• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of f i bre orientations on the mechanical properties of kenaf-aramid hybrid composites for spall-liner application

    2016-04-18 10:45:25YAHAYASAPUANJAWAIDLEMANZAINUDIN
    Defence Technology 2016年1期

    R.YAHAYA,S.M.SAPUAN*,M.JAWAID,Z.LEMAN,E.S.ZAINUDIN,c

    aDepartment of Mechanical and Manufacturing Engineering,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    bScience and Technology Research Institute for Defence (STRIDE),43000 Kajang,Selangor,Malaysia

    cLaboratory of Biocomposite Technology,Institute of Tropical Forestry and Forest Products (INTROP),Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    dAerospace Manufacturing Research Centre (AMRC),F(xiàn)aculty of Engineering,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    eDepartment of Chemical Engineering,College of Engineering,King Saud University,Riyadh,Saudi Arabia

    Effect of f i bre orientations on the mechanical properties of kenaf-aramid hybrid composites for spall-liner application

    R.YAHAYAa,b,S.M.SAPUANa,c,d,*,M.JAWAIDc,e,Z.LEMANa,E.S.ZAINUDINa,c

    aDepartment of Mechanical and Manufacturing Engineering,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    bScience and Technology Research Institute for Defence (STRIDE),43000 Kajang,Selangor,Malaysia

    cLaboratory of Biocomposite Technology,Institute of Tropical Forestry and Forest Products (INTROP),Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    dAerospace Manufacturing Research Centre (AMRC),F(xiàn)aculty of Engineering,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    eDepartment of Chemical Engineering,College of Engineering,King Saud University,Riyadh,Saudi Arabia

    This paper presents the effect of kenaf f i bre orientation on the mechanical properties of kenaf-aramid hybrid composites for military vehicle's spall liner application.It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78%and 43.55%higher than that of UD and mat samples respectively.Charpy impact strength of woven kenaf composites is 19.78%and 52.07%higher than that of UD and mat kenaf hybrid composites respectively.Morphological examinations were carried out using scanning electron microscopy.The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.

    Hybrid composites;Spall-liner;Aramid f i bre;Porosity;Mechanical testing

    1.Introduction

    The search for alternative f i bres as a replacement for manmade f i bres has had continued.The well-known advantages of natural f i bres are low density,low cost,its availability,renewability,ease of production,low process energy,non-abrasive,good acoustic property,acceptable specif i c strength and modulus,low cost,easily available,and easy recyclability[1-5].However,there are some limitations which required further improvement such as its moisture absorption due to hydrophobicity,dimensional stability and poor wettability,low thermal stability during processing and its poor adhesion with synthetic f i bres [5,6].The combination of two or more natural and synthetic f i bres into a single matrix has led to the development of hybrid composites [7].Natural-synthetic f i bre hybrid composites are increasingly used in a wide range of applications [8].The advantages of hybridisation are fully utilised to reduce the use of synthetic f i bres which are generally nonenvironmentally friendly.Hybrid composites can be made from artif i cial f i bres,natural f i bres and with a combination of both artif i cial and natural f i bres [9].

    Kenaf f i bres (Hibiscus cannabinus L.)have a potential as an alternative for partial replacement of conventional materials or synthetic f i bres as reinforcement in composites [10].It is reported in the literature that kenaf are already being used in hybrid form with synthetic materials such as glass [8,11-13],carbon [14],and polyethylene terephthalate (PET)[15].Aramid is one of the synthetic f i bres used in hybrid composites.Aramid fi bres are a class of heat-resistant and strong synthetic f i bres which are widely used in aerospace and military applications,for ballistic rated body armour fabric and ballistic composites. Para-aramid f i bre (Kevlar)is one of the commercially available aramid f i bres and provides a unique combination of toughness,extra high tenacity and modulus,and thermal stability [16]. Kenaf-Kevlarhybridisation fordefenceapplication was reported in Refs.[17,18].

    There are factors that inf l uence the properties of kenaf hybrid composites.One of the factors is the hybrid types(inner-laminar and interlaminar)[19].Pearce et al.[20]relates the architecture and permeability of the fabrics and mechanical properties of woven carbon-f i bre fabrics reinforced epoxy composites.Khan et al. [21]studied the inf l uence of woven structure and direction on the mechanical properties,i.e.tensile,f l exural and impact properties.It was reported that the mechanical properties of untreated woven jute composite (in warp direction)were improved compared with the non-woven. Azrin Hani et al.[22]studied the mechanical analysis of woven coir and kenaf natural f i bres.They found that the structure used as a composite reinforcement in turn produced better mechanical properties.Pothan et al. [23]studied composites of woven sisal and polyester using three different weave architectures(plain,twill and matt)with special reference to resin viscosity,applied pressure,weave architecture,and f i bre surface modif ication.This study provided detailed information on the effect of weaving,architecture and f i bre content on the mechanical properties of the hybrid composites.Karahan et al.[24]observed the decrease in the mechanical properties of carbon-epoxy composites as a result of weaving structure.Karahan et al. [25]determined the effect of weaving structure and hybridisation on the low velocity impact properties of carbon-epoxy composites.It was reported that the best result obtained from twill woven composite with the energy absorption capacity was increased by around 9-10%with hybridisation.Alavudeen et al.[26]studied the effect of weaving patterns and random orientation on the mechanical properties of banana,kenaf,and banana/kenaf f i bre-reinforced hybrid polyester composites. They found that the plain type showed improved tensile properties compared to the twill type in all the fabricated composites.

    Based on the literature studies,it was found that mechanical properties of kenaf-aramid hybrid composites were not reported.The present study aimed to evaluate the mechanical performance of kenaf-aramid hybrid composites for spall-liner application.Since the properties of a composite are often determined by the properties of the components and the fraction of inclusions [27],there is a requirement to study the effect of f i bre properties in hybrid composite.In this study,the effects of kenaf f i bre orientation on the physical and mechanical properties of kenaf-Kevlar hybrid laminate composites were studied. The kenaf f i bres and Kevlar were arranged in similar sequences to prepare the hybrid laminated composites.The kenaf tested are in the form of woven and non-woven structures.The effects of the f i bre content and its morphology were also analysed.

    2.Materials and methods

    2.1.Materials

    Aramid fabric used in this study is the plain weaved structure Kevlar 129.Three types of kenaf f i bres were used in this study: woven,unidirectional and mat.The woven kenaf was produced by the interlacement of warp and weft yarns by using table loom.The yarns were obtained from local suppliers,Innovative Pultrusion Sdn Bhd.The unidirectional samples consist of kenaf yarn (800 tex)cross plied at 0°/90°.No chemical treatment was conducted on the kenaf f i bres prior to this study.The resin used in this study is DER 331 liquid epoxy with a density of 1.08 g/m3.The resin was cured using joint mine type (905-3S),cycloaliphatic amines.

    Fig.1.Illustration of kenaf-Kevlar hybrid composites.

    2.2.Fabrication of composite laminates

    Hand lay-up method was adopted to fabricate laminates of Kevlar 129 and kenaf in epoxy resin.The specimen consists of six layers of Kevlar with the kenaf f i bres in the middle as shown in Fig.1.Kenaf and Kevlar fabric were hand lay-up with the epoxy matrix by mixing epoxy resin (DER 331)and amine hardener in the ratio of 2:1.Two thick mild steel plates are used as a mould (20 × 20 cm)in the fabrication process.All the mould surfaces were sprayed with a mould release agent to prevent adhesion of composites to the mould after curing and also to ensure smooth sample surface.Composites were cured by applying compression pressure using dead weights on the top of the mould and cured at room temperature for 24 hours. The specimens were also post-cured at 70 °C for 2 hours after removing from the mould.The composition of hybrid composites is shown in Table 1.

    2.3.Density and void contents

    The density of the hybrid laminates was measured according to theASTM D792 standards.Rectangular samples with size of 10 mm × 10 mm were used.Distilled water at room temperature was used as the immersion f l uid and the mass was measured using a digital balance with a 10-3g resolution.Five specimens were tested and an average was taken.To analyse the void percentage in the composite laminates,the ASTM D2734 standard was used.The void content was determined from thetheoretical and the experimental density of the composites by using Eqs.(1)and (2):

    Table 1Hybrid composite formulation.

    wfis the f i bre weight fraction,wmis the matrix weight fraction,ρfis the f i bre density,and ρris the resin density.

    2.4.Dimensional stability and water absorption test

    The dimensional stability of kenaf-Kevlar hybrid composites was determined by water absorption and thickness swelling test.Three samples of each composite were immersed in distilled water at room temperature.After a certain period of time,the samples were removed from the water,wiped with a clean tissue paper before the weight and thickness value was measured.The percentage of water absorption was calculated by the weight difference using the following equation:

    where weis the relative weight change or water absorption percentage,wtis the weight at time t,and w0is the initial weight at t=0,and t is the soaking time.

    The percentage of thickness swelling was estimated by

    where Treis the percentage of thickness swelling,Ttis the thickness at time t,and T0is the initial thickness at t=0.

    2.5.Mechanical testing of composites

    Tensile test was conducted to determine the stress-strain behaviour of Kevlar-kenaf hybrid laminated composites.The test was carried out using Instron 33R 4484 testing machine based on ASTM D 3039 on samples with a size of 200 mm × 25 mm × actual thickness.A standard head displacement at a speed of 5 mm/min was applied.Flexural test was conducted by using 3-point loading using Instron 33R 4484 testing machine according to the ASTM D 790-03.The rectangular samples with dimensions of 100 mm × 20 mm were cut using a circular saw.The tests were conducted at a crosshead displacement rate of 5 mm/minute.For each test,three samples were tested at room temperature and average data were taken as a f i nal result.For Charpy impact,the test samples are prepared and tested according to the ASTM D256.Five un-notched samples with dimensions of 80 mm × 10 mm × respective thickness from each composition were tested.The composite toughness was analysed and reported.

    2.6.Scanning electron microscopy (SEM)

    Kenaf-Kevlar hybrid composite samples were observed using a scanning electron microscope Leo 1430VP.The cross-sectional surfaces of the samples were cut and the scanning electron micrographs were taken to observe the interface adhesion of f i bre layers and the matrix of the hybrid composites. Prior to the analysis,the hybrid composite samples were coated with palladium using a sputter coater.

    Table 2Physical properties of hybrid composites.

    3.Results and discussion

    3.1.Density and void

    The measured density composites are listed in Table 2.It was observed that the density of samples W and UD are higher(1.10 g/cm3)thanothercomposites.Atthesametime,thedensity of sample M is 0.87 g/cm3,which is lower than other composites. The presence of voids inside the samples was calculated by comparing the measured density with the theoretical density.It was found that the contents of the void in samples W,UD and M are 7.32%,8.39%and 26.70%respectively.The result may be due to less air entrapment in the hybrid composites with woven kenaf structure,which led to lower void content.Measurement of void content is important as it is a critical imperfection in f i bre reinforced composite materials [28].

    3.2.Thickness swelling test

    Fig.2.Thickness swelling of hybrid composites.

    Fig.3.Water absorption of hybrid composites.

    The result of thickness swelling test was shown in Fig.2. Sample UD shows the highest thickness swelling (3.03%)among all the samples.The woven sample shows moderate(2.20%)thickness swelling and the mat sample is lower(2.04%).The f i gure also showed that the increase in immersion time will allow water absorption,thus increases the thickness swelling of the hybrid composites until a constant thickness was obtained.According to Jawaid et al.[29]the hydrophilic properties of lignocellulose materials and the capillary action will cause the intake of water when the samples were soaked inwater and thus increase the dimension of the composite.The presence of voids also related to the thickness swelling of as the higher the void contents increase the thickness swelling of composites[29].However,the result in swelling thickness is contradictory to this statement.This may be the effect of the hybridisation of kenaf with Kevlar,synthetic f i bres.According to Ray and Rout[30],water molecules attract the hydrophilic groups of natural f i bres and react with the hydroxyl groups (—OH)of the cellulose molecules to form hydrogen bonds.Thickness swelling occurred as the water molecules penetrate the natural f i brereinforced composite through micro-cracks and reduce the interfacial adhesion of f i bre with the matrix.Higher Kevlar content in sample M resulted in higher f i bre-matrix interfacial adhesion,thus lower thickness swelling.Khalil et al. [31]reported that the water absorption and the thickness swelling of natural f i bre reinforced with polyester composites are improved by the incorporation of synthetic f i bres.The contradiction of water absorption and thickness swelling in this study may also be due to the exposure of the lignocellulosic f i bre on the surface of the composite [32].

    3.3.Water absorption test

    The water absorption test was used to determine the amount of water absorbed by hybrid composite which consists of woven,UD and mat kenaf layers under specif i ed conditions. Fig.3 shows the behaviour of water absorption in the woven,mat and unidirectional(UD)samples.Initially,all samples had a sharp linear increase in moisture absorption and reached their saturation state with maximum moisture content of 8.07%for W and UD samples and 26.84%in sample M after 320 h of water immersion respectively.It was found that samples with woven and UD kenaf absorb less water before it reached a saturation state and the samples with kenaf mat recorded the highest water absorption before reaching the saturated state. Similar in thickness swelling,water absorption was also inf l uenced by the void content of the composite;the weight of the composite will increase by trapping the water inside the voids[29].In general,moisture diffusion in a composite depends on factors such as the volume fraction of f i bre,f i bre orientation,f i bre type,area of exposed surfaces,surface protection voids,viscosity of the matrix,humidity and temperature [33].

    Fig.4.Stress-strain curves of hybrid composites.

    3.4.Effect of kenaf f i bre orientations on the tensile properties of the hybrid composites

    Tensile strength of hybrid composites determined its ability to resist breaking under tensile stress.The tensile properties of kenaf-Kevlar hybrid composites are compared with various kenaf structures.Fig.4 shows the tensile stress-strain curves of the tested samples.The curves show the brittleness and ductile nature of the composites.For woven and UD samples,the samples elongated with the increased stress level up to certain values where the kenaf layer failure occurred.The curve is continuous until total failure of the samples occurred as the outer layers of the Kevlar fabric break.No such observation was reported in the mat samples.Based on the curves,it was observed that the elongation at the break of woven samples is lesser than the other samples.The tensile properties of samples are compared and given in Fig.5.The tensile strength and tensile modulus are found to be higher,145.8 MPa and 3336.71 MPa,respectively,for composites with woven kenaf. The tensile strength and modulus of sample UD were recorded in intermediate with the values of 115.36 MPa and 2368.48 MPa.The lowest tensile properties are observed in non-woven kenaf sample M with the strength and modulus of101.56 MPa and 1888.39 MPa respectively.The properties of the samples with woven kenaf are improved from the previous report [34].It was found that the use of table looms weaved kenaf fabric compared with hand-weaved in earlier produced kenaf fabric.The result shows that the kenaf f i bre orientation has an inf l uential effect on the tensile properties of the composites.The advantages of woven f i bre structure were observed in a previous work [26].There are many other advantages of using woven composite such as stated in the published works[35,36].

    Fig.5.Tensile properties of hybrid composites.

    Fig.6.Load-extension curves of hybrid composites.

    3.5.Effect of kenaf orientations on the f l exural properties of the hybrid composites

    The f l exural test is useful in quantifying the properties of composite mainly in structural applications.The f l exural loadextension curves of woven,UD and mat kenaf-Kevlar hybrid composites are shown in Fig.6.The curves indicate the failure mode of the composites.According to Pothan et al. [23]the abrupt failure of the composite can be related to f l exural failure and the gradual decrease in loading indicates shear failure as the predominant mode.In this study,the failure mode can be classif i ed as a mixed failure mode.Fig.7 shows the variation in the f l exural properties of kenaf-Kevlar hybrid composites.It is observed that the f l exural strength of sample UD is the highest(100.3 MPa),followed by weaved structure and mat structure: 94.21 MPa and 35.82 MPa respectively.In terms of f l exural modulus the woven samples are found to be the highest compared with other samples.From the works of earlier researchers it was found that the f i bre orientation inf l uences the properties of the composites [37].The positive effect of woven structure was also observed by Alavudeen et al.[26].

    Fig.7.Flexural properties of hybrid composites.

    Fig.8.Charpy impact strength of hybrid composites.

    Multiple factors can inf l uence the f l exural strength and modulus of hybrid composites.One factor might be the interfacial bonding between the f i bres and epoxy matrix that facilitates load transfer.Fibre volume fraction and f i bre orientation were determined as important factors in the mechanical properties of the composites [38].Higher percentage of voids has also a negative effect on the f l exural modulus and strength of the composites [39].

    3.6.Effect of kenaf orientations on the Charpy impact strength of the hybrid composites

    The Charpy impact test was conducted to determine the amount of energy absorbed by the hybrid composites during fracture.The results of the Charpy impact test are presented in Fig.8.It is observed that the value of Charpy impact strength is higher in woven samples (51.41 kJ/m2)compared with the UD samples (41.24 kJ/m2)and mat samples (24.64 kJ/m2).The impact properties of composites depend on the interlaminar and interfacial adhesion between the f i bre and the matrix.In this study it was found that the impact strength of kenaf-Kevlar hybrid composites is in similar trend as the tensile properties. This is in contrast with the observation of Van der Oever et al.[40]that the Charpy impact strength decreases with increasing f i bre internal bonding and enhanced f i bre-matrix adhesion,which is opposite to the trend for the tensile and f l exural properties.The impact toughness of kenaf/glass hybrid composites was found to be inf l uenced by the f i bre orientation [41].It was found to be affected by f i bre orientation in glass f i bre reinforced polymer matrix composites [42].In determining the inf l uences of weaving architectures on the impact resistance of multi-layer fabrics,Yang et al. [43]found that the weaving architectures and fabric f i rmness are less inf l uential on the overall ballistic protection of multi-ply systems compared to the single-ply cases.

    Generally,based on the above discussion,it was found that the effect of f i bre orientations is important to the mechanical properties of hybrid composites as well as for ballistic resistantapplication [44].Kenaf-Kevlarhybridcomposites may f i nd applications as alternatives to current spall-liners which are aimed at protection from impact by small fragments.

    Fig.9.Woven-Kevlar hybrid composite.

    Fig.10.UD-Kevlar hybrid composite.

    3.7.Scanning electron microscope

    Figs.9-11 show the SEM surface morphology of kenaf-Kevlar hybrid composites.The cross-sectional observation of untested samples was focused on the f i bre-matrix interfacial and void content in the matrix.The interstitial regions which serve as crack initiators are observed in woven and UD samples.Fig.11 reveals a weak f i bre/matrix interface with voids and cracks.This could be responsible for the deterioration of the stress transfer from the matrix to the f i bres,thus affecting the mechanical properties of the composites [11].

    4.Conclusions

    The outcomes of the present work are the effect of kenaf fi bre orientation on the mechanical properties of hybrid composites.The effect of kenaf structure (woven,non-woven UD and non-woven mat)was investigated along with the tensile, fl exural and impact performance of the prepared composites. The following conclusions are made based on the extensive experimental study:

    Fig.11.Mat kenaf-Kevlar hybrid composite.

    1)The experiments show that a non-woven mat kenaf-Kevlar hybrid composite has low density as there are high void contents.Hybrid composites with woven and UD kenaf are almost similar in density and void content.

    2)The addition of kenaf affects the water absorption behaviour of the composites.The hydrophilic nature of kenaf f i bres and void content are responsible for the water absorption and this adversely affects the f i bre swelling and dimensional stability.

    3)The tensile and Charpy impact strength properties of woven kenaf-Kevlar composite are higher than other hybrid composites.On the contrary,the f l exural strength of the hybrid composites with UD kenaf is slightly higher compared with a hybrid with woven kenaf.

    4)The scanning electron micrograph of the hybrid composite exhibited higher void content in the mat kenaf composites compared with the UD and woven kenaf.

    Acknowledgments

    The authors would like to show their appreciation to UniversitiPutraMalaysia and Scienceand Technology Research Institute for Defence (STRIDE)for supporting the research activity.

    [1]Leman Z,Sapuan SM,Azwan M,Ahmad MMHM,Maleque MA.The effect of environmental treatments on f i ber surface properties and tensile strength of sugar palm f i ber-reinforced epoxy composites.Polym Plast Technol Eng 2008;47:606-12.

    [2]Anwar UMK,Paridah MT,Hamdan H,Sapuan SM,Bakar ES.Effect of curing time on physical and mechanical properties of phenolic-treated bamboo strips.Ind Crops Prod 2009;29:214-19.

    [3]Sapuan SM,Harimi M,Maleque MA.Mechanical properties of epoxy/coconutshellf i llerparticlecomposites.Arab JSciEng 2003;28:171-81.

    [4]Rashdi AAA,Sapuan SM,Ahmad MMHM,Khalina A.Combined effects of water absorption due to water immersion,soil buried and naturalweather on mechanical properties of kenaf fi bre unsaturated polyester composites (KFUPC).Int J Mech Mater Eng 2010;5:11-17.

    [5]Jawaid M,Abdul Khalil HPS,Abu Bakar A.Woven hybrid composites: tensile and fl exural properties of oil palm-woven jute fi bres based epoxy composites.Mater Sci Eng A 2011;528:5190-5.

    [6]Saw SK,Sarkhel G,Choudhury A.Effect of layering pattern on the physical,mechanical,and thermal properties of jute/bagasse hybrid if ber-reinforced epoxy novolac composites.Polym Compos 2012;33: 1824-31.

    [7]Jawaid M,Abdul Khalil HPS,Hassan A,Dungani R,Hadiyane A. Effect of jute fi bre loading on tensile and dynamic mechanical properties of oil palm epoxy composites.Compos Part B Eng 2013;45:619-24.

    [8]Atiqah A,Maleque M,Jawaid M,Iqbal M.Development of kenaf-glass reinforced unsaturated polyesterhybrid composite forstructural applications.Compos Part B Eng 2014;56:68-73.

    [9]Nunna S,Chandra PR,Shrivastava S,Jalan A.A review on mechanical behavior of natural fi ber based hybrid composites.J Reinf Plast Compos 2012;31:759-69.

    [10]Rashdi AAA,Sapuan SM,Ahmad MMHM,Abdan K.Review of kenaf fi ber reinforced polymer composites.Polimery 2009;12:1-4.

    [11]Davoodi MM,Sapuan SM,Ahmad D,Ali A,Khalina A,Jonoobi M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam.Mater Des 2010;31:4927-32.

    [12]Wan Busu WN,Anuar H,Ahmad SH,Rasid R,Jamal NA.The mechanical and physical properties of thermoplastic natural rubber hybrid composites reinforced with Hibiscus cannabinus,L and short glass fi ber. Polym Plast Technol Eng 2010;49:1315-22.

    [13]Jeyanthi S,Rani JJ.Improving mechanical properties by KENAF natural long fi ber reinforced composite for automotive structures.JAppl Sci Eng 2012;15:275-80.

    [14]Anuar H,Ahmad SH,Rasid R,Ahmad A,Wan Busu WN.Mechanical properties and dynamic mechanical analysis of thermoplastic-naturalrubber-reinforced short carbon fi ber and kenaf fi ber hybrid composites. J Appl Polym Sci 2008;107(6):4043-52.

    [15]Zaki Abdullah M,Dan-mallam Y,Megat Yusoff PSM.Effect of environmentaldegradation on mechanicalproperties of kenaf/ polyethylene terephthalate fi ber reinforced polyoxymethylene hybrid composite.Adv Mater Sci Eng 2013;2013:1-8.

    [16]Jassal M,Ghosh S.Aramid fi bers:an overview.Indian J Fibre Text Res 2002;27:290-306.

    [17]Yahaya R,Sapuan S,Jawaid M,Leman Z,Zainudin E.Mechanical performance of woven kenaf-Kevlar hybrid composites.J Reinf Plast Compos 2014;33:2242-54.

    [18]Yahaya R,Sapuan SM,Jawaid M,Leman Z,Zainudin ES.Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites. Mater Des 2014;63:775-82.

    [19]Lu S-H,Liang G-Z,Zhou Z-W,Li F.Structure and properties of UHMWPE fi ber/carbon fi ber hybrid composites.J Appl Polym Sci 2006;101:1880-4.

    [20]Pearce NR,Summerscales J,Guild F.Improving the resin transfer moulding process for fabric-reinforced composites by modi fi cation of the fabricarchitecture.ComposPartA ApplSciManuf2000;31: 1433-41.

    [21]Khan GMA,Terano M,Gafur MA,Alam MS.Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid)composites. J King Saud Univ Eng Sci 2013.doi:10.1016/j.jksues.2013.12.002.

    [22]Azrin Hani AR,Seang CT,Ahmad R,Mariatti JM.Impact and fl exural properties of imbalance plain woven coir and kenaf composite.Appl Mech Mater 2012;271-272:81-5.

    [23]Pothan L,Mai YW,Thomas S,Li RKY.Tensile and fl exural behavior of sisal fabric/polyester textile composites prepared by resin transfer molding technique.J Reinf Plast Compos 2008;27:1847-66.

    [24]Karahan M,Karahan N.In fl uence of weaving structure and hybridization on the tensile properties of woven carbon-epoxy composites.J Reinf Plast Compos 2013;33:212-22.

    [25]Karahan M,Karahan N.Effect of weaving structure and hybridization on the low-velocity impact behavior of woven carbon-epoxy composites. Fibres Text East Eur 2014;3:109-15.

    [26]AlavudeenA, RajiniN,Karthikeyan S,Thiruchitrambalam M,Venkateshwaren N.Mechanicalpropertiesofbanana/kenaf fi berreinforced hybrid polyester composites:effect of woven fabric and random orientation.Mater Des 2015;66:246-57.

    [27]Smolin AY,Shilko EV,Astafurov SV,Konovalenko IS,Buyakova SP,Psakhie SG.Modeling mechanical behaviors of composites with various ratios of matrix-inclusion properties using movable cellular automaton method.Defence Technol 2015;11:18-34.

    [28]Little JE,Yuan X,Jones MI.Characterisation of voids in fi bre reinforced composite materials.NDT E Int 2012;46:122-7.

    [29]Jawaid M,Abdul Khalil HPS,Noorunnisa Khanam P,Abu Bakar A. Hybrid composites made from oil palm empty fruit bunches/jute fi bres: water absorption,thickness swelling and density behaviours.J Polym Environ 2010;19:106-9.

    [30]Ray D,Rout J.Thermoset biocomposites.In:Ray D,Rout J,Mohanty AK,Misra M,Drzal LT,editors.Natural fi bers,biopolymers,and biocomposites.New York:Taylor&Francis Group;2005.p.2005.

    [31]Khalil HPSA,Hanida S,Kang CW,F(xiàn)uaad NAN.Agro-hybrid composite: the effects on mechanical and physical properties of oil palm fi ber(EFB)/Glass hybrid reinforced polyester composites.J Reinf Plast Compos 2007;26:203-18.

    [32]Khalil HPSA,Jawaid M,Bakar AA.Woven hybrid composites:water absorption and thickness swelling behaviours.BioResources 2011;6: 1043-52.

    [33]Ellyin F,Maser R.Environmental effects on the mechanical properties of glass- fi ber epoxy composite tubular specimens.Compos Sci Technol 2004;64:1863-74.

    [34]Yahaya R,Sapuan SM,Jawaid M,Leman Z,Zainudin ES.Effects of kenaf contents and fi ber orientation on physical,mechanical,and morphological properties of hybrid laminated composites for vehicle spall liners.Polym Compos 2015;36(8):1469-76.

    [35]Khashaba UA,Seif MA.Effect of different loading conditions on the mechanical behavior of [0/±45/90]s woven composites.Compos Struct 2006;74:440-8.

    [36]Lomov SV.Picture frame test of woven composite reinforcements with a full- fi eld strain registration.Text Res J 2006;76:243-52.

    [37]Shibata S,Cao Y,F(xiàn)ukumoto I.Press forming of short natural fi ber-reinforced biodegradable resin:effects of fi ber volume and length on lf exural properties.Polym Test 2005;24:1005-11.

    [38]Sathishkumar TP,Navaneethakrishnan P,Shankar S.Tensile and fl exural properties of snake grass natural fi ber reinforced isophthalic polyester composites.Compos Sci Technol 2012;72:1183-90.

    [39]Hagstrand P-O,Bonjour F,M?nson J-AE.The in fl uence of void content on the structural fl exural performance of unidirectional glass fi bre reinforced polypropylene composites.Compos Part A Appl Sci Manuf 2005;36:705-14.

    [40]Van den Oever MJA,Bos HL,Molenveld K.Flax fi bre physical structure and its effect on composite properties:impact strength and thermo-mechanical properties.Angew Makromol Chem 1999;272: 71-6.

    [41]Salleh Z,Berhan MN,Hyie KM,Isaac DH,Material A.Cold-pressed kenaf and fi breglass hybrid composites laminates:effect of fi bre types. World Acad Sci Eng Technol 2012;71:969-73.

    [42]Alam S,Habib F,Irfan M,Iqbal W,Khalid K.Effect of orientation of glass fi ber on mechanical properties of GRP composites.J Chem Soc Pak 2010;32:265.

    [43]Yang C-C,Ngo T,Tran P.In fl uences of weaving architectures on the impact resistance of multi-layer fabrics.Mater Des 2015;85:282-95.

    [44]McWilliams B,Yu J,Pankow M,Yen C-F.Ballistic impact behavior of woven ceramic fabric reinforced metal matrix composites.Int J Impact Eng 2015;86:57-66.

    Received 18 April 2015;revised 20 August 2015;accepted 20 August 2015 Available online 14 September 2015

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+603 89466318.

    E-mail address:sapuan@upm.edu.my (S.M.SAPUAN).

    http://dx.doi.org/10.1016/j.dt.2015.08.005

    2214-9147/? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    亚洲第一av免费看| 成人黄色视频免费在线看| 爱豆传媒免费全集在线观看| 亚洲 欧美一区二区三区| 精品少妇一区二区三区视频日本电影| 日本五十路高清| 久久鲁丝午夜福利片| 国产成人精品无人区| 亚洲精品久久久久久婷婷小说| 大码成人一级视频| 亚洲欧美一区二区三区久久| 精品人妻一区二区三区麻豆| 99国产综合亚洲精品| 男人操女人黄网站| 黄色怎么调成土黄色| 国产日韩欧美视频二区| 赤兔流量卡办理| 精品福利永久在线观看| 成人三级做爰电影| 日韩免费高清中文字幕av| 成人国产一区最新在线观看 | 视频区图区小说| 国产精品一区二区免费欧美 | 亚洲精品一二三| 久久久久久久久久久久大奶| 精品一区二区三区四区五区乱码 | 蜜桃在线观看..| 国产有黄有色有爽视频| 久久这里只有精品19| 国产一区二区 视频在线| 一二三四在线观看免费中文在| 国产又爽黄色视频| 最近最新中文字幕大全免费视频 | 国产91精品成人一区二区三区 | 久久精品国产亚洲av高清一级| 色婷婷av一区二区三区视频| 超碰成人久久| 欧美日韩亚洲高清精品| 一二三四社区在线视频社区8| 日韩av不卡免费在线播放| 日本猛色少妇xxxxx猛交久久| 曰老女人黄片| 国产91精品成人一区二区三区 | 精品福利永久在线观看| 多毛熟女@视频| 777久久人妻少妇嫩草av网站| 男人添女人高潮全过程视频| 日韩av在线免费看完整版不卡| 久久久久国产一级毛片高清牌| 日日摸夜夜添夜夜爱| 中文字幕亚洲精品专区| 看十八女毛片水多多多| 亚洲国产av影院在线观看| 91精品国产国语对白视频| 亚洲欧美激情在线| 考比视频在线观看| 久久99精品国语久久久| 9色porny在线观看| 在现免费观看毛片| www.自偷自拍.com| 亚洲九九香蕉| 美女扒开内裤让男人捅视频| 亚洲欧美激情在线| 日本黄色日本黄色录像| 黄色片一级片一级黄色片| 久久青草综合色| 免费在线观看影片大全网站 | 精品第一国产精品| 1024视频免费在线观看| 国产人伦9x9x在线观看| 天堂俺去俺来也www色官网| 久久久欧美国产精品| 中国美女看黄片| 成人影院久久| 自线自在国产av| 国产精品.久久久| 亚洲色图 男人天堂 中文字幕| 黄片播放在线免费| 亚洲精品国产av蜜桃| 在线天堂中文资源库| 欧美日韩福利视频一区二区| 婷婷色综合www| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲九九香蕉| 一边亲一边摸免费视频| 秋霞在线观看毛片| 欧美日本中文国产一区发布| 久久久精品国产亚洲av高清涩受| 91九色精品人成在线观看| 精品人妻1区二区| 色网站视频免费| 99热国产这里只有精品6| 国产免费视频播放在线视频| 国产高清视频在线播放一区 | 视频区图区小说| 午夜91福利影院| 无遮挡黄片免费观看| 久久人妻熟女aⅴ| 日本猛色少妇xxxxx猛交久久| 秋霞在线观看毛片| 亚洲成av片中文字幕在线观看| 99精品久久久久人妻精品| 中文字幕av电影在线播放| 乱人伦中国视频| 国产欧美日韩一区二区三区在线| 捣出白浆h1v1| 操美女的视频在线观看| 又黄又粗又硬又大视频| 精品人妻在线不人妻| 婷婷色麻豆天堂久久| 欧美久久黑人一区二区| 男人舔女人的私密视频| 精品国产一区二区三区久久久樱花| 一本—道久久a久久精品蜜桃钙片| 老司机亚洲免费影院| 考比视频在线观看| 中文字幕人妻熟女乱码| 一级毛片我不卡| 国产免费又黄又爽又色| 亚洲五月婷婷丁香| 国产成人免费无遮挡视频| 韩国精品一区二区三区| 天天操日日干夜夜撸| 男女边吃奶边做爰视频| 丰满饥渴人妻一区二区三| 欧美黄色片欧美黄色片| 视频区图区小说| 高清欧美精品videossex| 成年动漫av网址| 亚洲精品日韩在线中文字幕| 亚洲精品av麻豆狂野| 涩涩av久久男人的天堂| 一级片免费观看大全| 制服人妻中文乱码| 18禁观看日本| 99国产精品一区二区蜜桃av | 亚洲av电影在线进入| 最新在线观看一区二区三区 | 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久| 国产成人欧美| 精品免费久久久久久久清纯 | 亚洲成色77777| 欧美黄色淫秽网站| 国产黄色视频一区二区在线观看| 欧美激情极品国产一区二区三区| 777米奇影视久久| 一级黄片播放器| 日本黄色日本黄色录像| 国产精品人妻久久久影院| 又紧又爽又黄一区二区| 岛国毛片在线播放| 中文字幕色久视频| 亚洲中文字幕日韩| 大陆偷拍与自拍| 啦啦啦在线观看免费高清www| 九色亚洲精品在线播放| 在线精品无人区一区二区三| 婷婷丁香在线五月| 亚洲精品国产区一区二| 国产亚洲精品久久久久5区| 一级片'在线观看视频| 麻豆乱淫一区二区| 精品国产一区二区三区久久久樱花| 午夜久久久在线观看| 黄色视频在线播放观看不卡| 90打野战视频偷拍视频| 国产亚洲午夜精品一区二区久久| 99久久人妻综合| 国产免费福利视频在线观看| 午夜免费鲁丝| 久久精品熟女亚洲av麻豆精品| 久久九九热精品免费| av在线播放精品| 亚洲第一av免费看| 婷婷色综合大香蕉| 曰老女人黄片| 黑丝袜美女国产一区| av网站在线播放免费| 建设人人有责人人尽责人人享有的| 岛国毛片在线播放| √禁漫天堂资源中文www| 另类精品久久| 久久人妻熟女aⅴ| 成人18禁高潮啪啪吃奶动态图| 伊人久久大香线蕉亚洲五| 亚洲欧美一区二区三区黑人| 亚洲国产精品一区三区| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 亚洲自偷自拍图片 自拍| 熟女av电影| 操美女的视频在线观看| 亚洲精品在线美女| 最近中文字幕2019免费版| 午夜久久久在线观看| 亚洲国产成人一精品久久久| 久久免费观看电影| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产 | 好男人视频免费观看在线| 两个人免费观看高清视频| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看 | 欧美性长视频在线观看| 亚洲国产日韩一区二区| svipshipincom国产片| 欧美 日韩 精品 国产| 久久99一区二区三区| 中国国产av一级| 乱人伦中国视频| 这个男人来自地球电影免费观看| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| 日韩av免费高清视频| 晚上一个人看的免费电影| 亚洲国产精品一区二区三区在线| 丝袜美足系列| 国产午夜精品一二区理论片| 各种免费的搞黄视频| 国产精品一二三区在线看| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 成人国产一区最新在线观看 | 悠悠久久av| 亚洲国产精品一区二区三区在线| av国产久精品久网站免费入址| 亚洲视频免费观看视频| 十分钟在线观看高清视频www| 日韩中文字幕欧美一区二区 | 亚洲三区欧美一区| 久久中文字幕一级| 高潮久久久久久久久久久不卡| 天天影视国产精品| 99香蕉大伊视频| a 毛片基地| 成人免费观看视频高清| 精品一区在线观看国产| 十八禁高潮呻吟视频| 亚洲人成电影观看| 2021少妇久久久久久久久久久| 成年人免费黄色播放视频| 中文精品一卡2卡3卡4更新| 美女视频免费永久观看网站| 免费看十八禁软件| 一本综合久久免费| 19禁男女啪啪无遮挡网站| 国产精品三级大全| 国产一区有黄有色的免费视频| 午夜av观看不卡| 午夜激情av网站| 久久鲁丝午夜福利片| 夫妻午夜视频| 日韩视频在线欧美| 菩萨蛮人人尽说江南好唐韦庄| 日韩中文字幕欧美一区二区 | 婷婷成人精品国产| 18在线观看网站| 不卡av一区二区三区| 看免费成人av毛片| 9色porny在线观看| 国产精品国产av在线观看| 视频区图区小说| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区黑人| 国产在视频线精品| 国产精品.久久久| 黑人猛操日本美女一级片| 成人国产一区最新在线观看 | 欧美日韩亚洲高清精品| 国产精品成人在线| 亚洲欧美一区二区三区国产| 成年美女黄网站色视频大全免费| 亚洲av片天天在线观看| av有码第一页| 91老司机精品| 久久精品aⅴ一区二区三区四区| 性少妇av在线| 国产一级毛片在线| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品自拍成人| 亚洲欧美中文字幕日韩二区| 男女之事视频高清在线观看 | 亚洲精品美女久久久久99蜜臀 | 视频区欧美日本亚洲| 两个人看的免费小视频| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 亚洲 国产 在线| 欧美日韩成人在线一区二区| 9热在线视频观看99| 国产男女超爽视频在线观看| 日本av手机在线免费观看| 国产精品国产av在线观看| 777米奇影视久久| 老熟女久久久| 69精品国产乱码久久久| 国产一级毛片在线| 如日韩欧美国产精品一区二区三区| 午夜激情av网站| 久久人妻熟女aⅴ| 王馨瑶露胸无遮挡在线观看| www.999成人在线观看| 亚洲精品国产一区二区精华液| 日本91视频免费播放| 一区二区av电影网| 黑人巨大精品欧美一区二区蜜桃| 男人操女人黄网站| 国产精品国产三级国产专区5o| 精品福利永久在线观看| 曰老女人黄片| 国产精品久久久久久人妻精品电影 | 亚洲视频免费观看视频| 国产精品欧美亚洲77777| 免费少妇av软件| 国产精品秋霞免费鲁丝片| 热re99久久精品国产66热6| 51午夜福利影视在线观看| 中文字幕最新亚洲高清| 久久久欧美国产精品| 一边亲一边摸免费视频| 精品视频人人做人人爽| 91麻豆av在线| 青春草视频在线免费观看| 极品人妻少妇av视频| 欧美成人午夜精品| 美女大奶头黄色视频| 久久精品国产综合久久久| 大香蕉久久网| 精品一区二区三区av网在线观看 | 人妻人人澡人人爽人人| 国产高清不卡午夜福利| 好男人视频免费观看在线| 亚洲中文av在线| 国产99久久九九免费精品| 久久av网站| 熟女少妇亚洲综合色aaa.| 巨乳人妻的诱惑在线观看| 成人国产av品久久久| 欧美性长视频在线观看| 久久99一区二区三区| 2021少妇久久久久久久久久久| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 在线看a的网站| 99国产精品一区二区三区| 中文字幕人妻丝袜制服| 欧美精品啪啪一区二区三区 | 日本av免费视频播放| 国产亚洲av高清不卡| 麻豆av在线久日| a级毛片黄视频| 国产成人精品无人区| 免费日韩欧美在线观看| 人成视频在线观看免费观看| 免费日韩欧美在线观看| 伊人亚洲综合成人网| 国产片特级美女逼逼视频| 肉色欧美久久久久久久蜜桃| 欧美乱码精品一区二区三区| 国产有黄有色有爽视频| 亚洲欧美一区二区三区久久| 免费观看av网站的网址| 成年人午夜在线观看视频| 免费观看人在逋| 欧美乱码精品一区二区三区| 国产亚洲精品久久久久5区| 无限看片的www在线观看| 成人18禁高潮啪啪吃奶动态图| 国产不卡av网站在线观看| 国产成人啪精品午夜网站| 精品国产一区二区三区四区第35| 亚洲欧洲日产国产| 18禁国产床啪视频网站| 午夜免费鲁丝| 久久久国产精品麻豆| 91精品国产国语对白视频| videosex国产| 热re99久久国产66热| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| 免费在线观看完整版高清| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 大香蕉久久网| 一本久久精品| 亚洲av欧美aⅴ国产| 亚洲精品一卡2卡三卡4卡5卡 | 日本wwww免费看| 欧美+亚洲+日韩+国产| 精品久久久久久电影网| 国产野战对白在线观看| 亚洲综合色网址| 日韩精品免费视频一区二区三区| 国产高清国产精品国产三级| 日本黄色日本黄色录像| 午夜福利视频精品| 叶爱在线成人免费视频播放| 一边摸一边抽搐一进一出视频| 男的添女的下面高潮视频| 国产精品一区二区精品视频观看| 91国产中文字幕| 亚洲国产欧美日韩在线播放| 日韩一卡2卡3卡4卡2021年| 91成人精品电影| 777米奇影视久久| 欧美97在线视频| 777米奇影视久久| 国产主播在线观看一区二区 | 国产三级黄色录像| 日韩免费高清中文字幕av| 亚洲国产精品一区二区三区在线| 亚洲精品第二区| 国产一区二区三区av在线| 亚洲精品在线美女| 久9热在线精品视频| 亚洲 国产 在线| 一级毛片 在线播放| 国产日韩欧美在线精品| 国产精品欧美亚洲77777| 黄片小视频在线播放| 脱女人内裤的视频| 视频区欧美日本亚洲| 美国免费a级毛片| 51午夜福利影视在线观看| 精品福利观看| 久久99精品国语久久久| 91字幕亚洲| 一级毛片 在线播放| 精品一区二区三卡| 精品一区在线观看国产| 19禁男女啪啪无遮挡网站| 99九九在线精品视频| 欧美xxⅹ黑人| 一级a爱视频在线免费观看| 最新的欧美精品一区二区| 99热全是精品| 日本一区二区免费在线视频| 午夜影院在线不卡| 中国国产av一级| 黄色一级大片看看| 91精品伊人久久大香线蕉| 肉色欧美久久久久久久蜜桃| 亚洲五月色婷婷综合| 麻豆国产av国片精品| 国产视频一区二区在线看| 亚洲天堂av无毛| 亚洲图色成人| 日本猛色少妇xxxxx猛交久久| 日韩精品免费视频一区二区三区| 青青草视频在线视频观看| 日韩熟女老妇一区二区性免费视频| 一本综合久久免费| 久久精品成人免费网站| 在线亚洲精品国产二区图片欧美| 老司机午夜十八禁免费视频| 亚洲伊人色综图| 国产成人免费观看mmmm| 成人午夜精彩视频在线观看| 精品第一国产精品| 国产男女超爽视频在线观看| 国产精品一区二区精品视频观看| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看人妻少妇| 亚洲欧洲精品一区二区精品久久久| 国产在线视频一区二区| 一本综合久久免费| 婷婷色麻豆天堂久久| 纯流量卡能插随身wifi吗| 欧美黄色淫秽网站| 国产一卡二卡三卡精品| 啦啦啦视频在线资源免费观看| 国产伦人伦偷精品视频| 国产日韩欧美视频二区| 日韩制服骚丝袜av| 国产主播在线观看一区二区 | 性色av乱码一区二区三区2| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品人妻久久久影院| 蜜桃在线观看..| 午夜福利视频精品| 精品福利永久在线观看| 欧美日韩亚洲高清精品| 婷婷丁香在线五月| 亚洲久久久国产精品| 天天躁日日躁夜夜躁夜夜| 老鸭窝网址在线观看| 少妇粗大呻吟视频| 亚洲综合色网址| 欧美黑人欧美精品刺激| 亚洲欧美一区二区三区久久| 日韩av不卡免费在线播放| 在线亚洲精品国产二区图片欧美| xxx大片免费视频| a级片在线免费高清观看视频| 少妇猛男粗大的猛烈进出视频| 欧美xxⅹ黑人| 亚洲精品中文字幕在线视频| 少妇的丰满在线观看| 久久久欧美国产精品| 美女福利国产在线| 久久久亚洲精品成人影院| 久久久久久人人人人人| 欧美日韩亚洲国产一区二区在线观看 | 日韩人妻精品一区2区三区| 欧美成人精品欧美一级黄| 少妇的丰满在线观看| 午夜福利,免费看| 女人爽到高潮嗷嗷叫在线视频| 交换朋友夫妻互换小说| 欧美成人午夜精品| av片东京热男人的天堂| 宅男免费午夜| 一区二区三区乱码不卡18| 最新的欧美精品一区二区| 亚洲精品一区蜜桃| av天堂久久9| 啦啦啦 在线观看视频| 色婷婷久久久亚洲欧美| 观看av在线不卡| 精品国产一区二区三区四区第35| 亚洲 欧美一区二区三区| 亚洲国产精品一区二区三区在线| 国产成人欧美| 欧美日韩亚洲国产一区二区在线观看 | 久久99一区二区三区| 999精品在线视频| av又黄又爽大尺度在线免费看| 欧美黑人欧美精品刺激| 国产精品熟女久久久久浪| 午夜av观看不卡| 在线观看一区二区三区激情| 久久热在线av| 免费观看av网站的网址| 美女视频免费永久观看网站| 又粗又硬又长又爽又黄的视频| 国产在线视频一区二区| 国产精品久久久久久精品电影小说| 别揉我奶头~嗯~啊~动态视频 | 国产女主播在线喷水免费视频网站| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费大片| 日韩熟女老妇一区二区性免费视频| 美女国产高潮福利片在线看| 又大又黄又爽视频免费| 久久毛片免费看一区二区三区| 男男h啪啪无遮挡| 国产女主播在线喷水免费视频网站| 中文字幕亚洲精品专区| 国产精品 欧美亚洲| 久久精品人人爽人人爽视色| 欧美日韩av久久| 亚洲av成人精品一二三区| 精品一品国产午夜福利视频| 久久 成人 亚洲| 麻豆av在线久日| 精品人妻一区二区三区麻豆| 久久久久久久久免费视频了| 大话2 男鬼变身卡| 亚洲精品国产区一区二| 美女扒开内裤让男人捅视频| 亚洲成色77777| 亚洲成人免费电影在线观看 | 国产91精品成人一区二区三区 | av在线播放精品| 老鸭窝网址在线观看| 亚洲精品一区蜜桃| 丰满迷人的少妇在线观看| 51午夜福利影视在线观看| 黄色 视频免费看| 国产亚洲午夜精品一区二区久久| 国产男女超爽视频在线观看| 啦啦啦啦在线视频资源| 高清av免费在线| 岛国毛片在线播放| 亚洲精品第二区| 国产精品亚洲av一区麻豆| 91精品三级在线观看| 9热在线视频观看99| 极品人妻少妇av视频| 一本一本久久a久久精品综合妖精| 我要看黄色一级片免费的| 日本午夜av视频| 欧美变态另类bdsm刘玥| 男男h啪啪无遮挡| 亚洲激情五月婷婷啪啪| 一个人免费看片子| 日日摸夜夜添夜夜爱| 日韩大码丰满熟妇| 日本91视频免费播放| 国产av国产精品国产| 久久久亚洲精品成人影院| 国产亚洲精品第一综合不卡| 脱女人内裤的视频| 欧美精品一区二区大全| 97在线人人人人妻| 中文字幕最新亚洲高清| 国产免费福利视频在线观看| 国产一级毛片在线| 国产精品欧美亚洲77777| 90打野战视频偷拍视频| 超碰97精品在线观看| 国产精品免费大片| 美女脱内裤让男人舔精品视频| 老司机靠b影院| 男女国产视频网站| 免费高清在线观看日韩| 国产亚洲一区二区精品| 色综合欧美亚洲国产小说| 老司机影院毛片| 999精品在线视频|