• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ballistic behavior of boron carbide reinforced AA7075 aluminium alloy using friction stir processing-An experimental study and analytical approach

    2016-04-18 10:45:21SUDHAKARMADHUSUDHANREDDYSRINIVASARAO
    Defence Technology 2016年1期

    I.SUDHAKAR,G.MADHUSUDHAN REDDY,K.SRINIVASA RAO*

    aDepartment of Mechanical Engineering,MVGRCE,Vizianagaram,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    cDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    Ballistic behavior of boron carbide reinforced AA7075 aluminium alloy using friction stir processing-An experimental study and analytical approach

    I.SUDHAKARa,G.MADHUSUDHAN REDDYb,K.SRINIVASA RAOc,*

    aDepartment of Mechanical Engineering,MVGRCE,Vizianagaram,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    cDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    High strength-to-weight ratio of non-ferrous alloys,such as aluminium,magnesium and titanium alloys,are considered to be possible replacement of widely accepted steels in transportation and automobile sectors.Among these alloys,magnesium is self explosive and titanium is costlier,and aluminium is most likely to replace steels.Application of aluminium or its alloys is also thought of as an appropriate replacement in defence f i eld,especially to enhance the easiness in mobility of combat vehicles while maintaining the same standard as that of conventional armour grade steels.Hence most of the investigations have been conf i ned to aluminium or its alloys as base material and open an era of developing the newer composite materials to address the major limitation,i.e.tribological properties.The surface composites can be fabricated by incorporating the ceramic carbides like silicon carbide,carbides of transition metals and oxides of aluminium using surface modif i cation techniques,such as high energy laser melt treatment,high energy electron beam irradiation and thermal spray process which are based on fusion route.These techniques yield the fusion related problems,such as interfacial reaction,pin holes,shrinkage cavities or voids and other casting related defects,and pave the way to need of an eff i cient technique which must be based on solid state.Recently developed friction stir processing technique was used in the present investigation for surface modif i cation of AA7075 aluminum alloy,which is an alternative to steels.In the present investigation,160 μm sized boron carbide powder was procured and was reduced to 60 μm and 30 μm using high energy ball mill.Subsequently these powders were used to fabricate the surface composites using friction stir processing.

    AA7075 aluminium alloy;Friction stir processing (FSP);Surface metal matrix composite (SMMC);Boron carbide (B4C);Ballistic performance;Target

    1.Introduction

    A shift in paradigm has been witnessed from heavier material to lighter one in the automobile sectors.It is always a challenge imposed by corporate average fuel economy (CAFé)standards so that the major share of material used in vehicle outf i t must be replaced by light metals,such as aluminium,magnesium and titanium [1,2].Being magnesium self explosive and titanium costlier,aluminium and its alloys paves a way to encroach several domains where ferrous alloys have dominated[3-8].The mechanical properties of steel,such as high energy absorbing property,high strength,greater notch toughness and high hardness,make as it a globally accepted primary material in defense [9-14].Even though aluminium and its alloys possess all the requisite mechanical properties to become a potential armour material,its lower melting point,less strain rate sensitivity and poor tribological property forbids it's usage[15,16].Surface layering of monolithic materials with harder material and subsequent existence of tougher material to dissipate the kinetic energy of projectile have been found to be the effective measures towards improving the penetration resistance of targets in defense [17-20].Several methods,such as plasma spray,chemical vapour deposition (CVD),physical vapor deposition (PVD),electron beam welding(EBM),plasma transferred arc welding (PTAW),laser surfacing,are generally used to produce surface composite [21-26]by changing the surface morphology of substrate.These surface modif i cation techniques are based on fusion technique and not free from some limitations like poor interfacial bond integrity,casting defects such as pores,and shrinkages voids.Hence a newly developed solid state process,i.e.friction stir process [27],has been chosen for fabricating the targets.Keeping the above facts in view,high strength AA 7075 aluminium alloy has been chosen as substrate for fabricating the surface composites or targets by incorporating boron carbide using friction surfacing.

    2.Material and methods

    Base metal or AA7075-T6 aluminium alloy,i.e.,substrate having chemical composition (%of weight),consists of 5.6%zinc,2.5%magnesium,1.6%copper,0.23%chromium,0.3%manganese,0.2%titanium,0.4%silicon and 0.5%iron,and the remaining is aluminium.The initial thickness of base metal was 40 mm.160 μm-sized boron carbide powder of 99.92%purity was received and reduced to 60 μm and 30 μm using high energy ball mill,and subsequently these powders were used to fabricate the surface composites or targets with 40 mm in thickness using friction stir processing.

    Trial runs were made by varying the rotational speeds and feed rate to obtain the sound surface composites on substrate using friction stir processing.Surface composites,i.e.,targets,were fabricated by reinforcing 160 μm,60 μm and 30 μm-sized boron carbide powders in two stages using a f l at tool and tool with pin.The metallographic samples were prepared from both base and targets using Kellar reagent (95%H2O,2.5%HNO3,1.5%HCl,and 1%HF)as etchant to understand the particle distribution of boron carbide (B4C).Hardness of targets was measured using Vicker hardness tester under a load of 0.3 kgf. Ballistic testing was carried out on targets in a ballistic testing tunnel as per the military standard (JIS.0108.01)and the standardized testing conditions.An experimental setup is shown in Fig.1.The target plates were tested with 7.62 mm-diameter lead projectiles located at 10 m from the projectile exit region. The striking velocity of the projectile was measured using infrared light emitting diode photo-voltaic cells by measuring the time interval between the interceptions caused by the projectile running across two transverse beams at f i xed distance a part.The probes were placed at 6 m and 8 m from the nozzle of the gun barrel.The f i rst probe activates the timer and the second probe de-activates it.Few numbers of preliminary experiments were performed,and the adjustments were made to obtain the required impact velocity of the projectile onto the target.The velocity of projectile was measured to be 830 ± 10 m/s.

    Fig.1.Schematic diagram of ballistic test [28].

    After ballistic test,the targets were subjected to macroscopic examination to evaluate the ballistic performance by considering the perforation depth of projectile.In the present work,the depth of penetration was calculated analytically by the conservation of energy balance,i.e.,kinetic energy possessed by projectile during impact is equal to energy spent in multi-layers. Shearing area,i.e.,outer surface area of projectile,was taken into consideration for the analytical f i ndings.Shearing strength was taken as half of the ultimate tensile strength.Ultimate tensile strength was estimated from the equivalent conversion of Vicker hardness values obtained for the targets.Schematic diagram is represented to f i nd the depth of penetration into the target using an analytical approach,as shown in Fig.2.For better illustration,a model calculation is given below.

    =Work done against first l aayer

    +work done against supporting layer.

    Fig.2.Model for analytical assessment of ballistic performance.

    Fig.3.Friction stir processed surface with the cracks along the tool travel and the voids along the transverse section.

    Fig.4.Sound surface composite fabricated using FSP.

    + π(D)(l)(she aar stress of supporting layer)(x)

    where m=0.0506 kg,V=830 m/s,D (diameter of projectile)=7.62 mm,length of projectile (l)=98 mm,thickness of f i rst layer (t)=3 mm,i.e.,fabricated surface composite layer thickness which is maintained constant for all targets,and x=traveling distance of projectile in the supporting layer.

    Shear stress of first layer =ultimate tensile stress of layeer2

    Depth of penetration (39 . 14 +3) =42. 14mm

    A similar approach was adopted for evaluating the penetration depth in SMMC B4C-60 μm and SMMC-30μm,and the penetration depth of 40.5mmand 38.17 mm were obtained,respectively.An attempt was made to introduce an empirical constant such that analytical obtained depth of penetration approach experimental one.

    Empirical constant was calculated by taking the average of ratio between experimental depth to analytically obtained values and found to be 0.707.

    Shear stress of supporting layer =ultimate tensile stress off supporting layer2

    Ultimate tensile stress for target is calculated empirically from hardness conversions tables.Hence,monolithic AA 7075 aluminium alloy having ultimate tensile strength of 339 MPa acts as a supporting layer for other fabricated targets.

    Ultimate tensile strength of SMMC B4C-160 μm is 527 Mpa.

    The above expressions are used to calculate the penetration depth of projectile intoTarget-1

    3.Results and discussion

    3.1.Fabrication of surface composite using friction stir processing

    Higher rotational speed (greater than 1200 rpm)of rotating tool resulted in intense plastic deformation which led to the surface cracks along the tool traveling direction and the voids in the transverse section of processed surface composite,as shown in Fig.3.Similarly,the rotational speed less than 750 rpm during friction stir processing caused an improper mixing of B4C particles and yielded the earlier results.

    Fig.5.Microstructure of the elongated grains.(a)Microstructure of base;(b)surface composite.

    Fig.6.SEM micrograph.(a)SEM image of stir zone;(b)transverse section of SMMC.

    Higher transitional feed rate as wells as larger plunging speed during fabrication of surface composite using friction stir processing resulted in tool breakage.It was observed that the threaded portion of tool used for mixing the hard boron carbide particles during the second stage of friction stir processing was worn.Tool wear may be attributed to the presence of harder boron carbide particles which are responsible for wearing out the threaded portion of pin.After a number of trials for fabrication of surface composite,the friction stir processing parameters,such as tool rotational speed of 925 rpm-1000 rpm,a longitudinal feed rate of 50 mm/min and plunging speed of 30 mm/min,resulted in the formation of surface metal matrix composites without voids along the transverse section and surface cracks,as shown in Fig.4.It was also found that the tracks of rotational tool have specif i c pattern in the form of onion rings,as shown in Fig.4.Tool movement from right to left about horizontal axis was maintained to obtain a defect-free surface composite during surfacing.

    3.2.Microstructure

    Base metal consists of the elongated grains along the rolling direction as evident from the optical micrograph shown in Fig.5(a).

    During fabrication of surface metal matrix composite(SMMC),the stirring action of tool results in changing the dimensions of boron carbide particles either by rounding off the sharp corners or breaking off the sharp edges and leads to f i ner particle size.Hence,the estimated average size of the boron carbide particles in the stir zone is signif i cantly smaller than received powder,which can be witnessed from Fig.5(b).Friction stir processing involves stirring action of pin with high rotational speed which generates frictional heat between tool and workpiece.This heat is responsible for softening the material around the tool and helps in the distribution of reinforcement particles to form a surface metal matrix composite.The effect of stirring on the fabrication of surface composite and the distribution of boron carbide particles can be easily witnessed from SEM micrograph,as shown in Fig.6(a).The degree of boron carbide particle distribution is dependent on pin height of processing tool.A pin with 3 mm in height was used during thefabrication of surface composite,which is identical with the magnitude of interface,as shown in Fig.6(b).

    Fig.7.Hardness of targets.

    Fig.8.Front view of targets after ballistic test.(a)Base;(b)B4C-160 μm;(c)B4C-60 μm(d);B4C-30 μm.

    From Fig.6(a)and (b),it can be interpreted that FSP causes the homogeneous dispersion of boron carbide particles in the stir zone and leads to the formation of defect-free interface and adherent B4C particles in substrate.

    3.3.Hardness testing

    The hardness data of base metal and friction stir processed alloy under different conditions is presented in Fig.7.There is signif i cant improvement in hardness by the addition of boron carbide particles into substrate during friction stir processing. The stirring action of rotating tool results in the mechanical rupture of boron carbide,and a large number of high angle boundaries are produced.These high angle boundaries impede the free movement of dislocations and enhance the strength and hardness.Fine dispersion of carbide particles in the AA7075 aluminium alloy matrix hinders the free movement of dislocations and enhances the hardness of surface composites,which is well validated with Orwan mechanism [29].

    3.4.Ballistic behavior

    Lead projectile was used to evaluate the ballistic performance of fabricated target under different conditions.Damage,in the form of a perforation hole with measurable depth of penetration,width and cracks around the hole,was noticed in the targets after ballistic test.Among these noticeable outcomes obtained during ballistic test,the depth of penetration (DOP)of targets was taken to evaluate the ballistic performance.Fig.8 shows the macro photographs of targets after ballistic test under the different conditions of targets.

    From Fig.8,it can be interpreted that the base,i.e.,AA7075 aluminium alloy,exhibited the fragments,the projectile was almost penetrated,and other targets exhibited petaling failure.It can also be noticed that the craters are in the base.From the front ends of targets in other cases,the presence of projectile inside the targets can be witnessed.

    From Fig.9,it can be inferred that the degree of penetration is more signif i cant in the base metal compared to other targets in all the trials for evaluating ballistic performance of base metal,It was found that the base metal was perforated in all the trials for evaluating ballistic performance of base metal,while in very few trials (about 5%)the projectile caused damage to a depth of 80%of base metal,as shown in Fig.9(a). As the armour materials are fabricated for high safety,AA7075 aluminium alloy cannot be suitable for fabrication of combat vehicles.Depth of penetration of projectile was measured from the cross section of each target and presented in Table 1.Similarly,the analytic results were also presented in Table 1.Fig.10 shows the graphical representation for better illustration.

    From Table 1 and Fig.10,it can be witnessed that the depth of penetration is found to be very close to each other and are well validated.However,the variation in the results may be attributed to the assumption that the targets are considered to be isotropic and the perfect shearing,i.e.between projectile surface and inner portion of target is taken into account duringanalytical calculation.Shear strength is considered to be half that of ultimate tensile stress,and the ultimate tensile strength is obtained from conversion of Vickers's hardness data.

    Fig.9.Cross section of targets after ballistic test.(a)Base (b)B4C-160 μm;(c)B4C-60 μm;(d)B4C-30 μm.

    Table 1Analytical and experimental results of ballistic test.

    Fig.10.Analytic and experimental values of ballistic test.

    It can be observed that SMMCs/targets have exhibited better ballistic performances compared to the base metal.It may be attributed to the frictional characteristic of SMMC and projectile.During travel of projectile inside the armor,a strong friction between the contact pair causes damage to the surface of the projectile tip due to abrasive action of harder(B4C)particles on SMMC and leads to the macro deformation and breaking of the projectile tip.Hence,the depth of penetration of projectile into the armour material/targets (SMMC)is reduced.The f i ne grade target,i.e.,SMMC B4C-30 μm,consists of more number of boron carbide particles compared to the coarse grade target. The intactness of boron carbide particles,which is the measure of surface hardness,of the targets favors abrasive action damages the projectile surface and reduces the travel of projectile inside the armour material.

    From the above,it can be established that the friction stir processedAA7075 alloy plates/targets successfully stopped the projectile whereas the uncoated base metal was perforated completely.The targets with f i ner grade boron carbide particles have better ballistic performance compared to the base metal.The observed result is in agreement with hardness data.

    Hence it can be concluded that the friction surfacing can be successfully used to deposit the hard boron carbide powders on the surface of armour grade AA7075 aluminium alloy and enhance the ballistic resistance of selected AA7075 aluminium alloy.

    4.Conclusions

    1)Friction stir processing has uniformly distributed the boron carbide particles in AA7075 aluminum alloy matrix and enhances its surface hardness compared to that of base.

    2)Increase in ballistic eff i ciency may be attributed to the frictional characteristics of armour surface and projectile,which favors the damage to the surface of the projectile tip by abrasive action of harder (B4C)particles on the target and leads to the macro-deformation and breaking of the projectile tip.

    3)Analytic approach to estimate the penetration depth has been done for the f i rst time and the results obtained are closer to the experimental f i nding.Variation in the f i ndings may be accounted to the assumptions of considering the isotropic nature of target,and the shear strength is obtained on hardness data.

    4)For the f i rst time,the present work demonstrated successfully that the friction stir processing route is an effective strategy for enhancement of ballistic performance of AA7075 aluminium alloy which f i nds wider range of defence applications.

    Acknowledgement

    The authors would like to thank Director,Defence Metallurgical Research Laboratory and Hyderabad,India for his continued encouragement and permission to publish this work. Financial assistance from Armament research board,New Delhi,India is gratefully acknowledged.

    [1]Statistical Data of Automotive Materials Committee,Japanese Society of Automobile Industry,May 1997.

    [2]North American Passenger Car and Light Truck.1999.

    [3]Aluminum Content Report.Ducker Research Co.TM30.Advanced materials and processing.Southf i eld Metals 1999(3):10-7.

    [4]TakeuchiK, IsobeY, ToyamaT.JJapan InstLightMetals 1998;48(9):446-58.

    [5]Sako R.vol.9.Nihon Parkerizing technical report.1996.p.28-37.

    [6]Mizuno H,Uchiyama K,Sato S,et al..vol.12.Nihon Parkerizing technical report.2000.p.53-9.

    [7]Ishii H,F(xiàn)uruyama O,Tanaka S.Metal Finish 1993;91(4):7-13.

    [8]Kr Aune T,Westengen H.Autom Eng 1995;103(8):87-93.

    [9]Ade F.Ballistic qualif i cation of armour steel weldments.Weld J 1991;70:53-4.

    [10]Madhusudhan Reddy G,Mohandas T.Ballistic performance of high strength low-alloy steelweldments.JMaterialProcessTechnol 1996;57:23-30.

    [11]Madhusudhan Reddy G,Mohandas T,Tagore GRN.Weldability studies of high strength low-alloy steel using austenitic f i llers.J Mater Process Technol 1995;49:213-28.

    [12]Tore Borvika,Clausena Arild H,Odd Sture Hopperstada,Magnus Langsetha.Perforation ofAA5083-H116 aluminium plateswith conical-nose steel projectiles d experimental study.Int J Impact Eng 2004;30:367-84.

    [13]Backman EM,Goldsmith W.The mechanics of penetration of projectiles into targets.Int J Eng Sci 1978;161:99-103.

    [14]Gooch WA,Burkins MS,Squillacioti RJ.Ballistic testing of commercial aluminum alloys and alternate processing techniques to increase the availability of aluminum armor.In:23rd International symposium on ballistics.Tarragona,Spain 16-20 April.2007.

    [15]Backman EM,Goldsmith W.The mechanics of penetration of projectiles into targets.Int J Eng Sci 1978;vol.16:1-9.

    [16]Corbett GG,Reid SR,Johnson W.Impact loading of plates and shells by free-f l ying projectiles:a review.Int J Impact Eng 1996;vol.18:141-9.

    [17]Johnson W.Impact strength of materials.London:Edward Arnold;1972.

    [18]Ozsahin Evren,Tolun Suleyman.On the comparison of the ballistic response of coated aluminum plates.Mater Des 2010;vol.31:3188-93.

    [19]Radin J,Goldsmith W.Normal projectile penetration and perforation of layered targets.J Impact Eng 1988;vol.7:229-38.

    [20]Ozsahin E,Tolun S.Inf l uence of layer sequencing on ballistic resistance of polyethylene supported AA 7075 T651 plates.J Istanbul Technol Univ 2009;8(2):72-80.

    [21]Pobolo IL,Shipko A.A f i rst and second generation electron beam surface engineering.Mater Manuf Process 1999;14:321-30.

    [22]Yamana H,Shimizu S.Alloying of metals and carbides on an aluminium surface by electron beam welding.Weld Int 1998;12:160-4.

    [23]Vreeling JA,Ocelik J,Pei YT,VanAgterveld DT,Hosson TM.Laser melt injection of ceramic particles in metals.Acta Mater 2000;48:4225.

    [24]Abboud JH,West DRF.Microstructure of titanium injected with SiC particles by laser processing.J Mater Sci Lett 1991;10:1149.

    [25]Pei YT,Ocelik V,Hosson JT.Jha BB,Galgai RK,Misra Vibhuti N editors.Futuristic materials.Bhubaneswar:Allied Publishers,Indian Institute of Minerals Engineers;2004,[chapter].

    [26]Thomas WM,Nicholas ED,Needham JC,Murch MG,Templesmith P,Dawes CJ.Patent application No.9125978.8,Dec.1991.

    [27]Mishra RS,Ma ZY.Mater Sci Eng R 2005;R50:1-78.

    [28]Sudhakar I,Madhu V,Madhusudhan Reddy G,Srinivasa Rao K.Defence Technol 2014;1-8.

    [29]Madhusudhan Reddy G,Sambasiva Rao A,Srinivasa Rao K.Friction stir processing for enhancement of wear resistance of ZM21 magnesium alloy.Trans Indian Inst Metal 2012;28-35.

    Received 18 March 2015;revised 20 April 2015;accepted 22 April 2015 Available online 3 June 2015

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.

    E-mail addresses:sudhakar1679@gmail.com (I.SUDHAKAR),gmreddy_

    dmrl@yahoo.com (G.MADHUSUDHAN REDDY),arunaraok@yahoo.com

    (K.SRINIVASA RAO).

    http://dx.doi.org/10.1016/j.dt.2015.04.005

    2214-9147/? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Ballistic performance testing as per the military standard (JIS.0108.01)was carried out.In the present work,an analytical method of predicting the ballistic behavior of surface composites was developed.This method was based on energy balance,i.e.,the initial energy of impact is same as that of energy absorbed by multi layers.An attempt also has been made to validate the analytical results with the experimental f i ndings.Variation between the analytical and experimental results may be accounted due to the assumptions considering such as isotropic behavior of target and shearing area of contact as cylindrical instead of conical interfaceAs the analytical model yields the ballistic performance in the closer proximity of experimentally obtained,it can be considered to be an approximation to evaluate the ballistic performance of targets.

    ? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    成人国产麻豆网| 亚洲av不卡在线观看| 亚洲国产精品成人综合色| 高清日韩中文字幕在线| 中文欧美无线码| 日本免费一区二区三区高清不卡| 日韩成人伦理影院| 成人鲁丝片一二三区免费| 午夜福利视频1000在线观看| 嫩草影院入口| 国产精品一区二区三区四区久久| 日本-黄色视频高清免费观看| 欧美人与善性xxx| 乱码一卡2卡4卡精品| 婷婷色av中文字幕| 国产精品久久视频播放| 精品久久久久久久末码| 嫩草影院新地址| 少妇丰满av| 22中文网久久字幕| 内射极品少妇av片p| 99久久精品一区二区三区| 级片在线观看| 美女高潮的动态| 好男人视频免费观看在线| 亚洲av一区综合| 97人妻精品一区二区三区麻豆| 亚洲欧美成人精品一区二区| 成人美女网站在线观看视频| 国产91av在线免费观看| 亚洲人与动物交配视频| 成人午夜高清在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利在线观看吧| 精品免费久久久久久久清纯| 九九热线精品视视频播放| 九九久久精品国产亚洲av麻豆| 最好的美女福利视频网| 人妻夜夜爽99麻豆av| 精品久久久久久久久久免费视频| 国产精品女同一区二区软件| 久久精品综合一区二区三区| 亚洲综合色惰| 国产亚洲5aaaaa淫片| 2022亚洲国产成人精品| 天天躁夜夜躁狠狠久久av| 国产亚洲精品久久久久久毛片| 网址你懂的国产日韩在线| 国产午夜精品论理片| 日本在线视频免费播放| 性欧美人与动物交配| 久久精品国产亚洲网站| 国内精品宾馆在线| 51国产日韩欧美| 波多野结衣高清无吗| 夫妻性生交免费视频一级片| 日本熟妇午夜| 在线播放无遮挡| 亚洲人成网站高清观看| 欧洲精品卡2卡3卡4卡5卡区| 人妻系列 视频| 国产精品美女特级片免费视频播放器| 午夜老司机福利剧场| 亚洲av第一区精品v没综合| 国产成人精品婷婷| 精品一区二区免费观看| www日本黄色视频网| 国产亚洲5aaaaa淫片| 99久久久亚洲精品蜜臀av| 日本黄大片高清| 婷婷亚洲欧美| 97超碰精品成人国产| 日韩视频在线欧美| 一本精品99久久精品77| 人妻久久中文字幕网| 久久九九热精品免费| 最近中文字幕高清免费大全6| 丰满乱子伦码专区| 波多野结衣高清作品| 国产成人91sexporn| 九九久久精品国产亚洲av麻豆| 日韩欧美一区二区三区在线观看| 国产av在哪里看| 蜜臀久久99精品久久宅男| 亚洲乱码一区二区免费版| 日日啪夜夜撸| 亚洲av中文av极速乱| 亚洲av中文av极速乱| 人妻夜夜爽99麻豆av| 精品不卡国产一区二区三区| 欧美区成人在线视频| 中文亚洲av片在线观看爽| 99视频精品全部免费 在线| 成人永久免费在线观看视频| 中国美白少妇内射xxxbb| 一级毛片aaaaaa免费看小| 在线播放国产精品三级| 人妻久久中文字幕网| 免费黄网站久久成人精品| 欧美3d第一页| 欧美成人一区二区免费高清观看| 亚洲av熟女| 少妇猛男粗大的猛烈进出视频 | 国产成人福利小说| 久久人人爽人人爽人人片va| 国产国拍精品亚洲av在线观看| 丰满人妻一区二区三区视频av| 免费电影在线观看免费观看| 久久久久久伊人网av| 精华霜和精华液先用哪个| 久久婷婷人人爽人人干人人爱| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 看片在线看免费视频| 啦啦啦韩国在线观看视频| 一级毛片aaaaaa免费看小| 中文在线观看免费www的网站| 又爽又黄a免费视频| av在线老鸭窝| 极品教师在线视频| 91精品国产九色| 桃色一区二区三区在线观看| 一级av片app| 国产精品蜜桃在线观看 | 国产精品野战在线观看| 亚洲三级黄色毛片| 欧美一级a爱片免费观看看| 天堂网av新在线| 少妇的逼水好多| 国产伦在线观看视频一区| 国产亚洲精品av在线| 亚洲最大成人中文| 免费无遮挡裸体视频| 熟女电影av网| 人妻夜夜爽99麻豆av| 中文字幕av成人在线电影| 久久精品人妻少妇| 哪个播放器可以免费观看大片| 亚洲欧洲国产日韩| 精品一区二区免费观看| 97超视频在线观看视频| 国产精品一区二区三区四区久久| 亚洲国产欧洲综合997久久,| a级毛片a级免费在线| or卡值多少钱| 日日摸夜夜添夜夜爱| 亚洲va在线va天堂va国产| 床上黄色一级片| 高清日韩中文字幕在线| 久久久久久久久大av| 99在线人妻在线中文字幕| 欧美成人a在线观看| 在线观看午夜福利视频| 亚洲最大成人手机在线| 亚洲欧美中文字幕日韩二区| 久久久国产成人免费| 色视频www国产| 久久久久久久久久久丰满| 色尼玛亚洲综合影院| 色尼玛亚洲综合影院| 成人综合一区亚洲| 国内精品久久久久精免费| kizo精华| 内射极品少妇av片p| 亚洲经典国产精华液单| 国产亚洲精品久久久久久毛片| 天天躁夜夜躁狠狠久久av| 男人舔奶头视频| 精华霜和精华液先用哪个| 久久久久久伊人网av| 有码 亚洲区| 国产一区二区三区在线臀色熟女| 日本免费a在线| 亚洲婷婷狠狠爱综合网| 简卡轻食公司| 久久精品国产99精品国产亚洲性色| 中文字幕制服av| 免费看日本二区| 乱码一卡2卡4卡精品| 国产在线男女| 成人午夜精彩视频在线观看| kizo精华| 国产亚洲精品久久久久久毛片| 日韩av不卡免费在线播放| 欧美日本亚洲视频在线播放| 18禁黄网站禁片免费观看直播| 日日撸夜夜添| 97超视频在线观看视频| 色综合站精品国产| 91在线精品国自产拍蜜月| 能在线免费看毛片的网站| 国产黄色视频一区二区在线观看 | 日韩av在线大香蕉| 国产老妇伦熟女老妇高清| 韩国av在线不卡| 91精品国产九色| 又黄又爽又刺激的免费视频.| 久久这里有精品视频免费| 搞女人的毛片| 日本成人三级电影网站| 大型黄色视频在线免费观看| 亚洲真实伦在线观看| 九九久久精品国产亚洲av麻豆| 少妇的逼好多水| 深爱激情五月婷婷| 一级毛片我不卡| 99热全是精品| 一本精品99久久精品77| 久久久久久久久中文| 黄色配什么色好看| 三级男女做爰猛烈吃奶摸视频| 大型黄色视频在线免费观看| 国产高清激情床上av| 美女国产视频在线观看| 激情 狠狠 欧美| 亚洲婷婷狠狠爱综合网| 人妻少妇偷人精品九色| 亚洲欧美精品综合久久99| 国产在线精品亚洲第一网站| 99久久精品一区二区三区| 不卡视频在线观看欧美| 国产一级毛片七仙女欲春2| 欧美日本亚洲视频在线播放| 美女黄网站色视频| 一级毛片电影观看 | 国产高清不卡午夜福利| 1000部很黄的大片| 深夜a级毛片| 国产成年人精品一区二区| 欧美日韩乱码在线| 给我免费播放毛片高清在线观看| 可以在线观看的亚洲视频| 久久精品夜色国产| 成人二区视频| 亚洲丝袜综合中文字幕| 大香蕉久久网| 日韩精品青青久久久久久| 日韩欧美一区二区三区在线观看| 国产精品人妻久久久影院| 青青草视频在线视频观看| 狠狠狠狠99中文字幕| 六月丁香七月| 非洲黑人性xxxx精品又粗又长| 久久精品国产99精品国产亚洲性色| 国产成人精品一,二区 | 国产一区二区在线av高清观看| 久久6这里有精品| 国产片特级美女逼逼视频| 欧美丝袜亚洲另类| 美女高潮的动态| 日韩大尺度精品在线看网址| 天天一区二区日本电影三级| 精品熟女少妇av免费看| 1024手机看黄色片| 日本三级黄在线观看| 国产av麻豆久久久久久久| 婷婷亚洲欧美| 亚洲成人久久性| 久久这里只有精品中国| or卡值多少钱| 久久久国产成人免费| 国产精品蜜桃在线观看 | 久久久久久久久中文| 插逼视频在线观看| 国产精品无大码| 床上黄色一级片| 国产亚洲av嫩草精品影院| 晚上一个人看的免费电影| 日韩在线高清观看一区二区三区| 99久久久亚洲精品蜜臀av| 男女下面进入的视频免费午夜| 噜噜噜噜噜久久久久久91| 久久韩国三级中文字幕| 非洲黑人性xxxx精品又粗又长| 99精品在免费线老司机午夜| 亚洲最大成人中文| 久久热精品热| 久久久久久伊人网av| 午夜亚洲福利在线播放| 国产中年淑女户外野战色| 国产高清三级在线| 亚洲国产精品合色在线| 波多野结衣高清无吗| 精品午夜福利在线看| 亚洲五月天丁香| 欧美3d第一页| 亚洲人成网站在线观看播放| 国产精品一区二区性色av| 国产不卡一卡二| 色综合站精品国产| 99久国产av精品国产电影| 中文字幕免费在线视频6| 人人妻人人看人人澡| 国产亚洲精品久久久久久毛片| 婷婷六月久久综合丁香| 校园人妻丝袜中文字幕| 国产片特级美女逼逼视频| 丝袜喷水一区| 成人亚洲欧美一区二区av| 日日啪夜夜撸| 国产精品三级大全| 美女cb高潮喷水在线观看| 国产麻豆成人av免费视频| 亚洲人成网站高清观看| 一级黄色大片毛片| 亚洲成人精品中文字幕电影| 成人特级av手机在线观看| 国产精华一区二区三区| 日本三级黄在线观看| 日韩,欧美,国产一区二区三区 | 国产精品国产高清国产av| 亚洲欧美精品专区久久| 一边亲一边摸免费视频| 高清毛片免费观看视频网站| 蜜桃久久精品国产亚洲av| 婷婷亚洲欧美| av在线观看视频网站免费| 少妇的逼好多水| 亚洲av免费高清在线观看| 国产单亲对白刺激| 国内精品一区二区在线观看| 91aial.com中文字幕在线观看| 最近视频中文字幕2019在线8| 成人无遮挡网站| 久久久国产成人精品二区| 可以在线观看毛片的网站| 日本黄色视频三级网站网址| 爱豆传媒免费全集在线观看| 日本一二三区视频观看| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产亚洲av涩爱 | 欧美xxxx性猛交bbbb| 99久久精品一区二区三区| 日韩一本色道免费dvd| 久久精品影院6| 国产真实乱freesex| 欧美一级a爱片免费观看看| 亚洲成人av在线免费| 草草在线视频免费看| 国产视频首页在线观看| 国产片特级美女逼逼视频| 国产伦精品一区二区三区四那| 欧美一区二区精品小视频在线| av免费在线看不卡| 丝袜美腿在线中文| 精品日产1卡2卡| 日韩,欧美,国产一区二区三区 | 国产精品福利在线免费观看| 中国国产av一级| 久久99热6这里只有精品| 国产伦在线观看视频一区| 日本与韩国留学比较| а√天堂www在线а√下载| 久久草成人影院| 伦精品一区二区三区| 2021天堂中文幕一二区在线观| 欧美一区二区亚洲| 亚洲欧美精品综合久久99| 精品久久久久久久人妻蜜臀av| 日本与韩国留学比较| 亚洲av第一区精品v没综合| 一级av片app| .国产精品久久| 男人舔女人下体高潮全视频| 欧美成人a在线观看| 国产又黄又爽又无遮挡在线| av天堂中文字幕网| 久久这里只有精品中国| 性插视频无遮挡在线免费观看| 99热这里只有是精品在线观看| 91精品一卡2卡3卡4卡| 男人舔奶头视频| 超碰av人人做人人爽久久| 色视频www国产| 国产毛片a区久久久久| 男人舔奶头视频| 亚洲最大成人av| 一级av片app| www.av在线官网国产| 欧美日韩精品成人综合77777| 99久久无色码亚洲精品果冻| 校园春色视频在线观看| 国产黄片美女视频| 99热网站在线观看| 一本久久精品| 国产又黄又爽又无遮挡在线| 麻豆成人av视频| 欧美日本亚洲视频在线播放| 两个人视频免费观看高清| 99热这里只有是精品在线观看| 国产精品乱码一区二三区的特点| 91aial.com中文字幕在线观看| av在线播放精品| 成熟少妇高潮喷水视频| av福利片在线观看| a级毛片免费高清观看在线播放| 一卡2卡三卡四卡精品乱码亚洲| 边亲边吃奶的免费视频| 中文字幕熟女人妻在线| 久久精品国产亚洲av天美| 国产高潮美女av| 国产高清有码在线观看视频| 国内精品久久久久精免费| 日产精品乱码卡一卡2卡三| 97热精品久久久久久| 国产午夜精品一二区理论片| 国产真实伦视频高清在线观看| 一区二区三区免费毛片| 中文字幕av在线有码专区| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久久大av| 中文字幕精品亚洲无线码一区| 色综合色国产| 97在线视频观看| 成熟少妇高潮喷水视频| 悠悠久久av| 99久久无色码亚洲精品果冻| 联通29元200g的流量卡| 亚洲欧美日韩无卡精品| 男人和女人高潮做爰伦理| 国产免费男女视频| 免费av毛片视频| 国产麻豆成人av免费视频| 夫妻性生交免费视频一级片| 亚洲精品国产成人久久av| 日本在线视频免费播放| 国产精品综合久久久久久久免费| 日日摸夜夜添夜夜爱| 国产精品电影一区二区三区| 久久人人精品亚洲av| 欧美成人a在线观看| 久久这里有精品视频免费| eeuss影院久久| 能在线免费观看的黄片| 九草在线视频观看| 国产黄a三级三级三级人| 亚洲精品456在线播放app| ponron亚洲| 一区二区三区免费毛片| 国产激情偷乱视频一区二区| 18禁黄网站禁片免费观看直播| а√天堂www在线а√下载| 婷婷色av中文字幕| 亚洲在久久综合| 美女黄网站色视频| 日本与韩国留学比较| 日韩高清综合在线| 成年免费大片在线观看| .国产精品久久| 精品一区二区免费观看| 春色校园在线视频观看| 91在线精品国自产拍蜜月| 女的被弄到高潮叫床怎么办| 搞女人的毛片| 最新中文字幕久久久久| 国产av不卡久久| 亚洲av电影不卡..在线观看| 三级经典国产精品| 精品一区二区免费观看| 成人无遮挡网站| 99热6这里只有精品| 白带黄色成豆腐渣| 亚洲成人中文字幕在线播放| 免费大片18禁| 久久久久性生活片| 看片在线看免费视频| 亚洲第一电影网av| 国产伦精品一区二区三区四那| 99视频精品全部免费 在线| 国产一区二区在线av高清观看| 人妻少妇偷人精品九色| 国产久久久一区二区三区| 你懂的网址亚洲精品在线观看 | 成年av动漫网址| 白带黄色成豆腐渣| www日本黄色视频网| 国产高清有码在线观看视频| 女的被弄到高潮叫床怎么办| 亚洲成人av在线免费| 久久精品夜夜夜夜夜久久蜜豆| av在线播放精品| 久久精品国产亚洲网站| 亚洲欧美成人精品一区二区| 大型黄色视频在线免费观看| 国产成人福利小说| 麻豆乱淫一区二区| 国产毛片a区久久久久| 精品人妻视频免费看| 亚洲av第一区精品v没综合| 久久久色成人| 婷婷色av中文字幕| 日韩成人伦理影院| 日韩制服骚丝袜av| 亚洲最大成人手机在线| 亚洲精品乱码久久久v下载方式| 麻豆一二三区av精品| 又粗又爽又猛毛片免费看| av在线播放精品| 九九爱精品视频在线观看| 国产三级中文精品| 美女cb高潮喷水在线观看| 99久久九九国产精品国产免费| 久久久久久久午夜电影| 天堂网av新在线| 国产精品久久久久久精品电影| 亚洲av电影不卡..在线观看| 久久99精品国语久久久| 午夜精品在线福利| 欧美变态另类bdsm刘玥| 国产私拍福利视频在线观看| 国产精品久久视频播放| 乱码一卡2卡4卡精品| 国内少妇人妻偷人精品xxx网站| 欧美性猛交╳xxx乱大交人| av黄色大香蕉| 你懂的网址亚洲精品在线观看 | 国产成人午夜福利电影在线观看| 男的添女的下面高潮视频| 欧美一区二区亚洲| 国产又黄又爽又无遮挡在线| 3wmmmm亚洲av在线观看| 亚洲va在线va天堂va国产| 丝袜喷水一区| 国产乱人视频| 丝袜美腿在线中文| 国产综合懂色| 久久热精品热| 欧美性猛交╳xxx乱大交人| 久久精品夜色国产| 国产极品精品免费视频能看的| 国产成人福利小说| 一级av片app| 欧美区成人在线视频| 久久精品影院6| 人妻少妇偷人精品九色| 日韩,欧美,国产一区二区三区 | 少妇熟女欧美另类| 亚洲性久久影院| 亚洲av成人av| 国产单亲对白刺激| 欧美一级a爱片免费观看看| 22中文网久久字幕| av在线天堂中文字幕| 国产精品蜜桃在线观看 | 日本一本二区三区精品| 免费观看a级毛片全部| 男女视频在线观看网站免费| 亚洲性久久影院| 日日撸夜夜添| 一级黄片播放器| 99久久九九国产精品国产免费| 亚洲欧美成人综合另类久久久 | 91麻豆精品激情在线观看国产| 亚洲欧美精品综合久久99| 精品人妻偷拍中文字幕| 欧美色视频一区免费| 国产毛片a区久久久久| 一区二区三区四区激情视频 | 免费av不卡在线播放| av卡一久久| 亚洲av中文字字幕乱码综合| 99在线人妻在线中文字幕| 99热全是精品| 亚洲欧美精品自产自拍| 插阴视频在线观看视频| 国产伦一二天堂av在线观看| 中文字幕熟女人妻在线| 在线播放国产精品三级| 中文欧美无线码| 久久99热6这里只有精品| 国产午夜福利久久久久久| 狠狠狠狠99中文字幕| 国产成人freesex在线| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 看非洲黑人一级黄片| 麻豆国产av国片精品| 岛国毛片在线播放| 亚洲七黄色美女视频| 国产综合懂色| 欧美日本亚洲视频在线播放| av又黄又爽大尺度在线免费看 | 亚洲欧美精品自产自拍| 搡老妇女老女人老熟妇| 国产精品乱码一区二三区的特点| 激情 狠狠 欧美| 亚洲不卡免费看| 国产极品天堂在线| 国产真实乱freesex| 三级国产精品欧美在线观看| 色播亚洲综合网| 国产精品不卡视频一区二区| 欧美一区二区亚洲| 国产色婷婷99| 欧美日韩精品成人综合77777| 中文字幕制服av| 中文欧美无线码| 性欧美人与动物交配| 精品一区二区三区人妻视频| 精品免费久久久久久久清纯| 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 最近的中文字幕免费完整| 亚洲精品日韩在线中文字幕 | 联通29元200g的流量卡| 免费av毛片视频| 精品久久久噜噜| 国内揄拍国产精品人妻在线| 日韩欧美国产在线观看| av免费观看日本| 欧美另类亚洲清纯唯美| 国产极品精品免费视频能看的| 久久久久久大精品| av在线老鸭窝| 男的添女的下面高潮视频| 狂野欧美白嫩少妇大欣赏|