• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of intraocular lens power calculation using a standard ultrasonic biometer and a new optical biometer

    2016-05-17 03:32:58FarukKayaIbrahimKoakAliAydinHakanBayboraKorayKaradayi
    國(guó)際眼科雜志 2016年5期
    關(guān)鍵詞:測(cè)量?jī)x屈光度屈光

    Faruk Kaya, Ibrahim Ko?ak,2, Ali Aydin, Hakan Baybora, Koray Karadayi

    1Department of Ophthalmology, School of Medicine, Medipol University, cilar, Istanbul 34214, Turkey

    2Department of Ophthalmology, Nisa Hospital, Fatih Cad, Bah?elievler, Istanbul 34196, Turkey

    3Department of Ophthalmology, Near East University, Nicosia, Mersin 33000, Turkey

    Correspondence to:Ibrahim Ko?ak. Nisa Hospital, Fatih Cad. Bah?elievler, Istanbul 34196, Turkey. ibrahimkocak@msn.com

    Received: 2015-09-29  Accepted: 2016-02-22

    比較標(biāo)準(zhǔn)超聲波測(cè)量?jī)x和新型光學(xué)生物測(cè)量?jī)x計(jì)算人工晶狀體屈光度的準(zhǔn)確性

    Faruk Kaya1, Ibrahim Ko?ak1,2, Ali Aydin1, Hakan Baybora1, Koray Karadayi3

    (作者單位:1土耳其,伊斯坦布爾大學(xué),醫(yī)學(xué)院,眼科;2土耳其,伊斯坦布爾 34196,Bah?elievler,F(xiàn)atih Cad,Nisa醫(yī)院,眼科;3土耳其,梅爾辛33000,尼科西亞,Near East大學(xué),眼科)

    ?

    Comparison of intraocular lens power calculation using a standard ultrasonic biometer and a new optical biometer

    Faruk Kaya1, Ibrahim Ko?ak1,2, Ali Aydin1, Hakan Baybora1, Koray Karadayi3

    2Department of Ophthalmology, Nisa Hospital, Fatih Cad, Bah?elievler, Istanbul 34196, Turkey

    3Department of Ophthalmology, Near East University, Nicosia, Mersin 33000, Turkey

    Correspondence to:Ibrahim Ko?ak. Nisa Hospital, Fatih Cad. Bah?elievler, Istanbul 34196, Turkey. ibrahimkocak@msn.com

    Received: 2015-09-29Accepted: 2016-02-22

    比較標(biāo)準(zhǔn)超聲波測(cè)量?jī)x和新型光學(xué)生物測(cè)量?jī)x計(jì)算人工晶狀體屈光度的準(zhǔn)確性

    Faruk Kaya1, Ibrahim Ko?ak1,2, Ali Aydin1, Hakan Baybora1, Koray Karadayi3

    Abstract

    ?AIM:To compare the intraocular lens (IOL) power calculations and refractive outcomes obtained with a new optical biometer and standard ultrasonic biometer in phacoemulsification surgery.

    ?METHODS:Thirty-seven eyes of 37 cataract patients who underwent phacoemulsification with IOL implantation were included in this prospective comparative study. The same operator performed biometer measurements in eyes with cataract using a new optical biometer (Aladdin) and a standard ultrasonic biometer (Sonomed AB 5500). Biometric parameters;axial length (AL), keratometric (K) readings, anterior chamber depth (ACD) and IOL power obtained by two devices were recorded. Postoperative actual refractive errors and errors predicted by two devices according to SRK/T formula were analyzed. The mean estimation error (EE), mean absolute estimation error (AEE) and the biometric parameters obtained by two biometers were compared.

    ?RESULTS:The AL measured by Aladdin (23.45±0.73 mm) was significantly longer than AL by ultrasonic biometer (23.2±0.75 mm) (P=0.01). The mean EE and AEE values obtained by Aladdin were significantly smaller than the values by ultrasonic biometer (P=0.0006 and 0.03 respectively). The higher percentage of eyes within ±0.5 and ±1.00 D of target refraction was also found by using Aladdin (67% and 97%).

    ?CONCLUSION:The Aladdin optical biometer showed better accuracy and yielded better refractive outcomes compared with ultrasonic biometer.

    KEYWORDS:?Aladdin optical biometer;ultrasonic biometer;axial length;intraocular lens power calculation;postoperative refractive error

    Citation:Kaya F;Ko?ak I;Aydin A;Baybora H;Karadayi K. Comparison of intraocular lens power calculation using a standard ultrasonic biometer and a new optical biometer.GuojiYankeZazhi(IntEyeSci) 2016;16(5):807-810

    INTRODUCTION

    Correct intraocular lens power calculation is important in cataract surgery for successful postoperative refractive outcomes. In cataract surgery ocular biometer is essential for intraocular lens (IOL) power calculation. Chosen IOL formula defines the result of IOL power. For ultrasonic biometers, most of IOL formulas require keratometer (K) values, and axial length (AL)[1-2]. AL measurement is important for predicting the accuracy of the IOL calculation and it is source of the largest proportion of inaccurate measurements. Immersion A-scan technique is presumably more accurate than contact A- scan ultrasonography as it needs no indentation of the cornea[3].

    Optical biometer devices can measure some other variables. They are fast, non invasive and independent from technician experience. The built in software in these devices gives us more accurate IOL power calculation and multiple choices of IOL formulas[4-5]. Several new optical biometers can also perform ocular biometry and IOL power calculation as accurate as the first standard optical biometer such as IOL Master (Carl Zeiss Meditec AG, Jena, Germany)[6]. The Aladdin (Topcon, Tokyo, Japan) is one of the most recently released optical biometer. The device is an optical low coherence interferometer (OLCI) which can measure six variables;K value, AL, anterior chamber depth (ACD), white to white (WTW) diameter, pupil size, corneal topography. AL is measured using OLCI with 820 nm super-luminescent diode. ACD is measured using light emitting diode (LED) making horizontal slit projections across the anterior chamber, similarly to the IOL Master. Corneal topography and keratometer measurements are based on 24 Placido disk reflection[7]. The IOL power is calculated by five different formulas built into the device.

    The purpose of this study is to evaluate and compare the difference of variables K value,AL, ACD and IOL power measured using ultrasonic biometer and optical biometer.

    SUBJECTS AND METHODS

    Subjects enrolled in this prospective comparative study were patients with cataract who were candidates for phacoemulsification with IOL implantation surgery at Ophthalmology Department of Nisa Hospital, Istanbul, Turkey between Nov. 17thand Dec. 29th, 2014. The study project was approved by Institutional Ethical Board of Istanbul Medipol University. All research and data collection adhered to the tenets of the Declaration of Helsinki. The study was explained to each patient and written informed consent was obtained.

    Preoperatively all patients had a complete examination including manifest refraction,best-corrected visual acuity (BCVA) testing, intraocular pressure (IOP) measurements with applanation tonometer, slit lamp, and dilated fundus examinations. Ocular biometer was first performed by Aladdin optical biometer followed by ultrasonic biometer (Sonomed AB 5500, Lake Success, NY, USA). Patients with good quality Aladdin biometer measurements were included in the study.

    Exclusion criteria were history of traumatic or uveitic cataracts, previous intraocular or corneal surgery (e.g. refractive surgery or glaucoma surgery), intraoperative complications (e.g. anterior or posterior capsule ruptures, vitreous loss or zonule dehiscence), or postoperative complications (e.g. tilted or decentered IOL).

    Each patient underwent biometric measurement on Aladdin optical biometer by the same examiner (Kaya F). After carefully positioning of patient, Aladdin biometer was focused as determined by a clear view of anterior segment and the display of a ‘green eye’ quality control image. Six AL measurements, three K values and three ACD readings were obtained. The goal in IOL power selection was a value that would provide a postoperative refraction nearest to plano, staying on the side of myopia. The power selection of implanted IOLs was determined based on the SRK/T formula. Another experienced ophthalmologist (Ko?ak I) performed applanation ultrasound biometer after application of one drop topical anesthetic (proparacaine 0.5%). K values requested for ultrasonic biometer were measured using an autorefractometer (Topcon KR 8800, Tokyo, Japan). Mean of five AL and K measurements was used to calculate IOL power based on the SRK/T formula.

    All phacoemulsification and IOL implantations were performed under topical anesthesia by one of three experienced surgeons (Kaya F, Ko?ak I, Aydin A). A standard phacoemulsification was performed through a 2.8 mm temporal clear corneal incision. The monoblock foldable hydrophobic acrylic IOL (Focus force F260, A-constant of 118.4, Zarracom, Turkey) was inserted into the capsular bag using an injector system.

    By the end of first postoperative month, ophthalmological examination was carried out for all patients. Postoperative objective refractive error was measured by using autorefractometer. Uncorrected visual acuity (UCVA) and BCVA were also evaluated.

    The estimation error (EE) was defined as the difference between the postoperative objective refractive error (spherical equivalent) and the preoperatively predicted refractive errors by two different biometers using SRK/T formulas for the power of IOL implanted. The absolute estimation error (AEE) was defined as the absolute value of the EE. For example, if postoperative objective error is -0.75D and preoperative predicted error is -0.12D, the EE is calculated as -0.75-(-0.12) =-0.63D. The AEE (the absolute value of EE) is [-0.63]=0.63D.

    Paired studentt-test and Wilcoxon test are used for comparison of parameters obtained from two devices.We used studentt-test to compare K value, AL, ACD, EE and AEE as the groups had normal distribution. We used Wilcoxon test to compare percentages of eyes within target refraction for two devices as the groups did not have normal distribution. Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS) version 12.0 (SPSS Inc., Chicago, Illinois, USA).P<0.05 were considered to be statistically significant.

    Table 1Clinical characteristics of patients

    ParameterMean±SDRangeAge(a)67.9±7.647to81Sex,n(%) M15(40%)- F22(60%)-Laterality,n(%) R19(51%)- L18(49%)-ImplantedIOLpower(D)21.8±2.0514.5to25

    Table 2Comparison of biometric parameters measured by two devices

    ParametersOpticalbiometerUltrasonicbiometer(Kvaluebyautoref.)aPK(D),Mean±SD(Range)43.3±1.4(40.4to46.7)43.4±1.5(40.2to47)P=0.78AL(mm),Mean±SD(Range)23.4±0.7(21.7to24.7)23.2±0.7(21.7to24.6)P=0.01ACD(mm),Mean±SD(Range)3.1±0.2(2.4to3.6)3.0±0.3(2.4to3.6)P=0.08

    K:Keratometry;AL:Axial length;ACD:Anterior chamber depth;aStudentt-test.

    Table 3The results concerning the estimation error, absolute estimation error, and percentages of eyes within target refraction for two devices

    ParametersOpticalbiometerUltrasonicbiometerPEE(D)Mean±SD(Range)0.13±0.56(-1.16to0.97)0.36±0.59(-0.73to1.49)P=0.0006aAAE(D)Mean±SD(Range)0.42±0.30(0.02to1.16)0.59±0.35(0to1.49)P=0.03aEyeswithin±0.50D(SE)67%58%P=0.18bEyeswithin±1.00D(SE)97%88%P=0.14b

    EE:Estimation error;AAE:Absolute estimation error;SE:Spherical equivalent;aStudentt-test;bWilcoxon test.

    RESULTS

    Forty eyes of 40 patients were included in the study. Three eyes were excluded due to the intra-operative complications such as posterior capsule rupture, vitreous loss and zonule dehiscence. Characteristics of patients are shown in Table 1.

    Biometric parameters including K value, AL and ACD are shown on Table 2. The AL measured by Aladdin (23.4±0.7 mm) was significantly longer than AL by ultrasonic biometer (23.2±0.7mm) (P=0.01). The mean ACD measurement by Aladdin was also longer than the ACD by ultrasonic biometer, however the difference was not statistically significant (P=0.08). There was no statistically significant difference between two devices in measuring the mean K value (P=0.78).

    The postoperative mean refractive error (spherical equivalent) was 0.13±0.66 D (range -1.50 to+1.25D). The results concerning the estimation error (EE), absolute estimation error (AEE), and percentages of eyes within target refraction for two devices are shown in Table 3. The mean EE obtained by using Aladdin was significantly smaller than EE by ultrasonic biometer (0.13±0.56 Dvs0.36±0.59 D) (P=0.0006). Also, the mean AEE obtained by using Aladdin was significantly smaller than AEE by ultrasonic biometer (0.42±0.30 Dvs0.59±0.35 D) (P=0.03). Aladdin optical biometer predicted more eyes with EE within ±0.50 and ±1.00 D of target refraction compared to ultrasonic biometer, however the differences were not statistically significant (P=0.18 andP=0.14).

    DISCUSSION

    Today’s cataract patients have greater expectations and request irreproachable results, especially about refractive subjects.IOL power calculation is essential for assessing the success of cataract surgery. Incorrect lens power calculation is the main cause of dissatisfaction and lens exchange in cataract surgery, especially in eyes with short or long axial lengths[8-11]. Ultrasound biometer is still used for IOL calculation;it is more favorable than optical biometer, especially in cases with dense cataract, media or corneal opacity and vitreous opacities. Optical biometer is a newer technology and has some advantages such as high accuracy, non contact and non invasive measurements, higher speed, higher patient comfort. As light has a very short wavelength compared to sound, the laser light has better resolution, because resolution improves as wavelength decreases. Therefore the accuracy of AL measured with ultrasound biometer is approximately 0.10-0.12 mm compared to 0.012 mm for measurement with optical biometer. Optical biometer is recommended to be used especially in cases those premium IOLs such as multifocal or toric IOLs will be used. But high cost of equipment, inability to measure dense cataracts, some corneal abnormalities and eyes with poor fixation are disadvantages of optical biometers[7].

    Previous studies have compared two devices[3,12-21]. Fontesetal[3]found that both methods had high precision and reproducibility but there was a trend toward a subtle improvement in the prediction for postoperative refraction with optical biometer. Rajanetal[12]showed that optical biometer improved the predictive value for postoperative refraction in pseudophakic eyes. Kissetal[13], Packeretal[14], and Haigisetal[15]proved similar improvement in the prediction for postoperative refraction with optical biometer and US biometer.Bhattetal[16]showed similar results. Optical biometer was a beter predictor of postoperative refraction than US biometer, particularly within close ranges. In two study of Gantenbeinetal[17-18]and a study of Kutschan and Wiegand[19];the accuracy of postoperative refraction compared to the preoperative target was beter with US biometer compared to the optical biometer. In Gantenbeinetal’s[17-18]study optical biometer measured AL longer than US biometer and measured keratometry lower than Javal keratometer. Landers and Goggin[20]found that optical biometers predict more correct refractive outcomes compared to US biometer. In optical biometer, AL measurements were longer than US biometer, but they had similar results for ACD measurements. In another study, Nemethetal[21]showed that, AL and ACD was measured longer by optical biometer compared to US biometer.

    Because of optical biometers’ high success in prediction of postoperative refraction, there is a widespread use of them for premium IOLs such as multifocal or toric IOLs. As we use commonly monofocal IOLs in our clinic, we wanted to evaluate and compared success of Aladdin and US biometer for monofocal IOLs.

    In our study the Aladdin provided shorter ACD, but longer AL than US biometer. Difference in AL was statistically significant, but difference in ACD was not significant statistically. Most of previous studies also predicted longer ALs[17-18,20-21]. While US biometers use corneal epithelium and internal limiting membrane as reference points in measuring AL, optical biometers use the second principal plane of the cornea (0.05 mm deeper than the corneal apex) and photoreceptor layer (0.25 mm deeper than ILM). This may explain longer AL measurements with optical biometers. The power selection of implanted IOLs was determined based on the SRK/T formula, because it was one of the most common used formulas and it was found as one of the most successful formulas in determining postoperative refractive error[22]. Although there was no statistically significant difference, the Aladdin optical biometer obtained better refractive outcomes correlated with some previous studies[3,16,20]and predicted more eyes with EE within target diopters when compared US biometer. Also Aladdin optical biometer predicted smaller EE and AEE than ultrasonic biometer and the difference was statistically significant.

    REFERENCES

    1 Lee AC, QAzi MA, Pepose JS. Biometry and intraocular lens power calculation.CurrOpinOphthalmol2008;19(1):13-17

    2 Joo J, Whang WJ, Oh TH, Kang KD, Kim HS, Moon JI. Accuracy of intraocular lens power calculation formulas in primary angle closure glaucoma.KoreanJOphthalmol2011;25(6):375-379

    3 Fontes BM, Fontes BM, Castro E. Intraocular lens power calculation by measuring axial length with partial optical coherence and ultrasonic biometry.ArqBrasOftalmol2011;74(3):166-170

    4 Wang JK, Chang SW. Optical biometry intraocular lens power calculation using different formulas in patients with different axial lengths.IntJOphthalmol2013;6(2):150-154

    5 Rabsilber TM, Jepsen C, Auffarth GU, Holzer MP. Intraocular lens power calculation:clinical comparison of 2 optical biometry devices.JCataractRefractSurg2010;36(2):230-234

    6 Chen YA, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer.JCataractRefractSurg2011;37(3):513-517

    7 Mandal P, Berrow EJ, Naroo SA, Wolffsohn JS, Uthoff D, Holland D, Shah S. Validity and repeatability of the Aladdin ocular biometer.BrJOphthalmol2014;98(2):256-258

    8 Jin GJ, Crandall AS, Jones JJ. Intraocular lens exchange due to incorrect lens power.Ophthalmology2007;114(3):417-424

    9 Kiss B, Findl O, Menapace R, Wirtitsch M, Drexler W, Hitzenberger CK, Fercher AF. Biometry of cataractous eyes using partial coherence interferometry:clinical feasibility study of a commercial prototype I.JCataractRefractSurg2002;28(2):224-229

    10 Wang L, Shirayama M, Ma XJ, Kohnen T, Koch DD. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm.JCataractRefractSurg2011;37(11):2018-2027

    11 Moschos MM, Chatziralli IP, Koutsandrea C. Intraocular lens power calculation in eyes with short axial length.IndianJOphthalmol2014;62(6):692-694

    12 Rajan MS, Keilhorn I and Bell JA. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations.Eye(Lond) 2002;16(5):552-556

    13 Kiss B, Findl O, Menapace R, Wirtitsch M, Petternel V, Drexler W, Rainer G, Georgopoulos M, Hitzenberger CK, Fercher AF. Refractive outcome of cataract surgery using partial coherence interferometry and ultrasound biometry:clinical feasibility study of a commercial prototype II.JCataractRefractSurg2002;28(2):230-234

    14 Packer M, Fine IH, Hoffman RS, Coffman PG, Brown LK. Immersion A-scan compared with partial coherence interferometry:outcomes analysis.JCataractRefractSurg2002;28(2):239-242

    15 Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis.GraefesArchClinExpOphthalmol2000;238(9):765-773

    16 Bhatt AB, Schefler AC, Feuer WJ, Yoo SH, Murray TG. Comparison of predictions made by the intraocular lens master and ultrasound biometry.ArchOphthalmol2008;126(7):929-933

    17 Gantenbein CP, Ruprecht KW. Comparison between optical and acoustical biometry.JFrOphtalmol2004;27(10):1121-1127

    18 Gantenbein C, Lang HM, Ruprecht KW, Georg T. First steps with the Zeiss IOLMaster:A comparison between acoustic contact biometry and non-contact optical biometry.KlinMonblAugenheilkd2003;220(5):309-314

    19 Kutschan A, Wiegand W. Individual postoperative refraction after cataract surgery-a comparison of optical and acoustical biometry.KlinMonblAugenheilkd2004;221(9):743-748

    20 Landers J, Goggin M. Comparison of refractive outcomes using immersion ultrasound biometry and IOLMaster biometry.ClinExperimentOphthalmol2009;37(6):566-569

    21 Németh J, Fekete O, Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation.JCataractRefractSurg2003;29(1):85-88

    22 Kaya F, Kocak I, Aydin A, Baybora H, Karabela Y. Comparison of different formulas for intraocular lens power calculation using a new optical biometer.JFrOphthalmol2015;38(8):717-722

    摘要

    關(guān)鍵詞:Aladdin光學(xué)生物測(cè)量?jī)x;超聲波測(cè)量?jī)x;眼軸長(zhǎng);人工晶狀體屈光度數(shù);術(shù)后屈光不正

    DOI:10.3980/j.issn.1672-5123.2016.5.04

    通訊作者:Ibrahim Ko?ak. ibrahimkocak@msn.com

    目的:比較超乳手術(shù)時(shí)應(yīng)用新型光學(xué)生物測(cè)量?jī)x和標(biāo)準(zhǔn)超聲波測(cè)量?jī)x計(jì)算人工晶狀體的屈光度及屈光結(jié)果。

    方法:前瞻性研究。研究包含37例37眼白內(nèi)障患者接受白內(nèi)障超聲乳化聯(lián)合人工晶狀體植入術(shù)。同一測(cè)量人員分別使用新型光學(xué)生物測(cè)量?jī)x(Aladdin)與標(biāo)準(zhǔn)超聲波測(cè)量?jī)x(Sonomed AB 5500)對(duì)白內(nèi)障患者進(jìn)行檢測(cè)。通過(guò)這兩種設(shè)備記錄生物測(cè)定參數(shù),包括眼軸長(zhǎng)度、角膜曲率、前房深度及人工晶狀體屈光度數(shù)。分析術(shù)后實(shí)際屈光不正與兩臺(tái)設(shè)備根據(jù)SRK/T公式計(jì)算的誤差,比較兩臺(tái)設(shè)備檢查結(jié)果的平均估計(jì)誤差(EE)、平均絕對(duì)估計(jì)誤差(AEE)及生物測(cè)定參數(shù)。

    結(jié)果:Aladdin測(cè)量?jī)x(23.45±0.73 mm)較超聲波測(cè)量?jī)x(23.2±0.75 mm)檢測(cè)出的眼軸顯著較長(zhǎng)(P=0.01)。Aladdin測(cè)量?jī)x的EE與AEE均明顯小于超聲波測(cè)量?jī)x(P=0.0006與0.03)。應(yīng)用Aladdin測(cè)量的大多數(shù)眼與目標(biāo)屈光度相差在±0.5(67%)及±1.00(97%)以內(nèi)。

    結(jié)論:Aladdin光學(xué)生物測(cè)量?jī)x較超聲波測(cè)量?jī)x更精確,屈光結(jié)果更準(zhǔn)確。

    引用:Kaya F, Ko?ak I, Aydin A, Baybora H, Karadayi K. 比較標(biāo)準(zhǔn)超聲波測(cè)量?jī)x和新型光學(xué)生物測(cè)量?jī)x計(jì)算人工晶狀體屈光度的準(zhǔn)確性.國(guó)際眼科雜志2016;16(5):807-810

    ·Original article·

    猜你喜歡
    測(cè)量?jī)x屈光度屈光
    青少年近視初診散瞳前、后的屈光度比較
    水平度與垂直度精密測(cè)量?jī)x
    基于單片機(jī)的便捷式LCF測(cè)量?jī)x
    電子制作(2019年9期)2019-05-30 09:42:02
    兒童屈光不正性弱視的治療方法及遠(yuǎn)期療效
    揭秘身高體重測(cè)量?jī)x
    硬性角膜接觸鏡在矯正屈光參差中的應(yīng)用
    屈光參差患者水平垂直融像功能變化(中)
    屈光參差的配鏡原則
    寬電容測(cè)量?jī)x的設(shè)計(jì)
    電子制作(2017年7期)2017-06-05 09:36:14
    飛秒激光制瓣聯(lián)合準(zhǔn)分子激光角膜原位磨鑲術(shù)治療不同屈光度近視的療效分析
    不卡一级毛片| 91大片在线观看| 精品久久久精品久久久| 久久久国产欧美日韩av| 亚洲av电影在线进入| 亚洲成av人片免费观看| 制服人妻中文乱码| 在线国产一区二区在线| 午夜视频精品福利| 女生性感内裤真人,穿戴方法视频| 99riav亚洲国产免费| 午夜久久久在线观看| 欧美国产精品va在线观看不卡| 12—13女人毛片做爰片一| 在线永久观看黄色视频| 一区二区三区精品91| 午夜成年电影在线免费观看| 99国产精品一区二区三区| 成人国产一区最新在线观看| 久久久久久国产a免费观看| 波多野结衣一区麻豆| 成人18禁高潮啪啪吃奶动态图| 亚洲av五月六月丁香网| 精品一品国产午夜福利视频| 51午夜福利影视在线观看| 精品国产一区二区久久| 99国产精品99久久久久| 日本五十路高清| 99在线人妻在线中文字幕| 国产亚洲av嫩草精品影院| 伦理电影免费视频| 国产视频一区二区在线看| 免费少妇av软件| 一级a爱片免费观看的视频| 欧美最黄视频在线播放免费| 91大片在线观看| 黄色a级毛片大全视频| 国产熟女xx| 97人妻天天添夜夜摸| 国产亚洲av高清不卡| 一区二区三区激情视频| 变态另类丝袜制服| 国产精品秋霞免费鲁丝片| 中文字幕av电影在线播放| 老汉色∧v一级毛片| 在线免费观看的www视频| 十八禁人妻一区二区| 欧美色欧美亚洲另类二区 | 久久国产亚洲av麻豆专区| 久久人妻av系列| 在线十欧美十亚洲十日本专区| 亚洲国产精品sss在线观看| 黄色视频,在线免费观看| 三级毛片av免费| 国产成人免费无遮挡视频| 悠悠久久av| 一二三四社区在线视频社区8| 成人手机av| 欧美久久黑人一区二区| 亚洲中文字幕一区二区三区有码在线看 | 91国产中文字幕| 黄色丝袜av网址大全| 国产精品免费视频内射| 亚洲久久久国产精品| 一本久久中文字幕| 日日摸夜夜添夜夜添小说| 12—13女人毛片做爰片一| 欧美激情极品国产一区二区三区| 日韩有码中文字幕| 国产成人精品久久二区二区免费| 此物有八面人人有两片| 国内毛片毛片毛片毛片毛片| 成年女人毛片免费观看观看9| 国产免费男女视频| 精品人妻在线不人妻| 老鸭窝网址在线观看| 午夜久久久在线观看| 亚洲欧美精品综合一区二区三区| 他把我摸到了高潮在线观看| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清在线视频| 999久久久国产精品视频| 久久久久久国产a免费观看| 午夜老司机福利片| 日韩国内少妇激情av| 亚洲国产看品久久| 国产精华一区二区三区| 国产精品电影一区二区三区| 韩国精品一区二区三区| 亚洲七黄色美女视频| 熟女少妇亚洲综合色aaa.| 国产精品国产高清国产av| 国产主播在线观看一区二区| a在线观看视频网站| 国产精品一区二区免费欧美| 日本免费一区二区三区高清不卡 | 9热在线视频观看99| 久热这里只有精品99| 又大又爽又粗| 日日夜夜操网爽| 久久人人97超碰香蕉20202| 天天添夜夜摸| 欧美中文日本在线观看视频| 黄色成人免费大全| 一二三四社区在线视频社区8| 日韩有码中文字幕| 免费在线观看视频国产中文字幕亚洲| 丰满的人妻完整版| 香蕉国产在线看| 国产精品野战在线观看| 国产真人三级小视频在线观看| 人成视频在线观看免费观看| 黑人欧美特级aaaaaa片| 亚洲精品在线观看二区| 亚洲五月天丁香| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三区在线| av有码第一页| 国产亚洲欧美精品永久| 国产一级毛片七仙女欲春2 | e午夜精品久久久久久久| 超碰成人久久| 99精品欧美一区二区三区四区| 亚洲人成电影免费在线| 激情在线观看视频在线高清| 黄片小视频在线播放| 国产欧美日韩一区二区精品| 亚洲午夜理论影院| 一区二区日韩欧美中文字幕| 成人手机av| 丝袜美足系列| 国产主播在线观看一区二区| tocl精华| 少妇熟女aⅴ在线视频| 久久精品aⅴ一区二区三区四区| 嫁个100分男人电影在线观看| 看免费av毛片| 国产野战对白在线观看| 丝袜人妻中文字幕| 欧美日本视频| 久久精品国产清高在天天线| 国产精品美女特级片免费视频播放器 | 久久人妻熟女aⅴ| 午夜久久久在线观看| 激情视频va一区二区三区| 国产三级黄色录像| 亚洲第一欧美日韩一区二区三区| 国产精品免费视频内射| 日韩欧美一区视频在线观看| 久久精品91无色码中文字幕| www国产在线视频色| 我的亚洲天堂| 亚洲国产看品久久| 操出白浆在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 激情在线观看视频在线高清| 国产精品一区二区三区四区久久 | 国产高清videossex| 色哟哟哟哟哟哟| 成在线人永久免费视频| 久久伊人香网站| 女同久久另类99精品国产91| 久久久国产精品麻豆| 亚洲免费av在线视频| 九色亚洲精品在线播放| 亚洲精品粉嫩美女一区| 国产精品亚洲av一区麻豆| 侵犯人妻中文字幕一二三四区| 国产黄a三级三级三级人| 久久精品国产99精品国产亚洲性色 | 日本 av在线| 两性夫妻黄色片| 咕卡用的链子| 美女高潮喷水抽搐中文字幕| 亚洲人成伊人成综合网2020| av免费在线观看网站| 日韩三级视频一区二区三区| 成人国语在线视频| 欧美日韩黄片免| 99国产综合亚洲精品| 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| 亚洲七黄色美女视频| 人人澡人人妻人| 精品人妻1区二区| 中亚洲国语对白在线视频| 啦啦啦韩国在线观看视频| 无遮挡黄片免费观看| 亚洲精品久久国产高清桃花| 国产亚洲精品综合一区在线观看 | 国产在线观看jvid| 99精品久久久久人妻精品| 亚洲自偷自拍图片 自拍| av视频免费观看在线观看| bbb黄色大片| 日韩精品中文字幕看吧| 久久久久久大精品| 人人澡人人妻人| 日韩成人在线观看一区二区三区| 在线观看免费日韩欧美大片| 搡老熟女国产l中国老女人| 色综合亚洲欧美另类图片| 国产欧美日韩综合在线一区二区| av电影中文网址| 久久狼人影院| 日本撒尿小便嘘嘘汇集6| 老熟妇乱子伦视频在线观看| 欧美日本中文国产一区发布| 欧美中文综合在线视频| 国产精品综合久久久久久久免费 | 国产熟女xx| 国产91精品成人一区二区三区| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| or卡值多少钱| 久久影院123| 午夜福利18| 香蕉国产在线看| 欧美日韩瑟瑟在线播放| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看 | 午夜福利18| 国产精华一区二区三区| 777久久人妻少妇嫩草av网站| 国产精品九九99| 欧美中文综合在线视频| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 日韩精品中文字幕看吧| 叶爱在线成人免费视频播放| 中文字幕久久专区| 在线永久观看黄色视频| 欧美丝袜亚洲另类 | av片东京热男人的天堂| 黄色 视频免费看| 久久精品国产亚洲av高清一级| 国产99久久九九免费精品| 男人舔女人下体高潮全视频| 精品熟女少妇八av免费久了| 亚洲人成网站在线播放欧美日韩| 大陆偷拍与自拍| 精品第一国产精品| 一级a爱片免费观看的视频| 99精品久久久久人妻精品| av免费在线观看网站| 亚洲性夜色夜夜综合| 91大片在线观看| 美女免费视频网站| 老司机午夜十八禁免费视频| 国产午夜福利久久久久久| 搡老妇女老女人老熟妇| 亚洲av成人一区二区三| 美女高潮到喷水免费观看| 久久伊人香网站| 国产野战对白在线观看| 国产麻豆69| 亚洲中文字幕日韩| 久久亚洲真实| 在线十欧美十亚洲十日本专区| 久久香蕉国产精品| 亚洲精品国产色婷婷电影| 精品久久久久久,| 在线观看日韩欧美| 亚洲专区国产一区二区| 高清黄色对白视频在线免费看| 久久 成人 亚洲| 他把我摸到了高潮在线观看| 精品久久蜜臀av无| 亚洲自拍偷在线| 亚洲一卡2卡3卡4卡5卡精品中文| 久热爱精品视频在线9| 国产亚洲精品久久久久5区| 中文字幕久久专区| 国产成年人精品一区二区| 成人三级做爰电影| 国产男靠女视频免费网站| 午夜精品在线福利| 日韩中文字幕欧美一区二区| 啪啪无遮挡十八禁网站| 日韩精品中文字幕看吧| 日日干狠狠操夜夜爽| 亚洲国产欧美网| 欧美黑人欧美精品刺激| 国产精品一区二区在线不卡| 午夜福利欧美成人| 自拍欧美九色日韩亚洲蝌蚪91| 久久欧美精品欧美久久欧美| 波多野结衣一区麻豆| 变态另类成人亚洲欧美熟女 | 亚洲电影在线观看av| 69av精品久久久久久| 国产熟女xx| 久久精品人人爽人人爽视色| 日韩大尺度精品在线看网址 | 久久久久久久久中文| 国产精品一区二区三区四区久久 | 色综合婷婷激情| 亚洲男人天堂网一区| 午夜久久久在线观看| 精品久久久久久,| 国产精品秋霞免费鲁丝片| 老司机靠b影院| 视频在线观看一区二区三区| 手机成人av网站| 国内毛片毛片毛片毛片毛片| netflix在线观看网站| 19禁男女啪啪无遮挡网站| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 两人在一起打扑克的视频| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区| 国产精品99久久99久久久不卡| 18禁美女被吸乳视频| 在线观看舔阴道视频| 日本精品一区二区三区蜜桃| 国产精品一区二区免费欧美| 国产精品久久久人人做人人爽| 精品日产1卡2卡| 色在线成人网| 国产成人欧美在线观看| 97人妻精品一区二区三区麻豆 | 国产精品 欧美亚洲| 97人妻精品一区二区三区麻豆 | 亚洲天堂国产精品一区在线| 精品国产美女av久久久久小说| 91麻豆av在线| 国产不卡一卡二| 国产97色在线日韩免费| 村上凉子中文字幕在线| e午夜精品久久久久久久| 日韩精品青青久久久久久| 欧美人与性动交α欧美精品济南到| 午夜两性在线视频| 久久性视频一级片| 激情视频va一区二区三区| a在线观看视频网站| 一二三四在线观看免费中文在| 黄色视频,在线免费观看| 精品高清国产在线一区| 亚洲人成77777在线视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲久久久国产精品| xxx96com| 久久精品影院6| 欧美一级a爱片免费观看看 | 亚洲,欧美精品.| 级片在线观看| 宅男免费午夜| 亚洲情色 制服丝袜| 在线永久观看黄色视频| 久久影院123| 91麻豆精品激情在线观看国产| 国产成人啪精品午夜网站| 日韩精品免费视频一区二区三区| 免费久久久久久久精品成人欧美视频| av视频免费观看在线观看| 久久伊人香网站| 两个人免费观看高清视频| 亚洲av电影不卡..在线观看| 久久精品aⅴ一区二区三区四区| 国产亚洲欧美精品永久| 久久精品国产亚洲av香蕉五月| 自拍欧美九色日韩亚洲蝌蚪91| 美女免费视频网站| 欧美中文综合在线视频| 亚洲视频免费观看视频| 精品一区二区三区av网在线观看| 亚洲精品美女久久av网站| 久久青草综合色| 亚洲熟妇熟女久久| 国产1区2区3区精品| 视频区欧美日本亚洲| 真人做人爱边吃奶动态| 欧美午夜高清在线| 国产亚洲欧美98| 一边摸一边抽搐一进一出视频| 国产精品久久久久久精品电影 | 狠狠狠狠99中文字幕| 午夜久久久在线观看| 久久久久久人人人人人| 免费搜索国产男女视频| 国产1区2区3区精品| 在线观看免费视频网站a站| 午夜老司机福利片| 亚洲欧美日韩另类电影网站| 叶爱在线成人免费视频播放| 怎么达到女性高潮| 婷婷六月久久综合丁香| 97超级碰碰碰精品色视频在线观看| 亚洲熟女毛片儿| 性色av乱码一区二区三区2| 免费在线观看日本一区| 男人舔女人下体高潮全视频| 国产麻豆69| 亚洲精品国产区一区二| 免费搜索国产男女视频| 一区二区三区国产精品乱码| 美女午夜性视频免费| 亚洲一码二码三码区别大吗| 级片在线观看| 91成人精品电影| 久久性视频一级片| 欧美最黄视频在线播放免费| 淫妇啪啪啪对白视频| 免费少妇av软件| 波多野结衣一区麻豆| 精品久久久精品久久久| 久久久水蜜桃国产精品网| 亚洲国产中文字幕在线视频| 日本五十路高清| 国产成人av教育| 午夜视频精品福利| 好男人在线观看高清免费视频 | 制服人妻中文乱码| av在线播放免费不卡| 性少妇av在线| 一区二区三区高清视频在线| 满18在线观看网站| 国产精品亚洲美女久久久| 老汉色av国产亚洲站长工具| 午夜久久久久精精品| 国产又色又爽无遮挡免费看| 99久久国产精品久久久| 老司机靠b影院| 高清毛片免费观看视频网站| 亚洲一区二区三区不卡视频| 国产成人精品在线电影| 一级毛片精品| 99精品欧美一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 精品电影一区二区在线| 亚洲人成电影观看| 欧美国产精品va在线观看不卡| 日本精品一区二区三区蜜桃| 最近最新中文字幕大全电影3 | 亚洲一区二区三区色噜噜| 天天添夜夜摸| 国产激情欧美一区二区| 99热只有精品国产| 亚洲天堂国产精品一区在线| 国产蜜桃级精品一区二区三区| 久久久国产成人精品二区| 亚洲 国产 在线| 亚洲一卡2卡3卡4卡5卡精品中文| 中文亚洲av片在线观看爽| 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av | 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 麻豆一二三区av精品| 亚洲激情在线av| 亚洲精品国产色婷婷电影| 俄罗斯特黄特色一大片| 性色av乱码一区二区三区2| 精品国产乱子伦一区二区三区| 在线视频色国产色| 成人手机av| 亚洲色图av天堂| 大陆偷拍与自拍| 国产成人av激情在线播放| 在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 国产视频一区二区在线看| 一夜夜www| 丝袜美足系列| 国产成人精品在线电影| 精品国产乱子伦一区二区三区| 岛国视频午夜一区免费看| 多毛熟女@视频| 搡老岳熟女国产| 国产单亲对白刺激| av天堂在线播放| 国产国语露脸激情在线看| 乱人伦中国视频| 欧美日韩亚洲国产一区二区在线观看| 国产成年人精品一区二区| 亚洲国产欧美网| 69av精品久久久久久| 在线观看www视频免费| 黄色片一级片一级黄色片| 啦啦啦免费观看视频1| 久久热在线av| 极品教师在线免费播放| 麻豆成人av在线观看| 日韩有码中文字幕| 美女午夜性视频免费| 久久久久久久久免费视频了| 亚洲人成77777在线视频| 成年版毛片免费区| 男人操女人黄网站| 亚洲国产毛片av蜜桃av| xxx96com| 免费看美女性在线毛片视频| 久久香蕉精品热| 日韩有码中文字幕| 在线观看一区二区三区| 精品国内亚洲2022精品成人| 亚洲七黄色美女视频| 动漫黄色视频在线观看| 欧美丝袜亚洲另类 | 国产日韩一区二区三区精品不卡| 嫩草影院精品99| 亚洲av五月六月丁香网| 中文字幕人妻熟女乱码| 日韩 欧美 亚洲 中文字幕| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 露出奶头的视频| 男男h啪啪无遮挡| 久久久久久大精品| 中文字幕av电影在线播放| 亚洲成av片中文字幕在线观看| 伦理电影免费视频| 色综合亚洲欧美另类图片| 国产人伦9x9x在线观看| 亚洲av美国av| 淫妇啪啪啪对白视频| 免费高清视频大片| 日日夜夜操网爽| 欧美日本中文国产一区发布| xxx96com| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区久久 | a在线观看视频网站| 手机成人av网站| 男女之事视频高清在线观看| 久久精品国产综合久久久| 国产午夜精品久久久久久| 国产成人av激情在线播放| 国产私拍福利视频在线观看| 热99re8久久精品国产| 中文亚洲av片在线观看爽| 大香蕉久久成人网| 少妇 在线观看| 桃红色精品国产亚洲av| 少妇 在线观看| 久久精品91无色码中文字幕| 国产精品国产高清国产av| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| 久久久久久久午夜电影| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区久久 | 大香蕉久久成人网| 久久香蕉精品热| www.www免费av| 亚洲欧美日韩另类电影网站| 国产精品爽爽va在线观看网站 | 国产精品爽爽va在线观看网站 | 亚洲人成电影免费在线| 嫩草影视91久久| 在线av久久热| 欧美黑人欧美精品刺激| 色婷婷久久久亚洲欧美| 免费在线观看黄色视频的| 两个人免费观看高清视频| 亚洲国产欧美网| 高清毛片免费观看视频网站| 亚洲成人精品中文字幕电影| 欧美一级a爱片免费观看看 | 制服丝袜大香蕉在线| 久久久久久免费高清国产稀缺| 国产单亲对白刺激| 在线天堂中文资源库| 亚洲午夜精品一区,二区,三区| 国产麻豆成人av免费视频| 日韩欧美一区二区三区在线观看| 精品久久久精品久久久| 亚洲色图 男人天堂 中文字幕| 午夜福利欧美成人| 成人精品一区二区免费| 18禁裸乳无遮挡免费网站照片 | 欧美老熟妇乱子伦牲交| 超碰成人久久| 一进一出抽搐动态| 久久精品国产清高在天天线| 又黄又粗又硬又大视频| 男人操女人黄网站| 欧美黑人精品巨大| 国产熟女xx| 精品欧美国产一区二区三| 一区福利在线观看| 久久精品国产综合久久久| 国产成人影院久久av| 男人舔女人的私密视频| 免费不卡黄色视频| 久久国产亚洲av麻豆专区| 两个人免费观看高清视频| 国产精品电影一区二区三区| 亚洲无线在线观看| 在线观看舔阴道视频| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 久久久国产成人免费| 午夜福利18| 多毛熟女@视频| 亚洲成av片中文字幕在线观看| 亚洲国产日韩欧美精品在线观看 | 国产精品综合久久久久久久免费 | 搡老熟女国产l中国老女人| 国内毛片毛片毛片毛片毛片| 亚洲国产精品合色在线| 青草久久国产| 亚洲精品国产区一区二| 亚洲第一欧美日韩一区二区三区| 99国产精品免费福利视频| 超碰成人久久| 久久久国产成人免费| 波多野结衣高清无吗| 午夜久久久在线观看| 琪琪午夜伦伦电影理论片6080| 精品福利观看|