• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON GROWTH OF MEROMORPHIC SOLUTIONS OF NONLINEAR DIFFERENCE EQUATIONS AND TWO CONJECTURES OF C.C.YANG?

    2016-04-18 05:44:18YueyangZHANG張月陽ZongshengGAO高宗升JilongZHANG張繼龍LMIBSchoolofMathematicsandSystemsScienceBeihangUniversityBeijing100191China
    關(guān)鍵詞:高宗

    Yueyang ZHANG(張月陽)Zongsheng GAO(高宗升)Jilong ZHANG(張繼龍)LMIB&School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

    ?

    ON GROWTH OF MEROMORPHIC SOLUTIONS OF NONLINEAR DIFFERENCE EQUATIONS AND TWO CONJECTURES OF C.C.YANG?

    Yueyang ZHANG(張月陽)Zongsheng GAO(高宗升)Jilong ZHANG(張繼龍)
    LMIB&School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

    E-mail:zhangyy8911@gmail.com;06712@buaa.edu.cn;09017@buaa.edu.cn

    AbstractIn this paper,we investigate the growth of the meromorphic solutions of the following nonlinear di ff erence equations

    where n≥2 and Pn?1(f)is a di ff erence polynomial of degree at most n?1 in f with small functions as coeffi cients.Moreover,we give two examples to show that one conjecture proposed by Yang and Laine[2]does not hold in general if the hyper-order of f(z)is no less than 1.

    Key wordsgrowth;meromorphic solutions;di ff erence equations;conjectures

    2010 MR Subject Classi fi cation30D35;39A10

    ?Received October 27,2014;revised March 9,2015.The first author is supported by the NNSF of China(11171013,11371225,11201014),the YWF-14-SXXY-008 of Beihang University,and the Fundamental Research Funds for the Central University.

    1 Introduction

    In this paper,a meromorphic function always means meromorphic in the whole complex plane.We assume that the reader is familiar with the fundamental results and the standard notions of Nevanlinna’s value distribution theory of meromorphic functions(see,e.g.[1,4]).Let f(z)be a meromorphic function.We use σ(f)and λ(f)to denote the order of growth and the exponent of convergence of zeros of a meromorphic function f(z),respectively.In addition,we denote by S(r,f)any quantity that satisfies the condition S(r,f)=o(T(r,f))as r→∞outside of a possible exceptional set of finite logarithmic measure.A meromorphic function a(z)(∞)is called a small function with respect to f(z)provided that T(r,a(z))=S(r,f).Moreover,the hyper-order of growth of f(z)is de fined as follows

    Recently,there was of Nevanlinna theory(see,e.g.,[5,6,8-10,12-17]).Given a meromorphic function f(z)and a constant c,f(z+c)is called a shift of f.As for a di ff erenceproduct,we mean a di ff erence monomial of typewhere c1,···,ckare complex constants,and n1,···,nkare natural numbers.In the following,a di ff erence polynomial,resp.a differential-di ff erence polynomial,in f is de fined as a finite sum of di ff erence products of f and its shifts,resp.of products of f,derivatives of f and of their shifts,with all the coeffi cients of these monomials being small functions of f.Yang and Laine[2]investigated the nonlinear differential-di ff erence equations and gave two conjectures on the nonexistence of entire solutions of in finite order to some differential-di ff erence equations.We now recall Theorem 2.4 in[2]and the two conjectures.

    Theorem 1.1(see[2])Let p,q be polynomials.Then a nonlinear di ff erence equation

    has no transcendental entire solutions of finite order.

    Conjecture 1.2(see[2])There exists no entire function of in finite order that satisfies a di ff erence equation of type

    where q is a nonconstant polynomial,b,c are nonzero constants and n≥2 is an integer.

    Conjecture 1.3(see[2])Let f be an entire function of in finite order and n≥2 be an integer.Then a differential-di ff erence polynomial of the form fn+Pn?1(z,f)cannot be a nonconstant entire function of finite order,here Pn?1(z,f)is a differential-di ff erence polynomial of total degree at most n?1 in f,its derivatives and its shifts,with entire functions of finite order as coeffi cients.Moreover,we assume that all terms of Pn?1(z,f)have total degree≥1.

    Remark 1.4Li[3]proved that Conjecture 1.3 is correct when the hyper-order of f(z)is less than 1 by using a di ff erence analogue of the lemma on the logarithmic derivative(see[5,7])which was extended to the case of hyper-order σ2(f)<1.

    In this paper,we first investigate the following general nonlinear di ff erence equation

    where n≥2 and Pn?1(f)is a di ff erence polynomial of degree at most n?1 in f.We mainly focus on the growth of the transcendental meromorphic solutions of(1.3)and give the following Theorem 1.5 and Theorem 1.6.

    Theorem 1.5Suppose that f(z)is a transcendental meromorphic solution of(1.3),and Pn?1(f)is a di ff erence polynomial of degree at most n?1 in f.Then f(z)has in finite order.

    Since all solutions of(1.3)is of in finite order,we now generalize Theorem 1.1 and estimate the hyper-order of the meromorphic solutions of(1.3)with rational coeffi cients.

    Theorem 1.6Suppose that f(z)is a transcendental meromorphic solution of(1.3),and that all the coeffi cients of Pn?1(f)are rational,and that all the shifts of f(z)are f(z+c1),···,f(z+ck).Denote C=max{|c1|,···,|ck|}and

    (1)If f(z)is entire or has finitely many poles,then there exist constants K>0 and r0>0 such that

    holds for all r≥r0;

    (2)If f(z)has in finitely many poles,then there exist constants K>0 and r0>0 such that

    holds for all r≥r0.

    Furthermore,we get σ2(f)≥1.

    In Section 5,we will give two examples to show that Conjecture 1.3 does not hold in general if the hyper-order of f(z)is no less than 1.To Conjecture 1.2,we have the following conclusion.

    Theorem 1.7Suppose that f(z)is an entire solution of in finite order satisfying(1.2).If σ2(f)<∞,then for any entire function d(z)of finite order,we have λ(f?d)=∞.

    2 Some Lemmas

    Lemma 2.1(see[2])Let f(z)be a meromorphic function of finite order of a di ff erence equation of the form

    where P(z,f)and Q(z,f)are differential-di ff erence polynomials with all the coeffi cients aλ(z)being small functions of f(z)and degfQ(r,f)≤n.Then for each ε>0,

    possibly outside of an exceptional set of finite logarithmic measure.

    In what follows,a meromorphic function f(z)with more than S(r,f)poles(counting multiplicities)means that the integrated counting function of these poles is not of type S(r,f).

    Lemma 2.2(see[14])Suppose that f(z)is a meromorphic solution of(1.3)with more than S(r,f)poles(counting multiplicities).We use∞k(0l)to denote a pole(zero)of f(z)with multiplicity k(l),and let zjdenote the zeros and poles of the coeffi cients ai(z)which are small meromorphic functions with respect to f(z).Let mjbe the maximum order of zeros and poles of the functions ai(z)at zj.Then for any ε>0,there are at most S(r,f)points zjsuch that

    where mj≥εkj.

    Lemma 2.3(see[1])Let fj(z)(j=1,···,n)(n≥2)and gj(z)(j=1,···,n)(n≥1)be entire functions that satisfy

    (2)when 1≤j<k≤n,gj(z)?gk(z)is not a constant;

    (3)when 1≤j≤n,1≤h<k≤n,T(r,fj(z))=o{T(r,egk(z)?gh(z))}(r→∞,rE).Then fj(z)≡0(j=1,···,n).

    The following lemma is more general than Theorem 1.45 in[1].By applying Theorem 1.4 in[1]and the Caratheodory’s inequality,we may easily get the conclusion,so we omit its proof.

    Lemma 2.4Let h(z),a(z)be non-constant entire functions of finite order and f(z)= eh(z)+a(z).If h(z)is transcendental,then the hyper-order σ2(f)of f(z)satisfies σ2(f)=σ(h).

    3 Proof of Theorem 1.5

    ProofWe first observe that Pn?1(f)contains at least one shift of f(z),for otherwise(1.3)is obviously a contradiction.Let all the shifts of f(z)be f(z+c1),···,f(z+ck),where k∈N+,Now we suppose that f(z)is of finite order and we use the similar reasoning as that in the proof of Proposition 5.4 in[13].By Lemma 2.1,we conclude that m(r,f)=S(r,f).Therefore,N(r,f)=T(r,f)+S(r,f).Thus we may use the notations of Lemma 2.2 and say that f(z)has more than S(r,f)poles,counting multiplicities.Note that all the coeffi cients of(1.3)are of finite order.By the Hadamard’s theory,we may write a finite order meromorphic function a(z)as the formwhere p(z)is a polynomial and H1(z)and H2(z)(H1(z)H2(z)0)are the canonical products formed by the zeros and poles of a(z),respectively.Then we need write all the coeffi cients of(1.3)as the above form and multiply out all the denominators of the coeffi cients to obtain that

    where n0+n1+···+np=n?1(p≤k),and that Pn?2(f)is a di ff erence polynomial of degree at most n?2 in f,and that all the coeffi cients of(3.1)are finite order entire functions.Denoting the points in the pole sequence of f(z)by zj,then we have f(zj)=∞kj.By Lemma 2.2,f(z)has more than S(r,f)poles so that we have mj<εkjat zj,here mjrefers to the coeffi cients of(3.1).Let this sequence as our starting point and denote it by z1,j.Suppose that ε<1,we see thatComparing this with the left-hand side of(3.1),we conclude that at least one of the terms of the left-hand side of(3.1)has a pole with multiplicitiesSince all the coeffi cients of(3.1)are entire functions,we see that there is at least one of the points z1,j+c1,···,z1,j+ckis a pole of f(z).In particular,we suppose that n0=0 and all z1,j+c1,···,z1,j+cpare such poles of f(z)with multiplicities k1,···,kpand that

    where n1+···+np=n?1.By taking ε<1,we observe from(3.2)that at least one of k1,···,kp,say kμ,satisfies

    Then by induction,we may fi nally choose a sequence ziof poles of f(z)which satisfy the conditions f(zi)=∞kiand ki≥(δ)i?1k1≥(δ)i?1.We now estimate the counting functionN(r,f).Let C=max(|c1|,···,|ck|)and denote ri=|z1|+(i?1)C,then it is geometrically obvious that

    For i large enough,we have ri≤2(i?1)C,which suggests that

    Hence,

    This means that f(z)is of in finite order,which obviously contradicts to our assumption that f(z)is of finite order and this completes the proof.

    4 Proof of Theorem 1.6

    ProofWe multiply out the denominators of the coeffi cients in(1.3)and write(1.3)as the following form

    where n0+···+np=n?1,and that a(z)and an?1(z)are polynomials,and that Pn?2(f)is a di ff erence polynomial of degree at most n?2 in f with polynomial coeffi cients.The proof is now divided into two parts.

    (1)Suppose that f(z)is a transcendental entire solution of(4.1).Let a(z)=as0zs0+···and denote the highest degree of the polynomials of(4.1)by s.We first have

    when r is large enough.The maximum modulus principle yields

    for all i=1,···,k.It follows from(4.1)-(4.3)that

    where g(r)<K logr for some K>0,when r is large enough.Sinceby iterating the above inequality,we have

    where

    Since log(r+kC)≤logrlog(kC)for r and k sufficiently large,we observe that the series above converge wheneverHence

    Since,by the hypothesis,f(z)is transcendental entire of in finite order,we have the inequality logM(r,f)≥2K′logr for r large enough.Thus(4.4)and(4.5)imply that

    which holds for r sufficiently large,say r≥r0.By choosing r∈[r0,r0+C)arbitrarily and letting j→∞for each choice of r,we see that

    holds for all t≥t0:=r0+C,where K′′:=K′m?(r0+C)/Clogr0.We have proved the assertion in the case of f(z)being entire.

    Suppose then that f(z)is meromorphic with finitely many poles.Then there exists a polynomial S(z)such that w(z)=S(z)f(z)is entire.Substituting f(z)=w(z)/S(z)into(4.1)and again multiplying away the denominators,we will obtain a di ff erence equation with polynomial coeffi cients similar to(4.1).Applying the reasoning above to w(z),we obtain,by the growth properties of polynomials,that

    which holds for all r≥r1≥r0.We now prove the first part.

    (2)Finally,we suppose that f(z)is meromorphic with in finitely many poles.Choose a pole z0of f(z)having multiplicity τ≥1 such that z0is not a zero of a(z).Then the left-hand side of(4.1)has a pole of multiplicity nτ at z0.Note that in this case we may let ε=0 in the proof of Theorem 1.5.Since all the coeffi cients of(4.1)are polynomials,then there is at least one of the points z0+c1,···,z0+ckis a pole of f(z)of multiplicityDenote one of these points by z0+ck1.Substitute z0+ck1for z into(4.1)to obtain

    Since the coeffi cient a(z)has finitely many zeros only being inside of a finite disk|z|<R and that f(z)has in finitely many poles,then by following the same processes as that in the proof of Theorem 10 in[12],we can obtain

    holds for all r≥r0:=(k0+1)C+|z0|,where k0is some positive constant and K:= τm?(r0+C)/C.The fact that r0and K both depend on|z0|is not a problem,since z0is fixed.

    It is obvious that σ2(f)≥1,and this completes the proof.

    5 Proof of Theorem 1.7 and Two Examples

    ProofSuppose that λ(f?d)<∞,then by Weierstrass’s theorem,f(z)has the form

    We then discuss the following two cases:

    Case 1d(z)≡0.Then(5.2)can be written as

    We claim that a(z+1)?na(z)is transcendental and satisfies σ(a(z+1)?na(z))=σ(a(z)).Otherwise,we may suppose that a(z+1)?na(z)is a polynomial or transcendental entire function and satisfies σ(a(z+1)?na(z))<σ(a(z))and turn(5.3)into the following form

    which yields a contradiction when comparing the order of growth of both sides of(5.4).Then by Lemma 2.3,we get from(5.3)that p(z)n≡0,a contradiction,and this leads to that λ(f)=∞.

    Since n≥2,then by Lemma 2.3,we can also obtain p(z)≡0 from(5.5),a contradiction again and this completes the proof.

    Example 5.1Let f(z)=eez log 2+(log2)ez log 2.Then f(z)is of in finite order and satisfies the following equation

    By Lemma 2.4,we know that σ2(f(z))=σ(ez log 2)=1.This example shows that Conjecture 1.3 does not hold in general when f(z)is of hyper-order σ2(f)=1.

    We know from Theorem 1 in[11]that there exists a periodic function Π(z)with periodic 1 such that 1<σ(Π(z))<∞,thus we may give the following example.

    Example 5.2Let f(z)=eg(z)+g′(z),and let g(z)=Π(z)ez log 2.Then we have σ(Π(z)ez log 2)>1 and g(z+1)=2g(z).By Lemma 2.4,we know that σ2(f(z))=σ(Π(z)ez log 2)>1.Now f(z)is of in finite order and satisfies the following equation

    Let h(z)=g′(z),we have σ(h)=σ(g)>1.Suppose that

    then by Lemma 2.1,we have that m(r,h)=S(r,h),a contradiction to that h(z)is an entire function,which immediately gives

    Thus we see that Conjecture 1.3 does not hold in general when f(z)is of hyper-order σ2(f)>1.

    References

    [1]Yang C C,Yi H X.Uniqueness Theory of Meromorphic Function.Newtherlands:Kluwer Academic pulishers,2003

    [2]Yang C C,Laine I.On analogies between nonlinear di ff erence and differential equations.Pro Japan Acad,2010,86(A):10-14

    [3]Li N,Yang L.Some results related to complex linear and nolinear di ff erence equations.J Di ff Equ Appl,2014,20(2):237-250

    [4]Laine I.Nevanlinna Theory and Complex Di ff erential Equations.Berlin:W de Gruyter,1993

    [5]Halburd R G,Korhonen R J.Di ff erence analogue of the lemma on the logarithmic derivative with applications to di ff erence equation.J Math Anal Appl,2006,314(2):477-487

    [6]Chiang Y-M,Feng S-J.On the Nevanlinna charactericstic of f(z+η)and di ff erence equations in the complex plane.Ramanujan J,2008,16(1):105-129

    [7]Halburd R G,Korhonen R J.Holomorphic curves with shift-invatiant hyperplane preimages.arXiv:0903.3236v2

    [8]Zhang J L,Gao Z S,Li S.Distribution of zeros and shared values of di ff erence operator.Ann Polon Math,2011,102:213-221

    [9]Wen Z T,Heittokangas J,Laine I.Exponential polynomials as solutions of certain nonlinear di ff erence equations.Act Math Sinica,English Series,2012,66(2):1295-1306

    [10]Chen Z X.On growth,zeros and poles of meromorphic solutions of linear and nonlinear di ff erence equations.Arch Math,2011,10:2123-2133

    [11]Mitsuru Ozawa.On the existence of prime periodic entire functions.Kodai Math Sem Rep,1978,29(3):308-321

    [12]Heittokangas J,Korhonen R,Laine I,Rieppo J,Tohge K.Complex di ff erence equations of Malmquist type.Comput Methods Funct Theory,2001,1(1):27-39

    [13]Laine I,Yang C C.Clunie theorems for di ff erence and q-di ff erence polynomials.J Lond Math Soc,2007,76(3):556-566

    [14]Halburd R G,Korhonen R J.Finite order solutions and the discrete Painlevé equations.Proc Lond Math Soc,2007,94:443-474

    [15]Zhang J L,Korhonen R.On the Nevanlinna characteristic of f(qz)and its applications.J Math Anal Appl,2010,369(2):537-544

    [16]Li S,Gao Z S.Resolts on a question of Zhang and Yang.Acta Math Sci,2012,32B(2):717-723

    [17]Gao L Y.Estimates of n-functions and m-function of meromrophic sohctions of systems of complex di ff erence equations.Acta Math Sci,2012,32B(4):1495-1502

    猜你喜歡
    高宗
    從“天申節(jié)御筵”中探究南宋宮廷儀式
    老高的幸福生活
    趙構(gòu)用公筷
    趙構(gòu)用公筷
    測字先生——謝石
    從趙伯琮的入宮看宋高宗在立儲問題上的政治考量
    紹興后期高宗對中樞體制的調(diào)整——以湯思退再次“兼權(quán)”參政為中心的考察
    西夏研究(2016年1期)2016-07-19 10:09:11
    基于電流矢量和開關(guān)表格控制的異步電機(jī)控制方法
    一字之師
    故事會(2014年5期)2014-05-14 15:24:16
    從宮女到皇后的智勇人生
    百家講壇(2014年15期)2014-02-11 11:52:21
    9191精品国产免费久久| 久久精品国产综合久久久| svipshipincom国产片| 久久精品91无色码中文字幕| 欧美老熟妇乱子伦牲交| 久热爱精品视频在线9| 91在线观看av| 国产精品永久免费网站| 国产精品 国内视频| 在线视频色国产色| 在线观看舔阴道视频| 婷婷丁香在线五月| 在线观看午夜福利视频| 国产有黄有色有爽视频| 久久狼人影院| 99久久久亚洲精品蜜臀av| 亚洲精品一卡2卡三卡4卡5卡| 91麻豆av在线| 高清毛片免费观看视频网站 | 久久伊人香网站| 精品国产一区二区三区四区第35| 50天的宝宝边吃奶边哭怎么回事| 波多野结衣高清无吗| 国产极品粉嫩免费观看在线| 午夜视频精品福利| 国产区一区二久久| 视频区欧美日本亚洲| 热re99久久国产66热| 99在线人妻在线中文字幕| 久久 成人 亚洲| 中文字幕人妻熟女乱码| 叶爱在线成人免费视频播放| 国产不卡一卡二| 中文亚洲av片在线观看爽| 又紧又爽又黄一区二区| 精品卡一卡二卡四卡免费| 精品久久久久久成人av| 一区二区三区精品91| 黄频高清免费视频| 国产精品自产拍在线观看55亚洲| 免费av毛片视频| 啦啦啦免费观看视频1| 9热在线视频观看99| 精品欧美一区二区三区在线| 桃红色精品国产亚洲av| 这个男人来自地球电影免费观看| 满18在线观看网站| 涩涩av久久男人的天堂| 亚洲av五月六月丁香网| 窝窝影院91人妻| 人人澡人人妻人| 午夜老司机福利片| 欧美日韩视频精品一区| 超色免费av| 男女下面插进去视频免费观看| 成年人免费黄色播放视频| 精品一区二区三卡| 欧美日韩黄片免| 免费在线观看视频国产中文字幕亚洲| 怎么达到女性高潮| 国产片内射在线| 免费观看人在逋| 久热这里只有精品99| 变态另类成人亚洲欧美熟女 | 天堂√8在线中文| 少妇 在线观看| 国产精品电影一区二区三区| 97超级碰碰碰精品色视频在线观看| 一夜夜www| 亚洲久久久国产精品| 视频区欧美日本亚洲| 国产主播在线观看一区二区| 动漫黄色视频在线观看| 欧美不卡视频在线免费观看 | 免费看a级黄色片| 女人爽到高潮嗷嗷叫在线视频| 精品第一国产精品| 伦理电影免费视频| 国产97色在线日韩免费| 在线天堂中文资源库| 日韩免费av在线播放| av免费在线观看网站| 久久 成人 亚洲| 久久久精品国产亚洲av高清涩受| 麻豆av在线久日| 在线免费观看的www视频| 欧美日韩黄片免| 欧美日韩国产mv在线观看视频| 国产成人av教育| 国产成人精品久久二区二区91| 欧美日韩中文字幕国产精品一区二区三区 | 女人精品久久久久毛片| 欧美在线一区亚洲| 欧美黄色片欧美黄色片| 波多野结衣高清无吗| 成年版毛片免费区| 国产aⅴ精品一区二区三区波| 操出白浆在线播放| 最近最新中文字幕大全免费视频| 99精品欧美一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 在线观看66精品国产| 可以在线观看毛片的网站| 多毛熟女@视频| 极品人妻少妇av视频| 99精品久久久久人妻精品| 亚洲人成电影观看| 一夜夜www| 成年人免费黄色播放视频| 一a级毛片在线观看| 乱人伦中国视频| 日韩免费av在线播放| 中文字幕精品免费在线观看视频| 日日爽夜夜爽网站| 91精品国产国语对白视频| 黑人操中国人逼视频| 成人精品一区二区免费| 国产亚洲精品一区二区www| 水蜜桃什么品种好| 亚洲av片天天在线观看| xxx96com| 夫妻午夜视频| 国产精品一区二区免费欧美| 精品国内亚洲2022精品成人| 成人18禁高潮啪啪吃奶动态图| 国产精华一区二区三区| 男女下面插进去视频免费观看| 少妇裸体淫交视频免费看高清 | 欧美日韩黄片免| 少妇粗大呻吟视频| 激情视频va一区二区三区| 欧美日韩精品网址| 久久精品亚洲熟妇少妇任你| 日韩大尺度精品在线看网址 | 99热国产这里只有精品6| 欧美日韩福利视频一区二区| 亚洲av熟女| 精品久久久久久久毛片微露脸| 一区二区日韩欧美中文字幕| 老熟妇仑乱视频hdxx| 麻豆成人av在线观看| 女人爽到高潮嗷嗷叫在线视频| 久久青草综合色| 校园春色视频在线观看| 日本vs欧美在线观看视频| 国产熟女午夜一区二区三区| 一边摸一边抽搐一进一小说| 久久99一区二区三区| 国产av精品麻豆| 国产亚洲欧美在线一区二区| 91精品三级在线观看| 1024香蕉在线观看| 日本 av在线| 性少妇av在线| 久久精品91无色码中文字幕| 日韩视频一区二区在线观看| a级片在线免费高清观看视频| 丁香欧美五月| 亚洲 国产 在线| 超碰97精品在线观看| 在线观看66精品国产| 成人特级黄色片久久久久久久| 真人做人爱边吃奶动态| 亚洲精品久久午夜乱码| 久久久久久久久中文| 亚洲国产精品一区二区三区在线| 90打野战视频偷拍视频| 长腿黑丝高跟| 国产一区二区激情短视频| 久久精品人人爽人人爽视色| 中文字幕另类日韩欧美亚洲嫩草| 日日干狠狠操夜夜爽| 天堂√8在线中文| 国产成人系列免费观看| 国产av在哪里看| 伊人久久大香线蕉亚洲五| 午夜影院日韩av| 色哟哟哟哟哟哟| 12—13女人毛片做爰片一| 好男人电影高清在线观看| 婷婷精品国产亚洲av在线| 欧美+亚洲+日韩+国产| 日韩免费av在线播放| av中文乱码字幕在线| 亚洲精品一区av在线观看| 久久人人精品亚洲av| 一级a爱片免费观看的视频| 丁香欧美五月| 一区二区三区激情视频| 国产精品免费视频内射| 欧美日韩av久久| 多毛熟女@视频| 极品人妻少妇av视频| 久久久久久久精品吃奶| 亚洲黑人精品在线| 丝袜人妻中文字幕| 日韩有码中文字幕| 久久九九热精品免费| 亚洲一卡2卡3卡4卡5卡精品中文| 成人黄色视频免费在线看| 一级作爱视频免费观看| 很黄的视频免费| 多毛熟女@视频| 久久国产亚洲av麻豆专区| 一区二区三区国产精品乱码| 757午夜福利合集在线观看| 亚洲五月色婷婷综合| 国产亚洲av高清不卡| 精品少妇一区二区三区视频日本电影| 免费在线观看影片大全网站| 新久久久久国产一级毛片| 免费av毛片视频| 久久精品aⅴ一区二区三区四区| av天堂在线播放| 无遮挡黄片免费观看| 久久国产乱子伦精品免费另类| 亚洲精品久久成人aⅴ小说| 久久久国产欧美日韩av| 日韩成人在线观看一区二区三区| 久久亚洲精品不卡| 国产精品国产av在线观看| 精品乱码久久久久久99久播| 天天添夜夜摸| 久久中文字幕人妻熟女| 久久精品成人免费网站| 国产av又大| 精品久久蜜臀av无| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区字幕在线| av免费在线观看网站| 在线观看免费视频网站a站| 欧美老熟妇乱子伦牲交| 国产精品日韩av在线免费观看 | 欧美成人午夜精品| 午夜两性在线视频| 动漫黄色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲 国产 在线| 婷婷精品国产亚洲av在线| 久久国产乱子伦精品免费另类| 精品久久久久久,| 精品国产美女av久久久久小说| 日韩欧美三级三区| 欧美日韩亚洲综合一区二区三区_| 欧美在线一区亚洲| 久久久国产成人免费| 大码成人一级视频| 欧美最黄视频在线播放免费 | 在线观看www视频免费| 他把我摸到了高潮在线观看| 国产主播在线观看一区二区| 91麻豆精品激情在线观看国产 | 两人在一起打扑克的视频| 欧美中文综合在线视频| 国产精品 欧美亚洲| 高潮久久久久久久久久久不卡| 精品卡一卡二卡四卡免费| 亚洲国产精品合色在线| 999久久久国产精品视频| 一边摸一边做爽爽视频免费| 国产av在哪里看| 亚洲精品一二三| 亚洲久久久国产精品| 嫩草影院精品99| 啪啪无遮挡十八禁网站| 十八禁人妻一区二区| 精品一区二区三区四区五区乱码| 免费不卡黄色视频| 国产精品一区二区在线不卡| 咕卡用的链子| 国产成人免费无遮挡视频| 一级毛片精品| 好看av亚洲va欧美ⅴa在| 亚洲av五月六月丁香网| 日韩中文字幕欧美一区二区| 天堂俺去俺来也www色官网| 日韩免费av在线播放| 欧美av亚洲av综合av国产av| 午夜免费观看网址| 亚洲精品美女久久av网站| 久久久久久大精品| 日日干狠狠操夜夜爽| 超色免费av| 日韩有码中文字幕| 久久草成人影院| 级片在线观看| 看黄色毛片网站| 欧美激情久久久久久爽电影 | 久久热在线av| 在线国产一区二区在线| 一本大道久久a久久精品| 国产在线精品亚洲第一网站| 亚洲中文日韩欧美视频| 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| 久久久国产欧美日韩av| 国产一区二区在线av高清观看| 久久精品91无色码中文字幕| av在线天堂中文字幕 | 亚洲欧美激情综合另类| 精品久久蜜臀av无| 日韩大尺度精品在线看网址 | 久久热在线av| 欧美日韩av久久| 99re在线观看精品视频| 欧美激情高清一区二区三区| 免费不卡黄色视频| 美女福利国产在线| 在线观看免费视频日本深夜| 在线视频色国产色| 欧美日本中文国产一区发布| 麻豆av在线久日| 91麻豆av在线| 国产伦一二天堂av在线观看| a级毛片黄视频| 日本黄色视频三级网站网址| 欧美av亚洲av综合av国产av| 99在线人妻在线中文字幕| 国产色视频综合| www.熟女人妻精品国产| 精品国产乱子伦一区二区三区| 少妇 在线观看| 午夜a级毛片| 亚洲av第一区精品v没综合| 国产色视频综合| 美女扒开内裤让男人捅视频| 日日摸夜夜添夜夜添小说| 国产亚洲av高清不卡| 久久人人精品亚洲av| 国产欧美日韩精品亚洲av| 桃红色精品国产亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 不卡av一区二区三区| 亚洲成人久久性| 99精品欧美一区二区三区四区| 国产欧美日韩一区二区精品| 在线观看舔阴道视频| 精品国产亚洲在线| 亚洲成人精品中文字幕电影 | 在线天堂中文资源库| 欧美在线一区亚洲| 极品人妻少妇av视频| 最近最新中文字幕大全电影3 | 麻豆久久精品国产亚洲av | 香蕉国产在线看| 多毛熟女@视频| 午夜激情av网站| 国产精品香港三级国产av潘金莲| 亚洲七黄色美女视频| 久久久久国产一级毛片高清牌| 香蕉久久夜色| 一a级毛片在线观看| 日本免费a在线| 欧美乱妇无乱码| 视频区图区小说| 人妻丰满熟妇av一区二区三区| 一二三四在线观看免费中文在| av欧美777| 国产伦人伦偷精品视频| 中出人妻视频一区二区| 不卡av一区二区三区| 男女做爰动态图高潮gif福利片 | 亚洲国产欧美日韩在线播放| 91成年电影在线观看| 亚洲成a人片在线一区二区| 免费日韩欧美在线观看| 欧美激情 高清一区二区三区| 国产成人av教育| 在线观看舔阴道视频| 亚洲欧美日韩无卡精品| 久久人妻熟女aⅴ| 狂野欧美激情性xxxx| 50天的宝宝边吃奶边哭怎么回事| 少妇粗大呻吟视频| 另类亚洲欧美激情| 欧美日韩亚洲综合一区二区三区_| 操出白浆在线播放| 久久热在线av| 国产精品免费视频内射| 国产xxxxx性猛交| 国产成人精品在线电影| 欧美色视频一区免费| 丰满人妻熟妇乱又伦精品不卡| av电影中文网址| 91字幕亚洲| 免费高清视频大片| 亚洲一区二区三区欧美精品| 久久久久国产一级毛片高清牌| 99国产精品99久久久久| 亚洲精品成人av观看孕妇| 亚洲精品久久成人aⅴ小说| 黄频高清免费视频| 色婷婷av一区二区三区视频| 可以在线观看毛片的网站| 不卡一级毛片| 国产91精品成人一区二区三区| 亚洲黑人精品在线| 国产单亲对白刺激| 午夜91福利影院| www.自偷自拍.com| 国产精品九九99| a在线观看视频网站| 色尼玛亚洲综合影院| av天堂久久9| 欧美乱色亚洲激情| 最好的美女福利视频网| 午夜福利在线免费观看网站| 男女之事视频高清在线观看| 一区二区三区精品91| 精品久久蜜臀av无| 级片在线观看| 一级a爱视频在线免费观看| 久久久久久大精品| 日本wwww免费看| 亚洲中文日韩欧美视频| 12—13女人毛片做爰片一| 免费在线观看完整版高清| 十八禁人妻一区二区| 国产精品一区二区在线不卡| 欧美日韩精品网址| 一区福利在线观看| 夜夜爽天天搞| 搡老乐熟女国产| 亚洲人成网站在线播放欧美日韩| 国产精品香港三级国产av潘金莲| 亚洲国产精品一区二区三区在线| 99久久综合精品五月天人人| 欧美 亚洲 国产 日韩一| 国产三级在线视频| 欧美激情高清一区二区三区| 桃色一区二区三区在线观看| 国产亚洲精品一区二区www| 午夜免费成人在线视频| 国产精品av久久久久免费| 亚洲免费av在线视频| 成人永久免费在线观看视频| 波多野结衣av一区二区av| 黄色视频,在线免费观看| 99久久综合精品五月天人人| 又黄又爽又免费观看的视频| 亚洲第一av免费看| 国产精品 国内视频| 最新美女视频免费是黄的| 侵犯人妻中文字幕一二三四区| 一a级毛片在线观看| 母亲3免费完整高清在线观看| 夫妻午夜视频| 777久久人妻少妇嫩草av网站| 国产xxxxx性猛交| 亚洲黑人精品在线| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 91麻豆精品激情在线观看国产 | 午夜日韩欧美国产| 国产精品影院久久| 最近最新中文字幕大全免费视频| 美女扒开内裤让男人捅视频| 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 久99久视频精品免费| 99国产精品99久久久久| 久久欧美精品欧美久久欧美| 日本一区二区免费在线视频| 日韩欧美一区视频在线观看| 久久中文字幕人妻熟女| 国产麻豆69| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品999在线| 一级片免费观看大全| 法律面前人人平等表现在哪些方面| 亚洲av五月六月丁香网| 国产精品免费一区二区三区在线| 国产精品久久视频播放| 久久久久久久久免费视频了| 女人被躁到高潮嗷嗷叫费观| 成年人免费黄色播放视频| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品一区二区www| 久久狼人影院| 青草久久国产| 麻豆一二三区av精品| 免费看a级黄色片| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久| 在线观看www视频免费| 成人亚洲精品一区在线观看| 精品欧美一区二区三区在线| 亚洲五月色婷婷综合| 中文字幕人妻丝袜一区二区| 日本一区二区免费在线视频| 在线观看舔阴道视频| avwww免费| 波多野结衣一区麻豆| netflix在线观看网站| 99re在线观看精品视频| 桃红色精品国产亚洲av| 国产精品电影一区二区三区| 亚洲少妇的诱惑av| 欧美成人性av电影在线观看| 搡老乐熟女国产| 99久久久亚洲精品蜜臀av| 90打野战视频偷拍视频| 成人三级做爰电影| 精品国产超薄肉色丝袜足j| 一个人免费在线观看的高清视频| 成人亚洲精品av一区二区 | 国产黄色免费在线视频| 午夜福利影视在线免费观看| 天堂√8在线中文| 男女高潮啪啪啪动态图| 成人三级黄色视频| 国产麻豆69| 国产精品综合久久久久久久免费 | 18禁国产床啪视频网站| 久久久国产一区二区| 嫩草影视91久久| 一级片免费观看大全| 国产熟女xx| 99在线人妻在线中文字幕| 久久伊人香网站| 国产亚洲精品第一综合不卡| tocl精华| 欧美日韩av久久| 满18在线观看网站| 又黄又爽又免费观看的视频| 母亲3免费完整高清在线观看| 亚洲欧美日韩另类电影网站| 中国美女看黄片| 老司机深夜福利视频在线观看| 国产亚洲精品久久久久5区| 久久精品亚洲精品国产色婷小说| 久久久久久大精品| 看黄色毛片网站| 亚洲中文av在线| 国产aⅴ精品一区二区三区波| 日本 av在线| 女人精品久久久久毛片| 99国产极品粉嫩在线观看| 精品无人区乱码1区二区| 国产三级在线视频| 性欧美人与动物交配| 美女午夜性视频免费| 亚洲国产中文字幕在线视频| 在线永久观看黄色视频| 丰满迷人的少妇在线观看| 亚洲男人天堂网一区| 黄色怎么调成土黄色| 久久久久久久午夜电影 | 久久狼人影院| 国产精品久久电影中文字幕| 男女做爰动态图高潮gif福利片 | 精品福利永久在线观看| 99久久99久久久精品蜜桃| 他把我摸到了高潮在线观看| 亚洲九九香蕉| 午夜日韩欧美国产| 欧美日本中文国产一区发布| 校园春色视频在线观看| 国产高清视频在线播放一区| 中亚洲国语对白在线视频| 在线观看舔阴道视频| 女生性感内裤真人,穿戴方法视频| 熟女少妇亚洲综合色aaa.| 99国产极品粉嫩在线观看| 一级作爱视频免费观看| 亚洲欧美精品综合一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产亚洲精品综合一区在线观看 | 国产精品自产拍在线观看55亚洲| 欧美一级毛片孕妇| 99久久人妻综合| 18美女黄网站色大片免费观看| 一边摸一边做爽爽视频免费| 中文字幕另类日韩欧美亚洲嫩草| 国产1区2区3区精品| 精品乱码久久久久久99久播| 国产单亲对白刺激| 欧美日韩瑟瑟在线播放| 国产成人精品久久二区二区91| 国产1区2区3区精品| 精品一区二区三卡| 中出人妻视频一区二区| 亚洲国产精品sss在线观看 | av在线播放免费不卡| 狠狠狠狠99中文字幕| 免费一级毛片在线播放高清视频 | 亚洲欧美日韩另类电影网站| 国产午夜精品久久久久久| 我的亚洲天堂| avwww免费| 无人区码免费观看不卡| 免费在线观看影片大全网站| 国产精品久久久久久人妻精品电影| 美女福利国产在线| 亚洲av日韩精品久久久久久密| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 精品日产1卡2卡| 亚洲美女黄片视频| 午夜精品久久久久久毛片777| 国产精品国产高清国产av| 国产精品av久久久久免费| 午夜成年电影在线免费观看| 999精品在线视频| 91国产中文字幕| 国产精品免费视频内射| 嫩草影院精品99| 国产精品秋霞免费鲁丝片| 亚洲精品国产区一区二| 黄频高清免费视频| 国产精品二区激情视频| 国产欧美日韩综合在线一区二区| 少妇 在线观看| 欧美日韩乱码在线| 可以在线观看毛片的网站|