• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plane Symmetric Solutions in f(R,T)Gravity

    2016-05-14 12:50:47FarasatShamir
    Communications in Theoretical Physics 2016年3期
    關(guān)鍵詞:胳膊肘刀疤鱗屑

    M.Farasat Shamir

    Department of Sciences and Humanities,National University of Computer and Emerging Sciences,Lahore Campus,Pakistan

    1 Introduction

    The most popular issue in the modern day cosmology is the current expansion of universe.Observational and theoretical facts indicate that our universe is in the phase of accelerated expansion.[1]The existence of dark matter and dark energy is another interesting topic of discussion.[2]Almost a century ago,Einstein introduced the concept of dark energy by adding a small positive cosmological constant in the field equations.But he rejected this idea later on.However,it is now thought that the cosmological constant may become a suitable candidate for dark energy.Modified theories of gravity seem attractive to explain late time acceleration of the universe.An interesting modified theory of gravity is the f(R)theory which involves a generic function of Ricci scalar in standard Einstein–Hilbert Lagrangian.

    In recent years,f(R)gravity has been investigated by many authors in different contexts.[3?17]Some interesting review articles[18]can be helpful to understand the theory.Bamba et al.[19]discussed curvature singularity appearing in the collapse process of a star in this theory.They proved that curvature singularity could be avoided by adding Rαterm in the viable f(R)gravity models.Thermodynamics of the apparent horizon in the Palatini f(R)gravity has been discussed by Bamba and Geng.[20]Capozziello et al.[21]found spherically symmetric solutions in f(R)gravity via Noether symmetries.Cylindrically symmetric vacuum and non-vacuum solutions have also been explored in this theory.[22]Sharif and Shamir[23]investigated plane symmetric solutions in metric f(R)gravity.The same authors[24]obtained the solutions of Bianchi types I and V cosmologies for vacuum and non-vacuum cases.Kucukakca and Camci[25]investigated Palatini f(R)gravity using Noether gauge symmetry approach.For this purpose,they considered a flat Friedmann–Robertson–Walker(FRW)universe and it was shown that the resulting form of f(R)gravity model yielded a power law expansion for the scale factor of the universe.Conserved quantities in metric f(R)gravity using Noether symmetry approach have been calculated.[26]

    Another modified theory named as f(R,T)gravity has been developed by Harko et al.[27]It is the generalization of f(R)gravity and based upon the coupling of matter and geometry.In this theory,gravitational Lagrangian involves an arbitrary function of the scalar curvature R and the trace of the energy momentum tensor T.The equations of motions after the addition of an appropriate function f(T)indicate the presence of an extra force acting on test particles.The investigation of perihelion shift of Mercury using f(R,T)gravity provide an upper limit on the magnitude of the extra acceleration in the solar system which indicates the presence of dark energy.[27]Thus the study of f(R,T)gravity models may also provide better results as compared to the predictions of standard theory of general relativity(GR).The action for f(R,T)theory of gravity is given by[27]

    where g is the determinant of the metric tensor gμνand Lmis the usual matter Lagrangian.It would be worthwhile to mention that if we replace f(R,T)with f(R),we obtain the action for f(R)gravity and replacement of f(R,T)with R leads to the action of GR.The energy momentum tensor Tμνis defined as[28]

    When we assume that the dependance of matter Lagrangian is merely on the metric tensor gμνrather than its derivatives,we get

    Many authors have investigated this theory in recent years and a reasonable amount of work has been done so far.

    Adhav[29]explored the exact solutions of f(R,T) field equations for locally rotationally symmetric Bianchi type Ispacetime.Bianchi Type V cosmology with cosmological constant has been studied in this theory by Ahmed and Pradhan.[30]Jamil et al.[31]reconstructed cosmological models in f(R,T)gravity and it was concluded that the dust fluid reproduced ΛCDM,phantom-non-phantom era and the phantom cosmology.G¨odel type universe was studied in the framework of f(R,T)gravity by Santos.[32]Sharif and Zubair[33]discussed the reconstruction and stability of f(R,T)gravity with Ricci and modified Ricci dark energy.The same authors[34]analyzed the laws of thermodynamics in this theory.However,it has been proved that the first law of black bole thermodynamics is violated for f(R,T)gravity.[35]Houndjo[36]reconstructed f(R,T)gravity by taking f(R,T)=f1(R)+f2(T)where it was shown that f(R,T)gravity allowed transition of matter from dominated phase to an acceleration phase.Harko and Lake[37]found cylindrically symmetric interior string like solutions in f(R,Lm)theory of gravity.In a recent paper,[38]we investigated the exact solutions of cylindrically symmetric spacetime in f(R,T)gravity and recovered two solutions which corresponded to an exterior metric of cosmic string and a non-null electromagnetic field.We explored the exact solutions of locally rotationally symmetric Bianchi Type I universe in the context of f(R,T)gravity.[39]In another work,[40]we investigated Bianchi type I cosmology in f(R,T)gravity with some interesting results.It was concluded that equation of state parameter w→?1 as t→∞which suggested an accelerated expansion of the universe.Thus it is hoped that f(R,T)gravity may explain the resent phase of cosmic acceleration of our universe.This theory can be used to explore many issues and may provide some satisfactory results.

    In this paper,we focus ourselves to investigate the exact solutions of plane symmetric spacetime in the framework of f(R,T)gravity.The plan of paper is as follows:In Sec.2,we give some basics of f(R,T)gravity.Section 3 provides the exact solutions for plane symmetric spacetime using two different classes of f(R,T)models.Summary and concluding remarks are given in the last section.

    2 Some Basics off(R,T)Gravity

    The f(R,T)gravity field equations are obtained by varying the action S in Eq.(1)with respect to the metric tensor gμν

    where?μdenotes the covariant derivative and

    Contraction of Eq.(4)yields

    where Θ = Θμμ. This is an important equation because it provides a relationship between Ricci scalar R and the trace T of energy momentum tensor.Using matter Lagrangian Lm,Θμνand the standard matter energymomentum tensor are derived respectively as

    satisfying the equation of state

    whereis the four-velocity in comoving coordinates and ρ and p denote energy density and pressure of the fluid respectively.Perfect fluids problems involving energy density and pressure are not any easy task to deal with.Moreover,there does not exist any unique definition for matter Lagrangian.Thus we can assume the matter Lagrangian as

    Using this value in Eq.(3)and Eq.(7),we get a constraint equation

    Similarly,using Eq.(6)and Eq.(9),we get

    which gives an extra condition on p,

    Using Eq.(11),the field equations(4)take the form

    It is mentioned here that these field equations depend on the physical nature of matter field.Many theoretical models corresponding to different matter contributions for f(R,T)gravity are possible.However,Harko et al.[27]gave three classes of these models

    In this paper,we consider the first and second class only to investigate the exact plane symmetric solutions.

    3 Exact Plane Symmetric Solutions

    Here we shall find plane symmetric static solutions of the field equations in f(R,T)gravity.

    3.1 Plane Symmetric Spacetimes

    We consider the general static plane symmetric spacetime given by

    For the sake of simplicity,we choose C(x)=1 so that the above spacetime becomes

    The corresponding Ricci scalar takes the form

    where prime represents derivative with respect to x.Now,we explore the solutions of the field equations for two classes of f(R,T)models.

    3.2 f(R,T)=R+2f(T)

    For the model f(R,T)=R+2f(T),the field equations become

    Here we find the most basic possible solution of this theory due to the complicated nature of field equations.However,in the next subsection we will explore the solutions with more general case.For the sake of simplicity,we use natural system of units(G=c=1)and f(T)= λT,where λ is a dynamical parameter.In this case,the gravitational field equations take the form similar to GR

    where the term λ(T+2p)may play the role of cosmological constant Λ of the GR field equations.It would be worthwhile to mention here that the dependence of the cosmological constant Λ on the trace of the energy momentum tensor T has already been proposed by Poplawski[41]where the cosmological constant in the gravitational Lagrangian is a function of T,and consequently the model was named as “Λ(T)gravity”.It was argued that recent cosmological data favour a variable cosmological constant which was consistent with Λ(T)gravity. Λ(T)gravity has been shown to be more general than the Palatini f(R)gravity.[42]

    Now using Eq.(18),we obtain a set of differential equations for plane symmetric spacetime,

    Thus we get three independent field equations in four unknowns namely A,B,ρ and p.Subtracting Eq.(20)and Eq.(21),it follows that

    We solve this equation as follows:

    Case I

    As a first case,we solve Eq.(22)by the power law assumption,i.e.,A∝xrand B∝xl,where r and l are any real numbers.Thus we use A=k1xrand B=k2xl,where k1and k2are constants of proportionality.It follows that

    and hence the solution metric becomes

    It can be shown that these values of r and l lead to R=0.By substituting the solution A=k1x?2/3and B=k2x4/3back in Eqs.(19)–(21),we get either λ = ?2π or λ = ?4π which shows that λ is not an arbitrary constant.If were-define the parameters,i.e.,the above metric takes the form

    which is exactly the same as the well-known Taub’s metric.[43]

    Case IINow we assume B=Anso that Eq.(22)gives

    This equation yields a solution given by

    where k3and k4are integration constants.Without loss of generality,we can choose k3=1 and k4=0 so that Eq.(27)takes the form

    and thus B turns out to be

    and the solution metric takes the form

    In this case,the energy density becomes

    while the pressure of universe turns out to be

    It would be worthwhile to mention here that we can recover Taub’s solution when n= ?2.

    3.3 f(R,T)=f1(R)+f2(T)

    Now we explore the solutions with more general class.Here the field equations for the model f(R,T)=f1(R)+f2(T)become

    Contracting the field equations(33),we obtain

    Using this,we can write

    Inserting this in Eq.(33),we get

    隔一年,我和妻子離婚了。妻子不愿意離婚,法官不愿意判決。我和妻子先后去法院糾纏半年多時(shí)間。我懇求法官看一下妻子膝蓋和胳膊肘上的刀疤與鱗屑。我說,我擔(dān)心哪一天妻子的刀片會(huì)劃在我的脖子上。妻子堅(jiān)持說,我這是刺血治療皮膚病,我的心理沒問題。我說,你的心理沒問題,我的心理有問題,我跟你過日子早已失去了安全感。

    Since the metric(15)depends only on x,one can view Eq.(36)as the set of differential equations for f1R(x),f2T(x),A and B.It follows from Eq.(36)that the combination

    is independent of the indexμ and hence Aμ?Aν=0 for allμ and ν.Thus A0?A1=0 yields

    Also,A0?A2=0 provides

    Thus we get two non-linear differential equations with fi ve unknowns namely A,B,f1R,f2T,ρ and p.The solution of these equations could not be found straightforwardly.Subtracting Eq.(38)and Eq.(39),we obtain

    Due to highly non-linear nature of Eq.(40),here we also use the assumption B=An.Thus Eq.(40)reduces to

    and the Ricci scalar turns out to be

    We follow the approach of Nojiri and Odintsov[44]and take the assumption f1R(R)∝f0Rm,where f0is an arbitrary constant.So using Eqs.(41),(42)and after some tedious calculations we obtain

    Case III

    In this case we try to recover the Taub’s solution.For this purpose,we substitute A=x?2/3in Eq.(43).After some lengthy calculations,we obtain a constraint equation

    We can obtain B=x4/3for n=?2.Thus Eq.(44)reduces to

    The roots of Eq.(45)turn out to be mThus,we have

    After integration,we obtain

    whereand k5,k6are integration constants.It has been shown that the terms with positive powers of the curvature support the inflationary epoch.[45]The corresponding Ricci scalar is also zero in this case.Using first root mEoS parameter ω and Eqs.(38),(39),the energy density of the universe turns out to be

    We can choose the sign of f0depending upon the values of ω to get the positive energy density.Similarly,we can find expression for energy density in the case of other root

    Case IV

    Here we take A=1/x in Eq.(43)to obtain a constraint equation

    Using this equation,it follows that

    The solution metric takes the form

    The corresponding Ricci scalar becomes

    We can construct different f1(R)models for different values of m satisfying Eq.(49).However,an interesting logarithmic form of f1(R)models is obtained for m=?1

    where k7is an integration constant.In this case Ricci scalar becomes R=98/3x2and the solution metric takes the form

    The matter density turns out to be

    Similarly for m=?2,we obtain

    where k8is an integration constant.This model is also cosmologically important as it has been proved that negative power of curvature serves as an effective dark energy supporting the current cosmic acceleration.[45]Obviously one can work out the Ricci scalar,energy density and the solution metric in this case.

    Case V

    Here we consider A=eαx,where α is a non-zero real number.In this case,we obtain a constraint equation using Eq.(43)

    which does not involve parameter m.So this choice will yield a solution for any f1(R)model in power law or logarithmic form.The roots of Eq.(57)turn out to be

    We discard the imaginary roots and consider the real value of n to get a physical solution.In this case the Ricci scalar turns out to be non-zero constant,i.e.,R=3.The energy density becomes

    and the solution metric becomes

    This corresponds to the well-known anti-deSitter spacetime in GR.[46]

    3.4 Physical Importance of the Solutions

    The spacetime admitting three parameter group of motions of the Euclidean plane is said to possess plane symmetry and is known as a plane symmetric spacetime.Such spacetime possesses many properties equivalent to those of spherical symmetry.The plane symmetric spacetime has been extensively investigated by many researchers from various standpoints.Taub,[47]Bondi,[48]Bondi and Pirani–Robinson[49]defined and studied plane wave solutions.They considered the concept of group of motions of spacetime which played a fundamental role in plane gravitational waves.It has been established that the spacetime Eq.(15)admits the plane wave solutions of GR field equations.[50]

    In this study,we have explored plane symmetric solutions in the context of f(R,T)gravity.The non-vacuum plane symmetric solutions provide Taub’s universe with a singularity at x=0,which suggests the presence of black hole.Another solution(51)suggests that an object falling into a black hole approaches the singularity at x=0.However,non-singular solution is obtained in the shape of an anti-deSitter spacetime.An anti-deSitter space is a GR like spacetime,where in the absence of matter or energy,the curvature of spacetime is naturally hyperbolic.From geometrical point of view,an anti-de Sitter space has a curvature analogous to a flat cloth sitting on a saddle,with a very slight curvature because it is so large.Thus it would correspond to a negative cosmological constant.Anti-deSitter space can also be thought as empty space having negative energy,which causes this spacetime to collapse at a greater rate.The existence of quantum-corrected deSitter space has been predicted as an outcome of a nontrivial solution for constant curvature R0in f(R)gravity.[51]One may play with the parameters of the theory under consideration in such a way that the deSitter space can provide a solution to the cosmological constant problem.Thus the physical relevance of the solutions is obvious.

    4 Concluding Remarks

    This paper is devoted to explore the exact static plane symmetric solutions in f(R,T)gravity.To our knowledge,this is the first attempt to investigate plane symmetric solutions in f(R,T)gravity. In this work,we consider two classes of f(R,T)models.First we take f(R,T)=R+2f(T).For this class,we investigate two cases and recover a solution which corresponds to the well known Taub’s spacetime.[43]The expression for matter density ρ and pressure p have been calculated for this solution.

    The second class with f(R,T)=f1(R)+f2(T)is the more general choice to explore the solutions.We assume f1R(R)∝f0Rm,where f0and m are arbitrary real constants.The corresponding field equations are solved for three cases,which provide one new solution and two important solutions namely Taub’s and anti-desitter spacetimes are recovered.So the physical relevance of these solutions is obvious.The function of Ricci scalar f1(R)contains positive power of curvature in the first case while the second case corresponds to negative power of curvature.It is worth mentioning here that the terms with positive power of curvature support the in flationary epoch while the term with negative power of curvature serve as an effective dark energy which supports the current cosmic acceleration.[45]We also provide a choice for solution with logarithmic form of f(R)model.

    We have discussed five cases in this paper.However,many other cases can also be explored and different cosmologically important f(R,T)models can be reconstructed.It would be worthwhile to mention here that such solutions may provide a gateway towards the solution of dark energy and dark matter problems.It also seems interesting to explore the exact solutions in other modified theories of gravity.The investigation of plane symmetric solutions in f(G)gravity is under process.

    Acknowledgments

    The author would like to acknowledge National University of Computer and Emerging Sciences(NUCES)for funding support through research reward programme.The author is also thankful to the anonymous reviewer for valuable comments and suggestions to improve the paper.

    References

    [1]A.G.Riess,et al.,Astron.J.116(1998)1009;S.Perlmutter,et al.,Astrophys.J.517(1999)565;D.N.Spergel,et al.,Astrophys.J.Suppl.170(2007)377.

    [2]S.Nojiri and S.D.Odintsov,Int.J.Geom.Meth.Mod.Phys.4(2007)115;M.S.Turner and D.Huterer,J.Phys.Soc.Jap.76(2007)111015;V.Sahni and A.Starobinsky,Int.J.Mod.Phys.D 9(2000)373;D.H.Weinberg,New.Astron.Rev.49(2005)337.

    [3]M.Sharif and M.Zubair,Adv.High Energy Phys.2013(2013)790967.

    [4]M.Sharif and H.R.Kausar,JCAP 07(2011)022.

    [5]M.Sharif and H.R.Kausar,Int.J.Mod.Phys.D 20(2011)2239.

    [6]M.Sharif and H.R.Kausar,Astrophys.Space Sci.331(2011)281.

    [7]M.Sharif and H.R.Kausar,Mod.Phys.Lett.A 25(2010)3299.

    [8]M.F.Shamir and Z.Raza,Commun.Theor.Phys.62(2014)348.

    [9]K.Bamba,S.Nojiri,S.D.Odintsov,and D.Saez-Gomez,Phys.Lett.B 730(2014)136.

    [10]K.Bamba,A.N.Makarenko,A.N.Myagky,S.Nojiri,and S.D.Odintsov,JCAP 01(2014)008.

    [11]K.Bamba,S.Nojiri,and S.D.Odintsov,Phys.Lett.B 698(2011)451.

    [12]S.Capozziello and S.Vignolo,Int.J.Geom.Meth.Mod.Phys.8(2011)167.

    [13]S.Capozziello,F.Darabi,and D.Vernieri,Mod.Phys.Lett.A 26(2011)65.

    [14]S.Capozziello,M.D.Laurentis,S.D.Odintsov,and A.Stabile,Phys.Rev.D 83(2011)064004.

    [15]E.Elizalde,S.Nojiri,S.D.Odintsov,and D.Saez-Gomez,Eur.Phys.J.C 70(2010)351.

    [16]K.Bamba,C.Geng,S.Nojiri,and S.D.Odintsov,Mod.Phys.Lett.A 25(2010)900.

    [17]S.Capozziello,M.D.Laurentis,S.Nojiri,and S.D.Odintsov,Gen.Rel.Grav.41(2009)2313.

    [18]A.D.Felice and S.Tsujikawa,Living Rev.Rel.13(2010)3;T.P.Sotiriou and V.Faraoni,Rev.Mod.Phys.82(2010)451;T.Clifton,P.G.Ferreira,A.Padilla,and C.Skordis,Phys.Rept.513(2012)1;S.Nojiri and S.D.Odintsov,Phys.Rep.505(2011)59;K.Bamba,S.Capozziello,S.Nojiri,and S.D.Odintsov,Astrophys.Space Sci.342(2012)155.

    [19]K.Bamba,S.Nojiri,and S.D.Odintsov,Phys.Lett.B 698(2011)451.

    [20]K.Bamba,and C.Geng,JCAP 06(2010)014.

    [21]S.Capozziello,A.Stabile,and A.Troisi,Class.Quantum Grav.24(2007)2153.

    [22]A.Azadi,D.Momeni,and M.Nouri-Zonoz,Phys.Lett.B 670(2008)210;M.Sharif and S.Arif,Astrophys.Space Sci.342(2012)237.

    [23]M.Sharif and M.F.Shamir,Mod.Phys.Lett.A 25(2010)1281.

    [24]M.Sharif and M.F.Shamir,Class.Quantum Grav.26(2009)235020;M.Sharif and M.F.Shamir,Gen.Relativ.Gravit.42(2010)2643.

    [25]Y.Kucukakca and U.Camci,Astrophys.Space Sci.338(2012)211.

    [26]M.F.Shamir,A.Jhangeer,and A.A.Bhatti,Chin.Phys.Lett.29(2012)080402.

    [27]T.Harko,F.S.N.Lobo,S.Nojiri,and S.D.Odintsov,Phys.Rev.D 84(2011)024020.

    [28]L.D.Landau and E.M.Lifshitz,The Classical Theory of Fileds,Butterworth-Heinemann(2002).

    [29]K.S.Adhav,Astrophys.Space Sci.339(2012)365.

    [30]R.L.Naidu,D.R.K.Reddy,T.Ramprasad,and K.V.Ramana,Astrophys.Space Sci.348(2013)247.

    [31]M.Jamil,D.Momeni,M.Raza,and R.Myrzakulov,Eur.Phys.J.C 72(2012)1999.

    [32]A.F.Santos,Mod.Phys.Lett.A 28(2013)1350141.

    [33]M.Sharif and M.Zubair,Astrophys.Space Sci.349(2014)529.

    [34]M.Sharif and M.Zubair,JCAP 03(2012)028.

    [35]M.Jamil,D.Momeni,and R.Myrzakulov,Chin.Phys.Lett.29(2012)109801.

    [36]M.J.S.Houndjo,Int.J.Mod.Phys.D 21(2012)1250003.[37]T.Harko and M.J.Lake,arXiv:1409.8454.

    [38]M.F.Shamir and Z.Raza,Astrophys.Space Sci.356(2015)111.

    [39]M.F.Shamir,Eur.Phys.J.C 75(2015)354.

    [40]M.F.Shamir,J.Exp.Theor.Phys.146(2014)281.

    [41]N.J.Poplawski,arXiv:gr-qc/0608031.

    [42]N.J.Poplawski,Class.Quantum Grav.23(2006)4819.

    [43]M.L.Bedran,M.O.Calvao,F.M.Paiva,and D.Soares,Phys.Rev.D 55(1997)6.

    [44]S.Nojiri and S.D.Odintsov,Phys.Rep.505(2011)59.

    [45]S.Nojiri and S.D.Odintsov,Phys.Rev.D 68(2003)123512.

    [46]T.Feroze,A.Qadir,and M.Ziad,J.Math.Phys.42(2001)4947.

    [47]A.H.Taub,Annals Math.53(1951)472.

    [48]H.Bondi,Nature(London)179(1957)1072.

    [49]H.Bondi,E.Pirani,and I.Robinson,Proc.Roy.Soc.251(1959)519.

    [50]H.Takeno,Tensor(N.S.)7(1957)97.

    [51]G.Cognola,E.Elizalde,S.Nojiri,et al.,JCAP 0502(2005)010.

    猜你喜歡
    胳膊肘刀疤鱗屑
    溝通表里和解祛邪法治療銀屑病的臨床療效及對皮膚癥狀的改善作用研究
    來接我的人
    來接我的人
    臉上的刀疤
    新教育(2018年30期)2018-12-14 07:42:52
    銀屑病的冬季護(hù)理
    探討尋常型銀屑病鱗屑程度與維吾爾醫(yī)體液(helit)學(xué)說關(guān)系△
    牛皮癬有什么良藥良方根治
    刀疤
    大力士抬人
    中學(xué)生英語·外語教學(xué)與研究(2008年5期)2008-12-18 08:02:42
    十八禁国产超污无遮挡网站| 欧美一区二区国产精品久久精品| 亚洲国产精品成人综合色| 久久九九热精品免费| 干丝袜人妻中文字幕| 国产在线精品亚洲第一网站| 白带黄色成豆腐渣| 人人妻人人澡欧美一区二区| videossex国产| 97在线视频观看| 亚洲熟妇熟女久久| 天天躁日日操中文字幕| a级毛色黄片| 99热6这里只有精品| 内地一区二区视频在线| 久久久久久久久久成人| 国产精品久久久久久亚洲av鲁大| 精品午夜福利在线看| av在线天堂中文字幕| 国产成人a∨麻豆精品| 亚洲人与动物交配视频| 国产av一区在线观看免费| 日韩一区二区视频免费看| 看十八女毛片水多多多| 国产 一区精品| 亚洲熟妇熟女久久| 国产欧美日韩一区二区精品| 亚洲图色成人| 伦理电影大哥的女人| 国产精品久久久久久亚洲av鲁大| 国产精品日韩av在线免费观看| 午夜老司机福利剧场| 国产69精品久久久久777片| 99热这里只有是精品50| 99久久九九国产精品国产免费| 国产爱豆传媒在线观看| 亚洲熟妇中文字幕五十中出| 一区二区三区免费毛片| 欧洲精品卡2卡3卡4卡5卡区| 特级一级黄色大片| 亚洲真实伦在线观看| 亚洲自偷自拍三级| 免费观看的影片在线观看| 精品午夜福利视频在线观看一区| 成人永久免费在线观看视频| 亚洲第一电影网av| 免费看光身美女| 精品熟女少妇av免费看| 人人妻人人澡欧美一区二区| 国产精品三级大全| 十八禁网站免费在线| 国产欧美日韩精品亚洲av| 少妇猛男粗大的猛烈进出视频 | 亚洲天堂国产精品一区在线| 国产黄片美女视频| 看非洲黑人一级黄片| 狂野欧美激情性xxxx在线观看| 美女cb高潮喷水在线观看| 免费看日本二区| 成人欧美大片| 1000部很黄的大片| 十八禁网站免费在线| 午夜福利在线观看吧| 国产精品伦人一区二区| 精品少妇黑人巨大在线播放 | 亚洲电影在线观看av| 国产不卡一卡二| or卡值多少钱| a级毛色黄片| 午夜视频国产福利| 亚洲欧美精品自产自拍| 五月玫瑰六月丁香| 久久久色成人| 真实男女啪啪啪动态图| av.在线天堂| 国产伦精品一区二区三区视频9| 美女xxoo啪啪120秒动态图| 毛片女人毛片| 色视频www国产| 亚洲在线自拍视频| 在线观看66精品国产| 婷婷色综合大香蕉| 久久综合国产亚洲精品| 国内久久婷婷六月综合欲色啪| 国内精品一区二区在线观看| 精品人妻视频免费看| 女人十人毛片免费观看3o分钟| 韩国av在线不卡| 日韩一区二区视频免费看| 三级国产精品欧美在线观看| 免费高清视频大片| 午夜精品在线福利| 国产成人a区在线观看| 不卡一级毛片| 黑人高潮一二区| 亚洲欧美清纯卡通| 成人欧美大片| 国产三级在线视频| 一区二区三区四区激情视频 | 国产精品一区二区免费欧美| 小说图片视频综合网站| 色综合亚洲欧美另类图片| 91在线精品国自产拍蜜月| 成年免费大片在线观看| 国产伦在线观看视频一区| 日日啪夜夜撸| 国产精品女同一区二区软件| 校园春色视频在线观看| 免费av不卡在线播放| 热99在线观看视频| 亚洲精品久久国产高清桃花| 国产成人a区在线观看| 日本黄色视频三级网站网址| 五月玫瑰六月丁香| 午夜爱爱视频在线播放| 直男gayav资源| 在线免费观看的www视频| 日韩欧美免费精品| 国产亚洲欧美98| 久久久久免费精品人妻一区二区| 婷婷精品国产亚洲av| 日韩中字成人| 在线观看午夜福利视频| 国产av一区在线观看免费| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线| 日韩亚洲欧美综合| 国产亚洲精品综合一区在线观看| 少妇人妻一区二区三区视频| 一区二区三区四区激情视频 | 联通29元200g的流量卡| av在线蜜桃| 国产精品一区二区三区四区久久| 久久九九热精品免费| a级一级毛片免费在线观看| 成人av一区二区三区在线看| 变态另类丝袜制服| 久久久久性生活片| 中国美白少妇内射xxxbb| 日韩av不卡免费在线播放| 久久精品综合一区二区三区| 一级黄片播放器| 亚洲丝袜综合中文字幕| 亚洲真实伦在线观看| 免费看美女性在线毛片视频| 晚上一个人看的免费电影| 看免费成人av毛片| 国产真实伦视频高清在线观看| 免费看美女性在线毛片视频| 性欧美人与动物交配| 又爽又黄a免费视频| 人妻丰满熟妇av一区二区三区| 精品无人区乱码1区二区| 非洲黑人性xxxx精品又粗又长| 成人av在线播放网站| 欧美成人精品欧美一级黄| 一级黄片播放器| 蜜桃亚洲精品一区二区三区| 午夜精品国产一区二区电影 | 毛片一级片免费看久久久久| 黄色视频,在线免费观看| 深爱激情五月婷婷| 国产欧美日韩精品亚洲av| 久久久久国产精品人妻aⅴ院| 欧美日韩综合久久久久久| ponron亚洲| 精华霜和精华液先用哪个| 日本 av在线| 免费电影在线观看免费观看| 91久久精品国产一区二区三区| 亚洲七黄色美女视频| 男人和女人高潮做爰伦理| 99热6这里只有精品| 蜜桃久久精品国产亚洲av| 成人美女网站在线观看视频| 日韩一区二区视频免费看| 午夜福利在线观看吧| 少妇人妻精品综合一区二区 | 一本一本综合久久| 少妇的逼水好多| 亚洲精品在线观看二区| 日本爱情动作片www.在线观看 | 亚洲成人av在线免费| 日日撸夜夜添| 国产美女午夜福利| 中文资源天堂在线| 深夜a级毛片| 俄罗斯特黄特色一大片| 成年女人毛片免费观看观看9| av在线亚洲专区| 欧美日本亚洲视频在线播放| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 国产午夜福利久久久久久| 国产欧美日韩精品亚洲av| 国产淫片久久久久久久久| 亚洲最大成人中文| 日日撸夜夜添| 国产日本99.免费观看| 欧美激情国产日韩精品一区| 国产精品国产三级国产av玫瑰| 午夜激情福利司机影院| 国语自产精品视频在线第100页| 亚洲av.av天堂| 欧美色视频一区免费| 欧美最黄视频在线播放免费| 国产精品无大码| 男插女下体视频免费在线播放| 十八禁国产超污无遮挡网站| 22中文网久久字幕| av在线播放精品| 直男gayav资源| 三级国产精品欧美在线观看| 日本精品一区二区三区蜜桃| 欧美3d第一页| 国产精品人妻久久久久久| 熟女电影av网| 亚洲精品乱码久久久v下载方式| 欧美潮喷喷水| 亚洲成人av在线免费| 日本免费一区二区三区高清不卡| 99热网站在线观看| 日本免费a在线| 午夜福利成人在线免费观看| 精品少妇黑人巨大在线播放 | 一级毛片aaaaaa免费看小| 日本熟妇午夜| 午夜影院日韩av| 成人特级av手机在线观看| 日韩高清综合在线| 午夜精品国产一区二区电影 | 2021天堂中文幕一二区在线观| 男女下面进入的视频免费午夜| 色综合站精品国产| 精品免费久久久久久久清纯| 日韩亚洲欧美综合| 欧美成人精品欧美一级黄| 免费观看精品视频网站| 久久久久国产网址| 国产爱豆传媒在线观看| av免费在线看不卡| 国产一区二区三区在线臀色熟女| 国产高清有码在线观看视频| 亚洲va在线va天堂va国产| 国模一区二区三区四区视频| 成人性生交大片免费视频hd| 亚洲成a人片在线一区二区| 成年av动漫网址| 国产精品亚洲美女久久久| 黄色日韩在线| 精品人妻偷拍中文字幕| 五月伊人婷婷丁香| www.色视频.com| a级毛片免费高清观看在线播放| 中国美女看黄片| 久久久久性生活片| 联通29元200g的流量卡| 一级黄色大片毛片| 熟女电影av网| 久久精品国产鲁丝片午夜精品| 久久精品国产鲁丝片午夜精品| 久久鲁丝午夜福利片| 波多野结衣高清无吗| 麻豆国产97在线/欧美| 毛片女人毛片| 亚洲人成网站在线播| a级一级毛片免费在线观看| 成人特级av手机在线观看| 高清毛片免费观看视频网站| 99久国产av精品| 久久久欧美国产精品| 成年女人看的毛片在线观看| 97人妻精品一区二区三区麻豆| 成年女人永久免费观看视频| 俺也久久电影网| 女人十人毛片免费观看3o分钟| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区免费观看 | 欧美激情国产日韩精品一区| 在线观看一区二区三区| 亚洲精品粉嫩美女一区| 亚洲国产精品成人久久小说 | 给我免费播放毛片高清在线观看| 午夜福利视频1000在线观看| 国产av一区在线观看免费| 免费无遮挡裸体视频| 22中文网久久字幕| 一级黄色大片毛片| 3wmmmm亚洲av在线观看| 美女xxoo啪啪120秒动态图| 日韩亚洲欧美综合| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩东京热| 男人舔奶头视频| 欧美日韩精品成人综合77777| 欧美成人a在线观看| 色尼玛亚洲综合影院| 亚洲欧美日韩东京热| 欧美日韩精品成人综合77777| videossex国产| 免费看日本二区| 人人妻人人看人人澡| 国产高潮美女av| 久久中文看片网| 丝袜美腿在线中文| 老师上课跳d突然被开到最大视频| 成人毛片a级毛片在线播放| 听说在线观看完整版免费高清| 老司机福利观看| 网址你懂的国产日韩在线| 美女免费视频网站| 日本a在线网址| 日本撒尿小便嘘嘘汇集6| 国产91av在线免费观看| 12—13女人毛片做爰片一| 深爱激情五月婷婷| 看黄色毛片网站| 免费av毛片视频| 成人二区视频| 哪里可以看免费的av片| 直男gayav资源| 少妇丰满av| 亚洲一区高清亚洲精品| 免费看a级黄色片| 亚洲欧美日韩高清专用| 12—13女人毛片做爰片一| 男插女下体视频免费在线播放| 久久鲁丝午夜福利片| 欧美一区二区国产精品久久精品| 亚洲精品456在线播放app| 日本五十路高清| 精品欧美国产一区二区三| 亚洲国产精品合色在线| 免费看美女性在线毛片视频| 联通29元200g的流量卡| 男女边吃奶边做爰视频| 国产色婷婷99| 99热网站在线观看| 国产精品伦人一区二区| 国产三级在线视频| 51国产日韩欧美| 久久久久久久久久成人| 听说在线观看完整版免费高清| 大又大粗又爽又黄少妇毛片口| 亚洲成人精品中文字幕电影| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 最近手机中文字幕大全| 亚洲av五月六月丁香网| 日日干狠狠操夜夜爽| 免费av观看视频| 男女做爰动态图高潮gif福利片| 蜜桃亚洲精品一区二区三区| 12—13女人毛片做爰片一| 超碰av人人做人人爽久久| 精品国内亚洲2022精品成人| 久久精品久久久久久噜噜老黄 | 床上黄色一级片| 国内久久婷婷六月综合欲色啪| 国产高清激情床上av| 成熟少妇高潮喷水视频| 久久精品国产亚洲av香蕉五月| 九九爱精品视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久成人av| 一进一出好大好爽视频| 精品一区二区三区av网在线观看| 国产国拍精品亚洲av在线观看| 联通29元200g的流量卡| 露出奶头的视频| 波多野结衣巨乳人妻| 九九热线精品视视频播放| 久久久久久久久中文| 久久久久久久午夜电影| 久久久久免费精品人妻一区二区| 日本a在线网址| 黄色配什么色好看| 国产高清视频在线观看网站| 晚上一个人看的免费电影| 国产欧美日韩精品一区二区| 亚洲天堂国产精品一区在线| 亚洲专区国产一区二区| 久久久久久伊人网av| 国产精品久久久久久av不卡| 久久草成人影院| 中文字幕久久专区| 三级男女做爰猛烈吃奶摸视频| 久久精品国产清高在天天线| 一本久久中文字幕| 天堂av国产一区二区熟女人妻| av天堂在线播放| 91久久精品国产一区二区成人| 亚洲国产精品久久男人天堂| 你懂的网址亚洲精品在线观看 | 一夜夜www| 级片在线观看| 国产在线精品亚洲第一网站| 成人欧美大片| 国产不卡一卡二| 69人妻影院| 精品日产1卡2卡| 亚洲精品一卡2卡三卡4卡5卡| 久久欧美精品欧美久久欧美| 久久综合国产亚洲精品| 午夜福利成人在线免费观看| 国语自产精品视频在线第100页| 香蕉av资源在线| 国产精品久久视频播放| 亚洲天堂国产精品一区在线| 国内精品美女久久久久久| 欧美一区二区国产精品久久精品| 欧美中文日本在线观看视频| 成人高潮视频无遮挡免费网站| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利视频1000在线观看| 免费黄网站久久成人精品| 成人特级黄色片久久久久久久| 热99在线观看视频| 日韩精品有码人妻一区| 91在线精品国自产拍蜜月| 亚洲美女搞黄在线观看 | 日韩精品中文字幕看吧| 亚洲成人中文字幕在线播放| 精品久久国产蜜桃| 国产69精品久久久久777片| 又黄又爽又免费观看的视频| www.色视频.com| 亚洲最大成人手机在线| 成人欧美大片| 搡老岳熟女国产| 亚洲国产精品成人综合色| 欧美高清性xxxxhd video| 我的老师免费观看完整版| 丰满乱子伦码专区| 天堂影院成人在线观看| 美女黄网站色视频| 亚洲在线观看片| 精品午夜福利在线看| 日韩欧美国产在线观看| 九色成人免费人妻av| 大又大粗又爽又黄少妇毛片口| 波多野结衣高清作品| 久久久久久久亚洲中文字幕| 黑人高潮一二区| av在线老鸭窝| 国产精品一区二区三区四区久久| 亚洲人成网站高清观看| 狂野欧美激情性xxxx在线观看| 久久久欧美国产精品| 亚洲最大成人av| 日韩成人伦理影院| 露出奶头的视频| 久久久久久久久中文| 噜噜噜噜噜久久久久久91| 久久亚洲国产成人精品v| 国产精品久久久久久精品电影| 99久久精品一区二区三区| 丰满人妻一区二区三区视频av| 国产av一区在线观看免费| 欧美精品国产亚洲| 国产探花在线观看一区二区| 久久精品综合一区二区三区| 欧美日本视频| 久久韩国三级中文字幕| 国产亚洲精品久久久久久毛片| 亚洲婷婷狠狠爱综合网| 一级黄色大片毛片| 午夜免费激情av| 日本-黄色视频高清免费观看| 夜夜爽天天搞| 国产精品亚洲一级av第二区| 禁无遮挡网站| 午夜福利高清视频| 久久国内精品自在自线图片| 亚洲精品在线观看二区| 久久久久性生活片| 欧美bdsm另类| av专区在线播放| 有码 亚洲区| 欧美日韩国产亚洲二区| 嫩草影院新地址| 欧美不卡视频在线免费观看| 一级毛片我不卡| 久久鲁丝午夜福利片| 亚洲精品影视一区二区三区av| 在线观看66精品国产| 精品午夜福利在线看| 日日摸夜夜添夜夜添小说| 亚洲国产欧美人成| 国产成人一区二区在线| 日韩av在线大香蕉| 欧美三级亚洲精品| 成人av在线播放网站| 日韩精品青青久久久久久| 99热这里只有是精品在线观看| 亚洲精品日韩av片在线观看| 免费看日本二区| 国产蜜桃级精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 日本精品一区二区三区蜜桃| 赤兔流量卡办理| 噜噜噜噜噜久久久久久91| 三级经典国产精品| 免费观看的影片在线观看| 一进一出抽搐gif免费好疼| 99热6这里只有精品| 国产真实伦视频高清在线观看| 干丝袜人妻中文字幕| 国产伦精品一区二区三区视频9| 国产色爽女视频免费观看| 国产成人福利小说| 国产伦在线观看视频一区| 日日摸夜夜添夜夜爱| 国内精品一区二区在线观看| 久久久久国产网址| 99国产精品一区二区蜜桃av| 在线观看免费视频日本深夜| 最近的中文字幕免费完整| 精品一区二区三区人妻视频| 精品欧美国产一区二区三| 日产精品乱码卡一卡2卡三| 女的被弄到高潮叫床怎么办| 久久这里只有精品中国| 精品久久久久久久久久久久久| 国产精品一区二区三区四区久久| 午夜免费男女啪啪视频观看 | 精品人妻熟女av久视频| 亚洲成人精品中文字幕电影| 高清毛片免费看| 国产高清激情床上av| 国产综合懂色| 国产精品人妻久久久影院| a级一级毛片免费在线观看| 超碰av人人做人人爽久久| 国产精品亚洲一级av第二区| 亚洲最大成人av| 搡老熟女国产l中国老女人| 高清毛片免费观看视频网站| 国产精品福利在线免费观看| 精品人妻一区二区三区麻豆 | 夜夜夜夜夜久久久久| 国产精品免费一区二区三区在线| 国产成人一区二区在线| 亚洲av免费高清在线观看| 亚洲成人中文字幕在线播放| 啦啦啦韩国在线观看视频| 欧美在线一区亚洲| 国产精品综合久久久久久久免费| 午夜精品国产一区二区电影 | 亚洲在线观看片| 日本爱情动作片www.在线观看 | 91精品国产九色| 亚洲av成人av| 欧美不卡视频在线免费观看| 三级毛片av免费| 亚洲美女视频黄频| 亚洲成av人片在线播放无| 一级毛片我不卡| 亚洲成人精品中文字幕电影| 黄色欧美视频在线观看| 欧美zozozo另类| 91午夜精品亚洲一区二区三区| 欧美国产日韩亚洲一区| 黄色视频,在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | av卡一久久| 91久久精品电影网| 精品日产1卡2卡| 久久久久久久午夜电影| 在线观看免费视频日本深夜| 干丝袜人妻中文字幕| 久久精品影院6| 精品福利观看| a级毛色黄片| 天堂动漫精品| 成人高潮视频无遮挡免费网站| 国产淫片久久久久久久久| 亚洲精品在线观看二区| 成人亚洲精品av一区二区| 午夜a级毛片| 国产色爽女视频免费观看| 欧美精品国产亚洲| 国产在线男女| 精品久久国产蜜桃| 成人永久免费在线观看视频| 日韩亚洲欧美综合| 国产精品av视频在线免费观看| 国产精品不卡视频一区二区| 日韩亚洲欧美综合| 久久这里只有精品中国| 久久久久免费精品人妻一区二区| 日韩亚洲欧美综合| 男女做爰动态图高潮gif福利片| 久久亚洲国产成人精品v| 国产精品嫩草影院av在线观看| 国内揄拍国产精品人妻在线| 91在线观看av| 99riav亚洲国产免费| 精华霜和精华液先用哪个| 波多野结衣巨乳人妻| 最近手机中文字幕大全| 少妇被粗大猛烈的视频| 小蜜桃在线观看免费完整版高清| 午夜老司机福利剧场| 国产精品无大码| av专区在线播放| 午夜免费激情av| 男女下面进入的视频免费午夜| 91在线观看av| 麻豆成人午夜福利视频| 色综合亚洲欧美另类图片| 不卡视频在线观看欧美| 国产黄色视频一区二区在线观看 | 国产高潮美女av| 国产aⅴ精品一区二区三区波|