    [25]S.R.Turner,G.W.Connell,S.L.Stafford,J.D.Hewa,Polyester-polyamide blends with reduced gas permeability and low haze,US Pat.,6444283(2002).

    [26]F.Xie,Y.W.Kim,S.A.Jabarin,The interchange reaction between poly(ethylene terephthalate)and poly(m-xylylene adipamide),J.Appl.Polym.Sci.112(6)(2009)3449–3461.

    [27]F.Samperi,M.S.Montaudo,S.Battiato,D.Carbone,C.Puglisi,Characterization of copolyesteramides from reactive blending of PET and MXD6 in the molten state,J.Polym.Sci.Polym.Chem.48(22)(2010)5135–5155.

    [28] ?.?zen,G.Bozoklu,C.Dalg??dir,O.Yücel,E.ünsal,M.?akmak,Y.Z.Mencelo?lu,Improvement in gas permeability of biaxially stretched PET films blended with high barrier polymers:The role of chemistry and processing conditions,Eur.Polym.J.46(2)(2010)226–237.

    [29]X.D.Wang,Study on the Preparation and Properties of PET/MXD6 Blends(M.S.Thesis)Tongji Univ.,China,2003.

    [30]Y.Wang,S.A.Jabarin,Novel preparation method for enhancing nanoparticle dispersion and barrier properties of poly(ethylene terephthalate)and poly(mxylylene adipamide),J.Appl.Polym.Sci.129(3)(2013)1455–1465.

    [31]S.Bandi,S.Mehta,D.A.Schiraldi,The mechanism ofcolor generation in poly(ethylene terephthalate)/polyamide blends,Polym.Degrad.Stab.88(2)(2005)341–348.

    [32]R.R.Wu,W.T.Shi,Study on PET-PA66 copolymer,Chin.J.Polym.Sci.10(4)(1992)356–360.

    [33]S.Joachim,B.P.Michael,G.Freddy,Block copolymers made of polyethylene terephthalate and a polyamide made of meta-xylylenediamine and adipinic acid,CN Pat.,101072834(2005).

    [34]J.Zhang,Synthesis of High Molecular Weight of PET and the SSP Process Optimization Research(Ph.D.Thesis)Zhejiang Univ.,China,2011.

    [35]B.DeRoover,G.Coppens,J.Devaux,R.Legras,A.Momtaz,Contribution to poly(mxylylene adipamide)characterization:Hydrolysis,condensation,and oxidation in the melt,J.Polym.Sci.Polym.Chem.34(6)(1996)1039–1047.

    [36]A.M.Aerdts,K.L.L.Eersels,G.Groeninckx,Transamidation in melt-mixed aliphatic and aromatic polyamides.1.Determination of the degree ofrandomness and number-average block length by means of13C NMR,Macromolecules 29(3)(1996)1041–1045.

    [37]J.Devaux,P.Godard,J.P.Mercier,Bisphenol-A polycarbonate–poly(butylene terephthalate)transesteri fication.I.Theoreticalstudy of the structure and of the degree of randomness in four-component copolycondensates,J.Polym.Sci.Polym.Phys.Ed.20(10)(1982)1875–1880.

    [38]J.Devaux,P.Godard,J.P.Mercier,R.Touillaux,J.M.Dereppe,Bisphenol-A polycarbonate–poly(butylene terephthalate)transesteri fication.II.Structure analysis of the reaction products by IR and1H and13C NMR,J.Polym.Sci.Polym.Phys.Ed.20(10)(1982)1881–1894.

    [39]N.Yoda,I.Matsubara,Studies on structure and properties ofaromatic polyamides.II.Structuralelucidation of poly(m-xylylene adipamide),J.Polym.Sci.A 2(1)(1964)253–265.

    [40]F.Xie,E.A.Lofgren,S.A.Jabarin,Melting and crystallization behavior of poly(ethylene terephthalate)and poly(m-xylylene adipamide)blends,J.Appl.Polym.Sci.118(4)(2010)2153–2164.

    [41]J.D.Hoffman,J.J.Weeks,Melting process and the equilibrium melting temperature of polychlorotri fluoroethylene,J.Res.Natl.Bur.Stand.A 66(1)(1962)13–28.

    [42]B.B.Doudou,E.Dargent,J.Grenet,Crystallization and melting behaviour ofpoly(mxylene adipamide),J.Therm.Anal.Calorim.85(2)(2006)409–415.

    [43]C.Zhou,S.B.Clough,Multiple melting endotherms ofpoly(ethylene terephthalate),Polym.Eng.Sci.28(2)(1988)65–68.

    日韩在线高清观看一区二区三区| 国产精品一及| 国模一区二区三区四区视频| 免费在线观看成人毛片| 国产av一区二区精品久久 | 99精国产麻豆久久婷婷| 少妇被粗大猛烈的视频| 免费观看性生交大片5| 国产成人aa在线观看| 国产大屁股一区二区在线视频| 国产在线男女| 2022亚洲国产成人精品| 亚洲国产精品一区三区| 韩国av在线不卡| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡人人爽人人夜夜| 欧美日韩视频精品一区| 观看美女的网站| 一级黄片播放器| 在线观看免费视频网站a站| 老司机影院毛片| 深夜a级毛片| 亚洲精品国产成人久久av| 亚洲国产色片| 日韩视频在线欧美| 国产爱豆传媒在线观看| 成人特级av手机在线观看| 国产片特级美女逼逼视频| 乱码一卡2卡4卡精品| 女性生殖器流出的白浆| 婷婷色综合大香蕉| 在线观看免费高清a一片| 18禁动态无遮挡网站| 国产精品不卡视频一区二区| 亚洲av国产av综合av卡| av一本久久久久| 最近2019中文字幕mv第一页| 97超碰精品成人国产| 欧美精品人与动牲交sv欧美| 免费久久久久久久精品成人欧美视频 | 成人特级av手机在线观看| 国产精品久久久久久精品电影小说 | 街头女战士在线观看网站| 国产精品欧美亚洲77777| 成年人午夜在线观看视频| 99热这里只有是精品50| 插逼视频在线观看| 午夜激情久久久久久久| 国产精品久久久久久精品电影小说 | 国产精品无大码| 舔av片在线| 亚洲欧美日韩另类电影网站 | 国内揄拍国产精品人妻在线| 欧美成人一区二区免费高清观看| tube8黄色片| 国产高清不卡午夜福利| 五月玫瑰六月丁香| 少妇 在线观看| h视频一区二区三区| 纵有疾风起免费观看全集完整版| 大片电影免费在线观看免费| 亚洲精品第二区| 国产在线男女| 精华霜和精华液先用哪个| 日韩成人av中文字幕在线观看| 天堂俺去俺来也www色官网| 97超碰精品成人国产| 日韩人妻高清精品专区| 久久综合国产亚洲精品| 亚洲人成网站在线播| 内射极品少妇av片p| 自拍偷自拍亚洲精品老妇| 欧美性感艳星| 美女视频免费永久观看网站| 国产精品.久久久| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 国产精品蜜桃在线观看| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 97热精品久久久久久| 丝瓜视频免费看黄片| 亚洲成色77777| 国产成人91sexporn| 97热精品久久久久久| 国产 一区 欧美 日韩| 国产精品久久久久久久电影| 夫妻午夜视频| 国产精品伦人一区二区| 老司机影院毛片| 亚洲怡红院男人天堂| 国产成人免费无遮挡视频| 国产爽快片一区二区三区| 国产精品一区二区三区四区免费观看| 久久久久久久久大av| 插阴视频在线观看视频| 赤兔流量卡办理| 婷婷色麻豆天堂久久| 久久影院123| 国产69精品久久久久777片| 亚洲久久久国产精品| 亚洲精品日韩在线中文字幕| 精品少妇久久久久久888优播| 欧美精品亚洲一区二区| 麻豆成人av视频| 观看av在线不卡| 91精品伊人久久大香线蕉| 久久精品国产a三级三级三级| 欧美最新免费一区二区三区| 国产亚洲91精品色在线| 国产精品伦人一区二区| 国产有黄有色有爽视频| 国产精品爽爽va在线观看网站| 国产精品国产三级国产专区5o| 久久精品国产亚洲av涩爱| 看非洲黑人一级黄片| 亚洲无线观看免费| 精品久久久久久久久亚洲| 国产av国产精品国产| 亚洲美女搞黄在线观看| 亚洲av欧美aⅴ国产| 亚洲av电影在线观看一区二区三区| 妹子高潮喷水视频| 亚洲国产高清在线一区二区三| 亚洲自偷自拍三级| 少妇 在线观看| 日韩国内少妇激情av| 日韩精品有码人妻一区| 最后的刺客免费高清国语| 在线观看一区二区三区激情| av在线观看视频网站免费| 日本av手机在线免费观看| 精品亚洲乱码少妇综合久久| 男女啪啪激烈高潮av片| 欧美性感艳星| av在线老鸭窝| 亚洲av欧美aⅴ国产| 久久久久人妻精品一区果冻| 丝瓜视频免费看黄片| 日本-黄色视频高清免费观看| 夫妻午夜视频| 国产在线一区二区三区精| 日本-黄色视频高清免费观看| 一级毛片电影观看| 亚洲成人一二三区av| 女人久久www免费人成看片| 日韩大片免费观看网站| 韩国高清视频一区二区三区| 熟女电影av网| 久久人人爽av亚洲精品天堂 | 黑人高潮一二区| 国产片特级美女逼逼视频| 欧美变态另类bdsm刘玥| 一区在线观看完整版| 日韩欧美精品免费久久| h视频一区二区三区| 亚洲欧美日韩无卡精品| 99久国产av精品国产电影| 赤兔流量卡办理| 黄片wwwwww| 婷婷色综合www| 日韩一区二区视频免费看| 自拍偷自拍亚洲精品老妇| 六月丁香七月| 成人午夜精彩视频在线观看| 国产伦精品一区二区三区视频9| 国产亚洲精品久久久com| 18+在线观看网站| 精品久久久久久久久亚洲| 一本久久精品| 久久精品国产亚洲av涩爱| 七月丁香在线播放| 国产精品国产三级国产专区5o| 国产白丝娇喘喷水9色精品| 日韩中文字幕视频在线看片 | 成人国产麻豆网| 中文乱码字字幕精品一区二区三区| 亚洲欧美成人精品一区二区| 久久久久久久久大av| 亚洲欧美一区二区三区国产| 国产在线视频一区二区| 麻豆国产97在线/欧美| 免费看av在线观看网站| 午夜福利网站1000一区二区三区| 久久青草综合色| 国产 一区 欧美 日韩| 午夜福利在线在线| 一本久久精品| 日韩,欧美,国产一区二区三区| 99久久中文字幕三级久久日本| 丝袜脚勾引网站| 国产欧美亚洲国产| 国产精品爽爽va在线观看网站| 高清毛片免费看| 国产女主播在线喷水免费视频网站| 亚洲av电影在线观看一区二区三区| 亚洲精品一区蜜桃| 精品人妻视频免费看| 日韩欧美精品免费久久| 免费看光身美女| 18禁裸乳无遮挡动漫免费视频| 97精品久久久久久久久久精品| 国产在线免费精品| 亚洲精品国产色婷婷电影| 亚洲图色成人| 欧美日韩视频精品一区| 国产美女午夜福利| 黑丝袜美女国产一区| 一级毛片电影观看| 一级爰片在线观看| 最黄视频免费看| 国产精品久久久久久精品电影小说 | 国产精品三级大全| 老师上课跳d突然被开到最大视频| 男人舔奶头视频| 成人无遮挡网站| 国产在线男女| 久久久久久久久大av| 久久精品国产亚洲网站| 制服丝袜香蕉在线| av卡一久久| 人妻 亚洲 视频| 免费播放大片免费观看视频在线观看| 少妇 在线观看| 夫妻性生交免费视频一级片| 色视频在线一区二区三区| 在线观看一区二区三区激情| 亚洲欧美成人综合另类久久久| 国产黄色视频一区二区在线观看| 插逼视频在线观看| av卡一久久| 18+在线观看网站| 成人国产av品久久久| 国精品久久久久久国模美| 精品久久久噜噜| 看非洲黑人一级黄片| 乱系列少妇在线播放| 色综合色国产| 久久久久久久精品精品| 欧美高清成人免费视频www| 日韩制服骚丝袜av| 久热久热在线精品观看| 久久热精品热| 大香蕉97超碰在线| 波野结衣二区三区在线| 久久久久久久精品精品| 国产精品人妻久久久久久| 亚洲国产精品专区欧美| 特大巨黑吊av在线直播| 国产精品国产三级专区第一集| 春色校园在线视频观看| 黄色一级大片看看| 午夜免费鲁丝| 男女无遮挡免费网站观看| 久久精品久久久久久噜噜老黄| 狂野欧美激情性bbbbbb| 国产免费福利视频在线观看| 亚洲va在线va天堂va国产| 国产精品99久久久久久久久| 一级毛片电影观看| 亚洲丝袜综合中文字幕| 18禁裸乳无遮挡动漫免费视频| 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版| 久久国内精品自在自线图片| 国产成人freesex在线| 少妇的逼好多水| 亚洲美女搞黄在线观看| 观看av在线不卡| 亚洲精华国产精华液的使用体验| 亚洲国产精品专区欧美| 久久久久久人妻| freevideosex欧美| 亚洲欧美一区二区三区国产| 国产高潮美女av| 精品久久久精品久久久| 波野结衣二区三区在线| 91久久精品国产一区二区成人| 日韩欧美一区视频在线观看 | 一二三四中文在线观看免费高清| kizo精华| 国产精品秋霞免费鲁丝片| 国产视频内射| 亚洲精品自拍成人| a 毛片基地| 九九在线视频观看精品| 国模一区二区三区四区视频| 亚洲av二区三区四区| 国产综合精华液| 久久精品熟女亚洲av麻豆精品| www.色视频.com| 晚上一个人看的免费电影| 日韩人妻高清精品专区| 国产成人a∨麻豆精品| 国产亚洲av片在线观看秒播厂| 国产真实伦视频高清在线观看| 丰满迷人的少妇在线观看| 乱系列少妇在线播放| 建设人人有责人人尽责人人享有的 | 亚洲天堂av无毛| 91在线精品国自产拍蜜月| 国产欧美日韩一区二区三区在线 | 国产成人aa在线观看| 久久亚洲国产成人精品v| 日韩伦理黄色片| 国产在视频线精品| 国产色婷婷99| 欧美亚洲 丝袜 人妻 在线| 一区二区三区四区激情视频| 尤物成人国产欧美一区二区三区| 身体一侧抽搐| 成人影院久久| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 亚洲精品色激情综合| 水蜜桃什么品种好| 十八禁网站网址无遮挡 | 日本猛色少妇xxxxx猛交久久| 欧美高清性xxxxhd video| 亚洲精品日韩在线中文字幕| 亚洲成人手机| 成人一区二区视频在线观看| 又粗又硬又长又爽又黄的视频| 久久精品国产鲁丝片午夜精品| 一区在线观看完整版| 久久99热6这里只有精品| 久久精品人妻少妇| 免费黄色在线免费观看| 久久精品人妻少妇| 免费黄色在线免费观看| 午夜福利在线在线| 成年免费大片在线观看| 久久99蜜桃精品久久| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| 三级国产精品片| 国产乱人视频| 国产成人aa在线观看| 国产女主播在线喷水免费视频网站| 久久国内精品自在自线图片| 日本黄大片高清| 毛片女人毛片| 亚洲欧美一区二区三区黑人 | 国产高清三级在线| 18禁裸乳无遮挡动漫免费视频| 精品人妻一区二区三区麻豆| 国产成人91sexporn| 欧美高清性xxxxhd video| 3wmmmm亚洲av在线观看| 九九爱精品视频在线观看| 26uuu在线亚洲综合色| 国产v大片淫在线免费观看| 只有这里有精品99| 啦啦啦啦在线视频资源| 五月伊人婷婷丁香| 中文字幕亚洲精品专区| 日本午夜av视频| 亚洲av综合色区一区| 久久99精品国语久久久| 热re99久久精品国产66热6| av在线观看视频网站免费| 日韩一区二区三区影片| av在线观看视频网站免费| 日韩一区二区三区影片| 久久国产乱子免费精品| 国产精品久久久久久精品古装| 2022亚洲国产成人精品| 建设人人有责人人尽责人人享有的 | 亚洲国产av新网站| 国产乱人偷精品视频| 九九久久精品国产亚洲av麻豆| 中文字幕亚洲精品专区| 日韩不卡一区二区三区视频在线| 中文字幕亚洲精品专区| 精品一区二区免费观看| 国产成人a区在线观看| 亚洲av福利一区| 联通29元200g的流量卡| 久久ye,这里只有精品| 欧美变态另类bdsm刘玥| 一级毛片久久久久久久久女| 国产精品99久久久久久久久| 啦啦啦视频在线资源免费观看| 五月开心婷婷网| 毛片一级片免费看久久久久| 最近中文字幕2019免费版| 欧美成人一区二区免费高清观看| 永久网站在线| 欧美精品亚洲一区二区| 亚洲精品,欧美精品| 干丝袜人妻中文字幕| 亚洲熟女精品中文字幕| 欧美成人午夜免费资源| 亚洲av.av天堂| tube8黄色片| 亚洲av.av天堂| 99热这里只有是精品50| 欧美国产精品一级二级三级 | 亚洲精品久久久久久婷婷小说| 99热6这里只有精品| 自拍偷自拍亚洲精品老妇| 超碰97精品在线观看| 3wmmmm亚洲av在线观看| 亚洲人成网站在线播| 国产一区二区在线观看日韩| 女的被弄到高潮叫床怎么办| 亚洲av成人精品一二三区| 又爽又黄a免费视频| 国产精品一及| 日韩一区二区视频免费看| 亚洲精品国产色婷婷电影| 亚洲国产精品999| 在线观看美女被高潮喷水网站| 欧美人与善性xxx| 日本av手机在线免费观看| 五月开心婷婷网| 丰满少妇做爰视频| 午夜福利网站1000一区二区三区| 麻豆乱淫一区二区| 成人黄色视频免费在线看| 中文字幕免费在线视频6| 亚洲美女视频黄频| av在线老鸭窝| av一本久久久久| 欧美+日韩+精品| 日日摸夜夜添夜夜爱| 网址你懂的国产日韩在线| 一本久久精品| 国产乱人视频| 国产v大片淫在线免费观看| 亚洲美女视频黄频| 精品一区二区三卡| 99九九线精品视频在线观看视频| 精品酒店卫生间| 王馨瑶露胸无遮挡在线观看| 欧美区成人在线视频| 五月天丁香电影| 亚洲精品日韩在线中文字幕| 亚洲av不卡在线观看| 少妇人妻 视频| 纯流量卡能插随身wifi吗| 99热国产这里只有精品6| 久久精品国产亚洲av天美| 在线观看一区二区三区| av在线老鸭窝| 国产淫语在线视频| 在线观看国产h片| 免费大片黄手机在线观看| 欧美成人a在线观看| 一级毛片黄色毛片免费观看视频| 亚洲欧美一区二区三区国产| 日本午夜av视频| 极品少妇高潮喷水抽搐| 日韩av免费高清视频| 午夜免费男女啪啪视频观看| 亚洲aⅴ乱码一区二区在线播放| 精品国产露脸久久av麻豆| 下体分泌物呈黄色| 亚洲精品日韩av片在线观看| 女的被弄到高潮叫床怎么办| 日韩制服骚丝袜av| 精品一区二区三卡| 综合色丁香网| 老司机影院毛片| 男人爽女人下面视频在线观看| 国产极品天堂在线| 欧美成人午夜免费资源| 一级片'在线观看视频| 欧美日本视频| 熟女人妻精品中文字幕| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 涩涩av久久男人的天堂| 国产精品av视频在线免费观看| 一级av片app| 国产黄频视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产女主播在线喷水免费视频网站| 中文字幕精品免费在线观看视频 | 亚洲熟女精品中文字幕| 欧美丝袜亚洲另类| 亚洲av中文av极速乱| 51国产日韩欧美| 亚洲av日韩在线播放| 亚洲精品日本国产第一区| 亚洲欧美精品自产自拍| 在线免费十八禁| 国产精品福利在线免费观看| 日日啪夜夜爽| 久久久精品94久久精品| 看十八女毛片水多多多| 下体分泌物呈黄色| 婷婷色综合大香蕉| 黄色欧美视频在线观看| 欧美一区二区亚洲| 国产高清不卡午夜福利| 在线免费观看不下载黄p国产| 日本色播在线视频| 免费少妇av软件| 久久综合国产亚洲精品| 熟女电影av网| 国产视频内射| 99久久中文字幕三级久久日本| 赤兔流量卡办理| 啦啦啦视频在线资源免费观看| 午夜福利在线观看免费完整高清在| 三级国产精品片| 亚洲国产精品专区欧美| 免费看不卡的av| 一二三四中文在线观看免费高清| 成人毛片60女人毛片免费| 国产精品伦人一区二区| 国产一区亚洲一区在线观看| 欧美人与善性xxx| 日本一二三区视频观看| 黄片无遮挡物在线观看| 一个人免费看片子| 青青草视频在线视频观看| 九九在线视频观看精品| 建设人人有责人人尽责人人享有的 | 91在线精品国自产拍蜜月| 久久人妻熟女aⅴ| 久久精品久久久久久久性| 我的女老师完整版在线观看| 亚洲无线观看免费| 高清欧美精品videossex| 只有这里有精品99| 丝袜喷水一区| 人人妻人人添人人爽欧美一区卜 | 啦啦啦视频在线资源免费观看| 国产精品一区二区性色av| 亚洲精品中文字幕在线视频 | 偷拍熟女少妇极品色| 国产熟女欧美一区二区| 啦啦啦啦在线视频资源| 五月玫瑰六月丁香| 亚洲国产日韩一区二区| 简卡轻食公司| 搡女人真爽免费视频火全软件| 成年女人在线观看亚洲视频| 少妇猛男粗大的猛烈进出视频| 午夜福利网站1000一区二区三区| 午夜精品国产一区二区电影| 免费av中文字幕在线| 国产白丝娇喘喷水9色精品| 国产成人aa在线观看| 亚洲欧美成人综合另类久久久| 成人午夜精彩视频在线观看| 久久午夜福利片| 日产精品乱码卡一卡2卡三| 涩涩av久久男人的天堂| 免费大片18禁| 三级国产精品欧美在线观看| 中文字幕制服av| 国产精品欧美亚洲77777| 黄色日韩在线| 韩国av在线不卡| 最近最新中文字幕免费大全7| 国产伦在线观看视频一区| 国内精品宾馆在线| 日本色播在线视频| 在线观看免费视频网站a站| 91精品伊人久久大香线蕉| 亚洲一区二区三区欧美精品| videos熟女内射| 视频中文字幕在线观看| 纵有疾风起免费观看全集完整版| 蜜桃久久精品国产亚洲av| 亚洲精品国产色婷婷电影| 国产av码专区亚洲av| 男人狂女人下面高潮的视频| 2018国产大陆天天弄谢| 久久女婷五月综合色啪小说| 天堂俺去俺来也www色官网| xxx大片免费视频| 大香蕉久久网| 最近2019中文字幕mv第一页| 久久久久久久久大av| 亚洲久久久国产精品| 麻豆成人午夜福利视频| 99久久精品热视频| 日韩成人伦理影院| 在现免费观看毛片| 日韩不卡一区二区三区视频在线| 97超碰精品成人国产| 国产精品久久久久成人av| 亚洲天堂av无毛| 人妻 亚洲 视频| 精品久久久精品久久久| 亚洲成人中文字幕在线播放| 一级毛片aaaaaa免费看小| 六月丁香七月| 91aial.com中文字幕在线观看| 成人美女网站在线观看视频| 久久韩国三级中文字幕| freevideosex欧美| 国产日韩欧美在线精品| 高清不卡的av网站| 亚洲精品久久久久久婷婷小说| 亚洲国产毛片av蜜桃av| av在线播放精品| 亚洲av国产av综合av卡| 国产成人a区在线观看| 美女福利国产在线 | 国产美女午夜福利| 十分钟在线观看高清视频www | 身体一侧抽搐| 老熟女久久久| 午夜免费鲁丝| 男女边摸边吃奶| 99热这里只有是精品50| 国产成人a∨麻豆精品| 亚洲欧美精品专区久久| 日韩一区二区视频免费看| 插阴视频在线观看视频|