• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of the adsorption behavior ofaqueous cadmium on nanozero-valent iron based on orthogonalexperiment and surface complexation modeling☆

    2016-05-30 01:54:54DongmeiLiuHuanTangYingZhaoFuyiCuiJingLu

    DongmeiLiu,Huan Tang,Ying Zhao*,FuyiCui*,Jing Lu

    1 State Key Laboratory ofUrban Water Resource and Environment,Harbin Institute ofTechnology,Harbin 150090,China

    2 Schoolof Municipaland EnvironmentalEngineering,Harbin Institute ofTechnology,Harbin 150090,China

    1.Introduction

    Cadmium(Cd)is a major environmental contaminant which is known to accumulate in rice plants[1].Cd can be introduced into the environment through a combination of natural processes(volcanic eruptions and forest fires)as well as anthropogenic activities(nonferrous metals production,electroplating,manufacturing of Ni–Cd batteries and pigments,application ofphosphatic fertilizers,and burning of fossilfuels)[2,3].The naturaloccurrence of Cd in groundwater is ofgreatconcern due to the toxicity ofCd and the potentialfor chronic exposure[4].To address this problem,the World Health Organization(WHO)had set a maximum guideline concentration of0.003 mg·L-1for Cd in drinking water[5].On this occasion many public watersystems have to adopt cadmium removal processes in their water treatment systems in order to meet the stringent drinking water standards.

    Various technologies are currently available to remove cadmium from water,such as chemicalmethods[6–8],membrane separation technique[9],ion exchange technique[10]and adsorption technique[11–13].Adsorption is a common practice for Cd removalfrom drinking water due to technologicaland cost advantages.

    Nano zero-valentiron(nZVI)has been developed as an ef ficientabsorbent material to treat various heavy metals from contaminated water[14].The speci fic removalmechanisms involved depend on the standard redox potential(E0)of the target metal.The E0of Fe0is-0.44 V.Metals with E0s that are more negative or similar to-0.44 V willbe removed by adsorption,others with E0s that are more positive than-0.44 will be removed by reduction and precipitation.Metals with slightly more positive E0than Fe0willbe removed by reduction,adsorption,oxidation or co-precipitation which depend upon the prevailing geochemicalconditions[15,16].

    As shown by several studies,factors such as aqueous phase pH,concentrations of contaminants and the presence of competitive ions have a signi ficant effect on nZVI's reactivity with metals[17–21].Although researches had investigated the factors that may have effect on the ef ficiency of nZVI,comparatively little research had studied which factor is the most signi ficant one.Figuring out this factor will mean a lot on the application ofnZVI.

    Among allthe nZVIsynthesis methods,chemicalreduction is widely used due to its simplicity and chemicalhomogeneity[22].During the nZVIpreparation,mechanicalagitation needs to be employed to insure the size of ZVI at nanoscale[23].Aggregation of nanoparticles was reported to be caused by the large surface area and magnetic dipole–dipole interactions of the individual particles[24].If the solution is stirred vigorously,the aggregation would be weakened to some extent.However,this mechanical stir method brings some questions(1)the waste ofelectricity,(2)some of the nanoparticles may stick to the agitator which are hard to clean.

    The main objective ofthis study is to find outthe mostsigni ficantfactor that affects the ef ficiency ofnZVI.First,nZVIwillbe prepared by an improved liquid-phase reduction and characterized to verify this new method.Then an orthogonalexperiment and simulation willbe performed underthe same conditions to find outthe mostsigni ficantfactor.

    2.Materials and Methods

    2.1.Synthesis ofnZVIparticles

    The nanoparticles were synthesized via the classical reaction as follows:

    Allthe aqueous solutions were prepared with deionized deoxygenated water.Before the reaction begins,the FeCl3·6H2O(1 mol·L-1)was mixed with PVP(1 g·L-1).Then the NaBH4(1.6 mol·L-1)solution was added to the mixture mentioned above.The nitrogen was sparged into the solution during the whole process to maintain an anaerobic atmosphere.

    2.2.Characterization ofnZVI

    Morphologicalanalysis of the samples was performed by transmission electron microscopy(TEM)using a FEITecnai G2 F30 operated at 300 kV.Samples for TEMobservation were suspended in ethanoland then supported on a double carbon membrane.

    The speci fic surface area(SBET)ofnZVIwas calculated by Brunauer–Emmett–Teller(BET)N2method,and the pore size was measured by the BJH(Barrett,Joyner,and Halenda)N2adsorption/desorption isotherm method at 77 K using the automatic analyzer(ASAP 2020,Micromeritics,USA).

    2.3.Orthogonalexperiment

    The experiments were based on an orthogonalarray experiment design and the following three variables were analyzed:initialpH of the solution,dosage ofnZVIand the initialconcentration ofcadmium.These three factors were identi fied to have signi ficant impact on the ef ficiency ofnZVI[25].

    Other factors such as temperature and existence ofother metalions maybe as importantas the parameters picked.But the effectoftemperature had been studied by Boparai et al.completely so we didn't take this factor into account[26].As for other metalions,such as Pb(II)and As(III),although they may have signi ficant effect on the adsorption of Cd2+by nZVI,it is not appropriate to consider this factor in orthogonal experiment.Therefore,the effects ofmetalions were excluded in our orthogonal experiment.Li et al.had studied the effect of pH in the range of 4–9[27],and Zhang et al.had studied the effect of pH in the range of3–8.6[28].Butin actualproject,the pHofef fluents from chemicalfactory may beyond this range,so itis necessary to study the pHin a larger range.On this occasion,the range ofpH used in our experiment was 2–10.Based on the waste water ofmetallurgicalindustry,the concentration of Cd(II)used in our experiment was 10,20 and 40 mg·L-1.And the dose ofnZVIwas based on ourearlierexperiments.Above all,an L9(33)matrix,which is an orthogonalarray of three factors and three levels,was employed to assign the considered factors and levels as listed in Table 1.

    Data analysis would be carried out through the range analysis to re flect the magnitudes of the three factors.

    Table 1 Levels and factors in orthogonalexperiment design

    Allthe experiments were performed at ambient temperature and pressure using a 250.0 mlserum bottle.The pH values of the solutions were controlled and adjusted with the 0.02 Mbuffer as Boparai et al.had used[29].

    The contents were mixed on a thermostatic oscillator operated at 200 r·min-1.After 1 h an aliquot of supernatant was sampled and filtered using a 0.22μm filter(Millipore),the samples were then transferred into clean falcon tubes and diluted using nitric acid(5%).The remaining concentration of cadmium in the filtrate was determined by means of inductively coupled plasma-optical emission spectroscopy(ICP-OES,AA 200,Agilent Technologies).Blank experiments with and without nZVIand without filtering were also performed to obtain the initialcadmium concentration prior to adsorption,as well as to rule out filtration as a reason forthe decrease on the concentration ofcadmium in the supernatant.

    2.4.Surface complexation modeling

    In aqueous solution,transition metals are known to assume different chemicalforms that the formations depend on the pH of the solution.The speciation analysis ofaqueous Cd2+ions was performed at various initialconcentration,temperature,pH,and ionic strength values using visualMINTEQ software.

    In actualwater,bare nZVIparticles willreactwith water and oxygen to form outer iron(hydr)oxide layer[30].On this occasion,the essence of the adsorption is the interaction between Cd and the outer layer.Based on this,a surface complexation modeling was carried out by VisualMINTEQ 3.0.

    The iron oxide/hydroxide–water interface was represented by,for example,≡FeOH and ≡FeO,where the“≡Fe”represents the solid–surface interface.Adsorbed materials are written as complexes of these surface oxides,for example,≡FeOCd+.And the possible reactions are as follows:

    Modeling was performed using the Diffuse Layer Model(DLM).This surface precipitation modelcan simulate the distribution of ions between adsorbed and dissolved phases based on the reactions as is mentioned above.Since the DLM model has been successfully used to describe metalion adsorption on pure mineralmaterials[31],it is unnecessary to go into details about the theory.Parameters used in the modeling were based on experiment data and/or previous reports[29].

    3.Result and Discussion

    3.1.Characterization ofnZVI

    The microimages of the synthesized nZVIare shown in Fig.1.As shown(Fig.1(a)and(b)),the aggregates can reach to severalmicrometers in length but less than 100 nm in diameter(Fig.1(c))

    The resultdemonstrated thatwe can use N2bubbling and PVP to replace mechanicalstirring in the preparation ofnZVI.PVP,which is a kind ofsurfactantthathas been widely used in the field ofsynthesizing nanosilver,can modify the surface properties of the particles[32].The added PVP can effectively preventthe aggregation ofZVIparticlesby(1)reducing the speci fic surface energy ofnZVIparticles and(2)increasing the steric hindrance between nZVIparticles.

    Fig.1.TEMimage of the nZVI.

    The morphologies of nZVIs showed in Fig.1(a)and(c)were fresh and those in Fig.1(b)and(d)were placed for two months after preparation.As is shown in Fig.1(b)and(d),there is a layer ofsemi-transparent film less than 10 nmthick around the black particle.Itwas reported thatthe exposure ofnZVIto oxygen can lead the formation ofiron oxide layer which contains Fe2O3,Fe3O4and FeOOH[33].The iron nanoparticles possessed a core–shellstructure.The shellrepresented the oxidized part that surrounded the Fe0core and it can prevent the nZVIagainst further oxidation[34].The addition ofnZVIto aqueous systems usually generates OH-by the reduction ofwater,resulting in the immobilization ofmetals by precipitation as hydroxides[35].

    BET analysis indicated a speci fic surface area of 20.3159 m2·g-1.This data was used in the simulation later.Fig.2 is the adsorption isotherm line,the trend of the plot indicated that nZVIis a typicalmaterial without holes or with macroporous.

    The TEMand BET results showed that nZVIprepared with this new approach possessed excellent surface characters.With the presence of PVP,the size ofZVIcan be insured to be in nanosize withoutmechanical stirring.

    Compared to traditionalmethods(Fig.3),this improved method has severaladvantages as follows.

    ·Compared with the three-necked flask,the serum bottle used as reactor is easier to clean and the solid–liquid separation is easier to achieve.

    Fig.2.BJH adsorption/desorption isotherm.

    Fig.3.Diagrammatic sketch ofcomparison between traditionalmethod and new method in the synthesis ofnZVI.

    ·In conventional approaches,negative pressure would be formed induced by rapid stirring,air will be introduced into the reaction mixture and the nZVIwould be oxidized more easily.

    3.2.Orthogonalexperiment

    An L9(33)orthogonalexperimentwas performed and the results are listed in Table 2.All the experiments were aimed at increasing the removalrate ofcadmium by nZVI.

    Table 2 Results of the orthogonalexperiment

    In order to figure out which factor is the most important,a range analysis is necessary.There are two parameters in a range analysis:Kjiand Rj.Kjiis de fined as the sum of the evaluation indexes of alllevels(i,i=1,2,3)in each factor(j,j=A,B,C)andis the mean value of Kji.Rjis de fined as the range between the maximumand minimumvalue ofand is used for evaluating the importance of the factors,i.e.Larger Rjvalue means a greater importance of the factor[36].The calculation is displayed below(for the factor of A):

    where KAiis the K value of the i levelof the factor A;and Yiis the value of the result of the trial number.Other K values of the factors can be determined by the same calculation steps.The mean values of Kfor different factors at different levels in the range analysis were listed in Table 3.

    Table 3 Range analysis data of the removalrate

    As is mentioned above,Rjindicates the signi ficance ofa factor and a larger Rjmeans that this factor has a more signi ficant impacton the removalrate.Based on the comparation of Rj,the prominence order of the factors was:initialpHof the solution(96.453)>initialconcentration of cadmium(3.294)>amount of nZVI(1.747).RCis the largest,which means a smallchange in the initialpH willhave a signi ficant effect on the removalrate ofcadmium.

    The mean value ofeach factor was displayed in Fig.4.Based on the changes in the mean value ofeach factor,it can be speculated that the removalrate sharply increased from 1.98%to 98.267%with the initial pH increased from 4 to 10.When the amount ofnZVIincreased from 1 g·L-1to 4 g·L-1,the removalrate increased steadily from 65.987%to 67.213%,which suggested that the amount ofnZVIhad a little effect on the removal ef ficiency of nZVI.Similarly,it can be speculated that the effect of the cadmium concentration ion is very small.

    Fig.4.Relationship between mean value ofeach factor and the removalrate.

    Based on the orthogonalexperimentand the range analysis,itcan be speculated that the initial pH of the solution is the most signi ficant factor that affects the adsorption performance of Cd2+onto nZVI.

    3.3.Surface precipitation modeling

    In order to con firm that initialpH is the most signi ficant factor,a simulation was performed.Parameters used in the modeling are as follows.The speci fic surface area of the iron(hydr)oxide shell was 20.3159 m2·g-1which was obtained from the BET analysis.The site density oftype 1 sites(weak sorption sites)was 2.26 sites nm-2,and of type 2 sites(strong sites)was 0.056 sites nm-2as recommended.The electrolyte was 0.01 mol·L-1NaNO3.After the adsorption equilibrium achieved,the result of the distribution of ions between adsorbed and dissolved phases is shown in Fig.5.The tendency of the curve showed that in acidic condition most of the cadmium was dissolved and Cd2+was found to be the dominant species.If the solution pH was higher,more cadmium would be adsorbed onto the nZVI and(≡FeO)2Cd was found to be the dominant form.

    Fig.5.Distribution ofions between adsorbed and dissolved phases in different pH.

    Simulations were performed under the same condition and the range ofeach factor is illustrated in Fig.6.The result showed that the range of factor C(99.99)is much larger than that of factor A(7.15)and factor B(7.16).The result is consistent with the conclusion we drew upon the orthogonalexperiment:the initialpH is the most signi ficant factor.

    Fig.6.Range ofeach factor calculated based on simulation.

    Both the experiments and the simulations showed that pH has the most signi ficant effect on the adsorption ef ficiency of the nZVI.In the range of4–10,the higher the pH,the more cadmium is adsorbed.This conclusion is important to maximize the adsorption rates and adsorption capacity ofnZVIfor cadmium.

    As the E0of cadmium is-0.40 V,which is close to that of Fe0(-0.44 V),Cd will be removed by sorption and/or precipitation.The dominant adsorption mechanism and the existing form of cadmium in aqueous solutions are both related to the solution pH.At lower pH,Cd2+is found to be the dominant species(Fig.7).Since the isoelectric point(IEP)ofnZVIwas around 8.1–8.2[37].At pH values below the IEP,the surface is expected to possess a positive potential,this willdecrease the adsorption ofmetalanions due to electrostatic repulsion.At higher pH,the abundant hydroxylwillresult in the immobilization ofmetals in the form ofhydroxides and precipitation is the dominantremovalmechanism.Fig.7 is the species distribution ofcadmium overa pHrange of1 to 14.Itcan be seen thatatpH 10,Cd2+existsdominantas Cd(OH)2,and the percentage of Cd(OH)2is about 85%,this means that the Cd2+willbe removed from water by precipitation without nZVI.But in the presence of nZVI,the removalrate of Cd2+at pH 12 is 97.1–99.2 in our experiment,which means that nZVIcan promote the removalofcadmium.In acidic conditions,the lowerthe pH,the strongerthe repulsion.In alkaline conditions,the higher the pH,the easier the precipitation is to form.

    Fig.7.The speciation of cadmium over a pH range of1 to 14.

    4.Conclusions

    In this study,traditionalliquid-phase reduction for preparing nZVI was improved by the introduction of PVP.TEMand BET analyses indicated that the improve method was better for nZVI preparation.An L9(33)orthogonalexperiment was employed to find out the dominant factor that affects the removalrate of cadmium by nZVI.Three factors were examined:initialpH of the solution,concentration of cadmium and the dosage of nZVI,and initial pH was found to be the most signi ficant factor.Surface precipitation modeling showed in different conditions,the Ca2+was removed by nZVIin different mechanisms.

    [1]S.Ishikawa,N.Ae,M.Sugiyama,M.Murakami,T.Arao,Genotypic variation in shoot cadmium concentration in rice and soybean in soils with different levels of cadmium contamination,Soil Sci.Plant Nutr.51(2005)101–108.

    [2]M.D.L.Dinis,A.Fiúza,Exposure assessment to heavy metals in the environment:Measures to eliminate or reduce the exposure to criticalreceptors,environmental heavy metal pollution and effects on child mental development,Springer,Netherlands,2011 27–50.

    [3]T.Kikuchi,M.Okazaki,K.Toyota,T.Motobayashi,M.Kato,The input–outputbalance of cadmium in a paddy field of Tokyo,Chemosphere 67(2007)920–927.

    [4]G.F.Nordberg,Historical perspectives on cadmium toxicology,Toxicol.Appl.Pharmacol.238(2009)192–200.

    [5]WHO,Guidelines for drinking water quality,second ed.,Recommendations,Vol.1,WHO,Geneva,1993.

    [6]O.Tunay,T.Ozkok,T.O.Hanci,I.Kabdasli,Applicability of phosphonic acid complexes as a means of cadmium removal from aqueous solutions,J.Selcuk Univ.Nat.Appl.Sci.(2013)70–77.

    [7]L.Charerntanyarak,Heavy metals removal by chemicalcoagulation and precipitation,Water Sci.Technol.39(1999)135–138.

    [8]S.A.Bayar,E.Yilmaz,R.Boncukcuo?lu,B.A.Fìla,M.M.Kocakerìm,Effects of operationalparameters on cadmium removalfrom aqueous solutions by electrochemical coagulation,Desalin.Water Treat.51(2013)2635–2643.

    [9]B.Pospiech,W.Kujawski,Ionic liquids as selective extractants and ion carriers of heavy metal ions from aqueous solutions utilized in extraction and membrane separation,Rev.Chem.Eng.31(2015)179–191.

    [10]A.Akcil,C.Erust,S.Ozdemiroglu,A review of approaches and techniques used in aquatic contaminated sediments:Metalremovaland stabilization by chemicaland biotechnological processes,J.Clean.Prod.86(2015)24–36.

    [11]J.A.Arcibar-Orozco,J.R.Rangel-Mendez,P.E.Diaz-Flores,Simultaneous adsorption of Pb(II)–Cd(II),Pb(II)–phenol,and Cd(II)–phenolby activated carbon cloth in aqueous solution,Water Air Soil Pollut.226(2015)1–10.

    [12]R.Liu,F.Liu,C.Hu,Simultaneous removalofCd(II)and Sb(V)by Fe–Mn binary oxide:Positive effects of Cd(II)on Sb(V)adsorption,J.Hazard.Mater.300(2015)847–854.

    [13]L.Yan,Y.Huang,J.Cui,Simultaneous As(III)and Cd removalfrom copper smelting wastewater using granular TiO2columns,Water Res.68(2015)572–579.

    [14]S.M.Ponder,J.G.Darab,T.E.Mallouk,Remediation of Cr(VI)and Pb(II)aqueous solutions using supported,nanoscale zero-valent iron,Environ.Sci.Technol.34(2000)2564–2569.

    [15]X.Q.Li,W.X.Zhang,Sequestration ofmetalcations with zero valentiron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy,J.Phys.Chem.C 111(2007)6939–6946.

    [16]D.O'Carroll,B.Sleep,M.Krol,H.Boparai,C.Kocur,Nanoscale zero valent iron and bimetallic particles for contaminated site remediation,Adv.Water Resour.51(2013)104–122.

    [17]T.Tosco,M.P.Rapini,C.C.Viggi,R.Sethi,Nanoscale zerovalent iron particles for groundwater remediation:A review,J.Clean.Prod.44(2014)10–21.

    [18]M.Rivero-Huguet,W.D.Marshall,Reduction ofhexavalent chromium mediated by micro-and nano-sized mixed metallic particles,J.Hazard Mater.169(2009)1081–1087.

    [19]T.Phenrat,Y.Liu,R.D.Tilton,G.V.Lowry,Adsorbed polyelectrolyte coatings decrease Fe0nanoparticle reactivity with TCE in water:Conceptualmodeland mechanisms,Environ.Sci.Technol.43(2009)150–154.

    [20]Y.Liu,S.A.Majetich,R.D.Tilton,D.S.Sholl,G.V.Lowry,TCE dechlorination rates,pathways,and ef ficiency of nanoscale iron particles with different properties,Environ.Sci.Technol.39(2005)1338–1345.

    [21]F.He,D.Zhao,C.Paul,Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones,Water Res.44(2010)2360–2370.

    [22]W.Zhang,Nanoscale iron particles for environmental remediation:An overview,J.Nanopart.Res.5(2003)323–332.

    [23]Y.H.Hwang,D.G.Kim,H.S.Shin,Effects ofsynthesis conditions on the characteristics and reactivity of nano scale zero valent iron,Appl.Catal.B Environ.105(2011)144–150.

    [24]T.Phenrat,N.Saleh,K.Sirk,R.D.Tilton,G.V.Lowry,Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions,Environ.Sci.Technol.41(2007)284–290.

    [25]N.Efecan,T.Shahwan,A.E.Eroglu,Characterization of the adsorption behavior of aqueous Cd(II)and Ni(II)ions on nanoparticles of zero-valent ironM.S.Thesis ?zmir Institute of Technology,2008.

    [26]H.K.Boparai,M.Joseph,D.M.O'Carroll,Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles,J.Hazard.Mater.186(2011)458–465.

    [27]Y.Li,H.Ma,B.Ren,T.Li,Simultaneous adsorption and degradation of Cr(VI)and Cd(II)ions from aqueous solution by silica-coated Fe0nanoparticles,J.Anal.Methods Chem.2013(2013).

    [28]Y.Zhang,Y.Li,C.Dai,H.Zhou,W.Zhang,Sequestration of Cd(II)with nanoscale zero-valent iron(nZVI):Characterization and test in a two-stage system,Chem.Eng.J.244(2014)218–226.

    [29]H.K.Boparai,M.Joseph,D.M.O'Carroll,Cadmium(Cd2+)removal by nano zerovalent iron:Surface analysis,effects ofsolution chemistry and surface complexation modeling,Environ.Sci.Pollut.Res.20(2013)6210–6221.

    [30]Y.P.Sun,X.Q.Li,J.S.Cao,W.X.Zhang,H.P.Wang,Characterization ofzero-valent iron nanoparticles,Adv.Colloid Interf.120(2006)47–56.

    [31]X.Wen,Q.Du,H.Tang,Surface complexation modelfor the heavy metaladsorption on naturalsediment,Environ.Sci.Technol.32(1998)870–875.

    [32]K.A.K.Huynh,L.Chen,Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions,Environ.Sci.Technol.45(2011)5564–5571.

    [33]J.T.Nurmi,P.G.Tratnyek,V.Sarathy,D.R.Baer,J.E.Amonette,K.Pecher,C.Wang,J.C.Linehan,D.W.Matson,R.L.Penn,M.D.Driessen,Characterization and properties of metallic iron nanoparticles:Spectroscopy,electrochemistry,and kinetics,Environ.Sci.Technol.39(2005)122–130.

    [34]X.Li,W.Zhang,Sequestration ofmetalcations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy(HR-XPS),J.Phys.Chem.C 111(2007)6939–6946.

    [35]W.Yan,A.A.Herzing,C.J.Kiely,W.Zhang,Nanoscale zero-valent iron(nZVI):Aspects of the core–shellstructure and reactions with inorganic species in water,J.Contam.Hydrol.118(2010)96–104.

    [36]X.Wu,D.Y.C.Leung,Optimization of biodiesel production from camelina oil using orthogonalexperiment,Appl.Energy 88(2011)3615–3624.

    [37] ?.üzüm,T.Shahwan,A.E.Ero?lu,I.Lieberwirth,T.B.Scott,K.R.Hallam,Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ions under various experimentalconditions,Chem.Eng.J.144(2008)213–220.

    亚洲精品中文字幕在线视频 | 成人鲁丝片一二三区免费| 在线免费观看不下载黄p国产| 亚洲精品乱码久久久v下载方式| 国产在线男女| 成人毛片60女人毛片免费| 精品久久久久久久久亚洲| 激情五月婷婷亚洲| 麻豆成人午夜福利视频| 亚洲在线观看片| 人妻一区二区av| 久久精品人妻少妇| 国产视频首页在线观看| 久久久久性生活片| 啦啦啦韩国在线观看视频| 国产老妇女一区| 男人舔女人下体高潮全视频| 69av精品久久久久久| 秋霞在线观看毛片| 中文资源天堂在线| 国产精品无大码| av一本久久久久| 一本一本综合久久| 成人欧美大片| 边亲边吃奶的免费视频| 午夜激情久久久久久久| 国产老妇伦熟女老妇高清| 精品99又大又爽又粗少妇毛片| 亚洲无线观看免费| 中文欧美无线码| 亚洲av成人av| 久久国内精品自在自线图片| 国产精品国产三级国产专区5o| 蜜臀久久99精品久久宅男| av播播在线观看一区| 在线播放无遮挡| 丝袜喷水一区| 少妇熟女aⅴ在线视频| 两个人的视频大全免费| 黄片wwwwww| 国产成人免费观看mmmm| 青青草视频在线视频观看| 免费观看性生交大片5| 成人午夜高清在线视频| 成人无遮挡网站| 三级毛片av免费| 国产在线一区二区三区精| 亚洲精华国产精华液的使用体验| 伦精品一区二区三区| 欧美xxⅹ黑人| 亚洲熟女精品中文字幕| 亚洲av福利一区| 久久综合国产亚洲精品| 狂野欧美激情性xxxx在线观看| 亚洲成人av在线免费| 国产老妇女一区| 成人高潮视频无遮挡免费网站| 最近2019中文字幕mv第一页| 欧美激情在线99| 在线免费观看不下载黄p国产| 极品教师在线视频| 秋霞在线观看毛片| 日本黄色片子视频| 春色校园在线视频观看| 久久久久久国产a免费观看| 亚洲综合色惰| 国产成人91sexporn| 床上黄色一级片| av卡一久久| 日韩av在线大香蕉| 18禁裸乳无遮挡免费网站照片| 亚洲四区av| 国产单亲对白刺激| av黄色大香蕉| 精品一区二区三卡| 国产伦精品一区二区三区四那| 不卡视频在线观看欧美| 一级毛片黄色毛片免费观看视频| 国产精品福利在线免费观看| 精品久久久久久电影网| 亚洲av.av天堂| 亚洲18禁久久av| 一级毛片 在线播放| 国产一区二区亚洲精品在线观看| 国产一区二区亚洲精品在线观看| 26uuu在线亚洲综合色| av免费在线看不卡| 久久久久精品久久久久真实原创| 亚洲国产av新网站| 日韩强制内射视频| 日韩成人av中文字幕在线观看| 一级毛片久久久久久久久女| 亚洲综合精品二区| 久久人人爽人人片av| 亚洲av不卡在线观看| 可以在线观看毛片的网站| 中文在线观看免费www的网站| 免费看不卡的av| 伦精品一区二区三区| 国产免费福利视频在线观看| 3wmmmm亚洲av在线观看| 婷婷六月久久综合丁香| 久久久久久久久大av| 国产精品久久久久久精品电影| 国产精品国产三级国产av玫瑰| 激情 狠狠 欧美| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区三区| 26uuu在线亚洲综合色| 2022亚洲国产成人精品| 欧美日韩在线观看h| 久久久久久久午夜电影| 男女视频在线观看网站免费| 日韩一区二区三区影片| 尤物成人国产欧美一区二区三区| 精品亚洲乱码少妇综合久久| 看十八女毛片水多多多| av播播在线观看一区| 91av网一区二区| 草草在线视频免费看| 最近视频中文字幕2019在线8| 久久精品夜色国产| 精品久久久精品久久久| 久久99热6这里只有精品| 久久精品熟女亚洲av麻豆精品 | 麻豆成人午夜福利视频| 国产乱来视频区| videos熟女内射| 亚洲欧美成人精品一区二区| 成人高潮视频无遮挡免费网站| 国产熟女欧美一区二区| 国产精品国产三级专区第一集| 日产精品乱码卡一卡2卡三| 久久热精品热| 日日啪夜夜撸| 2022亚洲国产成人精品| 日本与韩国留学比较| 国产免费一级a男人的天堂| 亚洲电影在线观看av| 亚洲精品一二三| a级一级毛片免费在线观看| 高清视频免费观看一区二区 | 男女国产视频网站| 亚洲精品久久久久久婷婷小说| 亚洲精品乱久久久久久| 91久久精品国产一区二区三区| 精品久久久久久久末码| 免费黄色在线免费观看| 麻豆av噜噜一区二区三区| videos熟女内射| 美女高潮的动态| 小蜜桃在线观看免费完整版高清| 网址你懂的国产日韩在线| 久久久欧美国产精品| 两个人的视频大全免费| 婷婷六月久久综合丁香| 少妇裸体淫交视频免费看高清| 国产亚洲av嫩草精品影院| 亚洲av不卡在线观看| 亚洲国产日韩欧美精品在线观看| 日本黄大片高清| 男女边摸边吃奶| 天堂√8在线中文| 丰满人妻一区二区三区视频av| 国产高清国产精品国产三级 | 99久国产av精品| 高清在线视频一区二区三区| 日本三级黄在线观看| 禁无遮挡网站| 晚上一个人看的免费电影| 联通29元200g的流量卡| 中文字幕av在线有码专区| 久久久久久久久久成人| 日日啪夜夜撸| 一级爰片在线观看| 国产高清三级在线| 欧美激情国产日韩精品一区| 三级国产精品欧美在线观看| av免费观看日本| 免费看美女性在线毛片视频| 国产免费一级a男人的天堂| 亚洲精品成人久久久久久| 神马国产精品三级电影在线观看| 亚洲欧美成人综合另类久久久| 国产高清国产精品国产三级 | 女的被弄到高潮叫床怎么办| 亚洲精华国产精华液的使用体验| 欧美三级亚洲精品| av在线观看视频网站免费| av在线观看视频网站免费| 亚洲欧洲日产国产| 精品久久久久久久末码| 欧美高清性xxxxhd video| 黄色配什么色好看| 哪个播放器可以免费观看大片| 亚洲怡红院男人天堂| 欧美zozozo另类| 国产美女午夜福利| 精品久久久久久成人av| 亚洲性久久影院| av网站免费在线观看视频 | 69av精品久久久久久| 中文字幕免费在线视频6| 亚洲最大成人中文| 3wmmmm亚洲av在线观看| 久久综合国产亚洲精品| 国产视频内射| 熟妇人妻久久中文字幕3abv| 男女啪啪激烈高潮av片| 国产国拍精品亚洲av在线观看| 午夜福利视频1000在线观看| 亚洲欧美成人精品一区二区| 大陆偷拍与自拍| 男人舔女人下体高潮全视频| 好男人视频免费观看在线| 久热久热在线精品观看| 免费av观看视频| 久久热精品热| xxx大片免费视频| 男人和女人高潮做爰伦理| 久久99热6这里只有精品| 丝袜美腿在线中文| 中文乱码字字幕精品一区二区三区 | 精品久久久久久久久亚洲| 亚洲一级一片aⅴ在线观看| 丰满少妇做爰视频| 高清毛片免费看| 啦啦啦韩国在线观看视频| 狠狠精品人妻久久久久久综合| 国产久久久一区二区三区| 久久久久久久久中文| 国内精品美女久久久久久| 国产一区亚洲一区在线观看| 国产免费视频播放在线视频 | 国产av在哪里看| 青青草视频在线视频观看| 欧美丝袜亚洲另类| 狠狠精品人妻久久久久久综合| 欧美激情国产日韩精品一区| 欧美日韩在线观看h| 最近中文字幕高清免费大全6| 建设人人有责人人尽责人人享有的 | kizo精华| 男人舔奶头视频| 偷拍熟女少妇极品色| 99热全是精品| 高清视频免费观看一区二区 | 女的被弄到高潮叫床怎么办| 亚洲经典国产精华液单| 国内揄拍国产精品人妻在线| 日日摸夜夜添夜夜爱| 亚洲精品乱码久久久v下载方式| 日韩,欧美,国产一区二区三区| 精品久久久久久久久亚洲| 国语对白做爰xxxⅹ性视频网站| 可以在线观看毛片的网站| 夜夜看夜夜爽夜夜摸| 日日摸夜夜添夜夜添av毛片| 午夜日本视频在线| 久久6这里有精品| 国产久久久一区二区三区| 成人亚洲精品一区在线观看 | 国产色婷婷99| 九草在线视频观看| 爱豆传媒免费全集在线观看| 久久6这里有精品| 国产精品一区二区三区四区久久| 国语对白做爰xxxⅹ性视频网站| 精品亚洲乱码少妇综合久久| 国产老妇女一区| 亚洲怡红院男人天堂| 美女内射精品一级片tv| 简卡轻食公司| 精品久久久久久成人av| 赤兔流量卡办理| 国产黄色免费在线视频| 少妇猛男粗大的猛烈进出视频 | 一区二区三区高清视频在线| 亚洲精品色激情综合| 亚洲最大成人手机在线| 午夜精品一区二区三区免费看| 国产精品一区二区三区四区免费观看| 精品久久久久久电影网| 免费大片18禁| 免费观看a级毛片全部| 久久精品国产自在天天线| 亚洲18禁久久av| 少妇丰满av| 欧美zozozo另类| 亚洲欧美一区二区三区国产| 国产在线一区二区三区精| 国产探花极品一区二区| 看非洲黑人一级黄片| 欧美成人a在线观看| 亚洲av在线观看美女高潮| 日韩欧美一区视频在线观看 | 久久久久久久久久人人人人人人| 最近最新中文字幕免费大全7| 男人和女人高潮做爰伦理| 联通29元200g的流量卡| 久久99精品国语久久久| 欧美激情在线99| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品自产自拍| 麻豆国产97在线/欧美| 少妇熟女欧美另类| 熟妇人妻久久中文字幕3abv| 亚洲av男天堂| 国产成人aa在线观看| 内射极品少妇av片p| 免费播放大片免费观看视频在线观看| 欧美日韩国产mv在线观看视频 | 国产在视频线精品| 99久久精品一区二区三区| 少妇人妻一区二区三区视频| 97热精品久久久久久| 联通29元200g的流量卡| 亚洲精品久久久久久婷婷小说| 亚洲国产最新在线播放| 国产乱人偷精品视频| 国产白丝娇喘喷水9色精品| av免费在线看不卡| 日本黄色片子视频| 国产乱来视频区| 80岁老熟妇乱子伦牲交| 看非洲黑人一级黄片| 在线免费观看不下载黄p国产| 国内精品一区二区在线观看| 国产成人91sexporn| 午夜福利视频1000在线观看| 国产探花在线观看一区二区| 91av网一区二区| 亚洲国产色片| 精品少妇黑人巨大在线播放| 男女下面进入的视频免费午夜| 午夜福利在线观看吧| 免费少妇av软件| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 又黄又爽又刺激的免费视频.| 国产亚洲5aaaaa淫片| 日日摸夜夜添夜夜爱| 亚洲av成人精品一区久久| 街头女战士在线观看网站| 美女内射精品一级片tv| 国产成人午夜福利电影在线观看| 少妇丰满av| 大香蕉97超碰在线| 中文字幕久久专区| 久久99蜜桃精品久久| 亚洲综合精品二区| 久久这里有精品视频免费| 少妇被粗大猛烈的视频| 老司机影院成人| 少妇的逼水好多| eeuss影院久久| 国产精品嫩草影院av在线观看| 国产伦在线观看视频一区| 国产三级在线视频| 日日干狠狠操夜夜爽| 欧美xxⅹ黑人| 国产黄色免费在线视频| 日本wwww免费看| 亚洲av成人av| 三级国产精品片| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 欧美高清性xxxxhd video| 亚洲欧美精品专区久久| 午夜精品在线福利| 久久久久久久久中文| 少妇丰满av| 亚洲va在线va天堂va国产| 中文字幕亚洲精品专区| 国产黄色免费在线视频| 禁无遮挡网站| 欧美变态另类bdsm刘玥| 日韩三级伦理在线观看| 久久精品国产鲁丝片午夜精品| 最新中文字幕久久久久| 国产精品久久久久久精品电影小说 | 精品亚洲乱码少妇综合久久| 寂寞人妻少妇视频99o| 不卡视频在线观看欧美| 亚洲熟妇中文字幕五十中出| 99久国产av精品| 日韩av在线免费看完整版不卡| 18禁在线无遮挡免费观看视频| 高清视频免费观看一区二区 | 91精品国产九色| 尾随美女入室| 免费少妇av软件| 女人久久www免费人成看片| 2018国产大陆天天弄谢| 在线免费十八禁| 波多野结衣巨乳人妻| 麻豆久久精品国产亚洲av| 美女xxoo啪啪120秒动态图| 亚洲天堂国产精品一区在线| 最近中文字幕2019免费版| 国产视频首页在线观看| 直男gayav资源| 免费观看在线日韩| 激情五月婷婷亚洲| 久久精品国产鲁丝片午夜精品| 中文字幕av成人在线电影| 亚洲欧美日韩卡通动漫| 亚洲图色成人| 精品国产一区二区三区久久久樱花 | 久久久亚洲精品成人影院| 一区二区三区四区激情视频| 国产单亲对白刺激| 亚洲欧美日韩东京热| 99久久精品热视频| 国产人妻一区二区三区在| 成人欧美大片| 亚洲精华国产精华液的使用体验| 亚洲综合色惰| 超碰97精品在线观看| 成人毛片60女人毛片免费| 97热精品久久久久久| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 国产 一区 欧美 日韩| 26uuu在线亚洲综合色| 18禁动态无遮挡网站| 久久久午夜欧美精品| 久久精品夜色国产| 亚洲精品自拍成人| 三级毛片av免费| 亚洲欧美一区二区三区黑人 | 免费电影在线观看免费观看| 精品99又大又爽又粗少妇毛片| 只有这里有精品99| 亚洲av免费高清在线观看| 国产av码专区亚洲av| 日日干狠狠操夜夜爽| 亚洲av中文字字幕乱码综合| 在线免费观看的www视频| 国产精品国产三级国产专区5o| 亚洲精品aⅴ在线观看| 国产黄片视频在线免费观看| 中文在线观看免费www的网站| 久久久久精品久久久久真实原创| 国产一级毛片在线| 欧美日韩在线观看h| 亚洲一区高清亚洲精品| 天天躁夜夜躁狠狠久久av| 亚洲最大成人手机在线| 99视频精品全部免费 在线| 国产免费视频播放在线视频 | 丰满乱子伦码专区| 激情 狠狠 欧美| 日本一本二区三区精品| 久久精品久久久久久噜噜老黄| 乱系列少妇在线播放| 久久久久久久久中文| 黄片无遮挡物在线观看| 成人av在线播放网站| 日韩一区二区视频免费看| 亚洲精品亚洲一区二区| 久久综合国产亚洲精品| 国产在视频线在精品| 国产黄频视频在线观看| 最后的刺客免费高清国语| 国产在线男女| 国产成人福利小说| 亚洲不卡免费看| 国产亚洲5aaaaa淫片| 久99久视频精品免费| 成人av在线播放网站| 亚洲av二区三区四区| 日本爱情动作片www.在线观看| 天堂av国产一区二区熟女人妻| 日韩精品有码人妻一区| 女人被狂操c到高潮| 只有这里有精品99| 美女高潮的动态| 91午夜精品亚洲一区二区三区| 久久午夜福利片| 黄色日韩在线| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 亚洲av一区综合| 亚洲人成网站在线观看播放| 爱豆传媒免费全集在线观看| 亚洲人与动物交配视频| 中文字幕av成人在线电影| 麻豆成人午夜福利视频| ponron亚洲| 亚洲人与动物交配视频| 国产高清不卡午夜福利| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 色综合站精品国产| 久久亚洲国产成人精品v| 天美传媒精品一区二区| 欧美人与善性xxx| 免费看美女性在线毛片视频| 国产伦一二天堂av在线观看| 久久久精品欧美日韩精品| 成人午夜精彩视频在线观看| 七月丁香在线播放| 中文在线观看免费www的网站| 99久久精品热视频| av线在线观看网站| 久久这里只有精品中国| 成年av动漫网址| 国产伦精品一区二区三区视频9| 直男gayav资源| 亚洲综合色惰| 国产 一区 欧美 日韩| 美女黄网站色视频| 高清在线视频一区二区三区| 99久久中文字幕三级久久日本| 国产高清三级在线| 黑人高潮一二区| 亚洲三级黄色毛片| 国产精品三级大全| 日韩电影二区| 97在线视频观看| 少妇的逼水好多| 听说在线观看完整版免费高清| 亚洲性久久影院| 日日干狠狠操夜夜爽| 久久久久久久久久久免费av| 卡戴珊不雅视频在线播放| 少妇熟女aⅴ在线视频| 天美传媒精品一区二区| 亚洲最大成人中文| 嫩草影院入口| 你懂的网址亚洲精品在线观看| 99久国产av精品国产电影| 午夜日本视频在线| 亚洲av不卡在线观看| 在线免费观看的www视频| 免费人成在线观看视频色| 97在线视频观看| 欧美激情国产日韩精品一区| 亚洲四区av| 亚洲精品,欧美精品| 中文在线观看免费www的网站| 青春草亚洲视频在线观看| 高清午夜精品一区二区三区| 国产中年淑女户外野战色| 免费av毛片视频| 中文字幕av在线有码专区| videossex国产| 蜜臀久久99精品久久宅男| 九九爱精品视频在线观看| 色哟哟·www| 大香蕉久久网| 最近的中文字幕免费完整| 国产成人91sexporn| 亚洲国产日韩欧美精品在线观看| 春色校园在线视频观看| 日本色播在线视频| 国产一级毛片在线| 婷婷六月久久综合丁香| 免费黄频网站在线观看国产| 亚洲伊人久久精品综合| 成人亚洲精品av一区二区| 国产一区二区在线观看日韩| 免费黄网站久久成人精品| 久久99热这里只有精品18| 极品少妇高潮喷水抽搐| 日韩三级伦理在线观看| 秋霞伦理黄片| 免费看美女性在线毛片视频| 九草在线视频观看| 欧美xxxx黑人xx丫x性爽| 国产成人精品久久久久久| 好男人在线观看高清免费视频| 日韩精品青青久久久久久| 成人鲁丝片一二三区免费| 亚洲欧美成人综合另类久久久| 久久久a久久爽久久v久久| 久久久久久国产a免费观看| 亚洲无线观看免费| 欧美性感艳星| 免费大片黄手机在线观看| 亚洲综合精品二区| 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区| 少妇人妻一区二区三区视频| 色尼玛亚洲综合影院| 亚洲av成人av| 欧美变态另类bdsm刘玥| 国产黄片视频在线免费观看| 精品国产一区二区三区久久久樱花 | 特大巨黑吊av在线直播| 亚洲国产av新网站| 日本一本二区三区精品| 激情五月婷婷亚洲| 直男gayav资源| 欧美精品一区二区大全| 建设人人有责人人尽责人人享有的 | 男人舔奶头视频| 晚上一个人看的免费电影| 久久久久久久久大av| 中文字幕久久专区| 午夜亚洲福利在线播放| 在线a可以看的网站| 精品久久国产蜜桃| 日韩欧美精品免费久久| 亚洲av中文av极速乱| 亚洲一区高清亚洲精品| 久久久久久久久久黄片| 91狼人影院| 高清欧美精品videossex| 欧美日韩在线观看h| 精品99又大又爽又粗少妇毛片| 午夜激情久久久久久久| 国产探花极品一区二区| 免费观看的影片在线观看|