• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of three-loop missile autopilot gainunder crossover frequency constraint

    2016-04-18 10:45:22ABDELATIFLongjunQIANYumingBO
    Defence Technology 2016年1期

    M.A.ABD-ELATIF*,Long-jun QIAN,Yu-ming BO

    School of Automation,University of Science and Technology,Nanjing 210094,China

    Optimization of three-loop missile autopilot gainunder crossover frequency constraint

    M.A.ABD-ELATIF*,Long-jun QIAN,Yu-ming BO

    School of Automation,University of Science and Technology,Nanjing 210094,China

    Received 25 June 2015;revised 18 August 2015;accepted 26 August 2015 Available online 21 September 2015

    The open-loop crossover frequency is pointed as an important parameter for practical autopilot design.Since different gain designs may achieve the same open-loop crossover frequency,it should be neither considered as a performance objective of the optimal autopilot design-schemes nor neglected.Besides,the main assignment of the autopilot is to drive the missile to track the acceleration commands,so the autopilot gain design should be evaluated directly according to the resultant tracking performance.For this purpose,an optimal design methodology of the three-loop missile autopilot is introduced based on constraint optimization technique,where the tracking performance is established analytically as the design objective and the open-loop crossover frequency is formed as inequality constraint function,both are manipulated in terms of stable characteristic parameters of the autopilot closed-loop.The proposed technique is implemented with the assistance of a numerical optimization algorithm which automatically adjusts the design parameters.Finally,numerical simulation results are provided to demonstrate the effectiveness and feasibility of the proposed approach compared with that in some references.

    Three-loop missile autopilot;Optimal gain design;Crossover frequency constraint;Performance optimization

    1.Introduction

    The main mission of missile autopilot is to track the guidance commands with a guaranteed level of system performance.In order to successfully achieve this mission,the performance characteristics of the autopilot must have a fast response to intercept a maneuvering target and reasonable robustness for system stability under the effect of un-modeled dynamics and noise.Basically,the concept of open-loop transfer function is the cornerstone of feedback control system analysis,where the relative stability and the robustness can be determined from analysis of the stability margins.However,Ref. [1]shows that ignoring the value of open-loop crossover frequency in the design procedure,even with good phase and gain margins,will cause design instability for relatively innocuous plant perturbations.In fact,this design may cause too high crossover frequency,which indicates that the system may go unstable when it is built and tested.Moreover,Ref. [2]concludes that the concept of open-loop gain and phase margins isnot as useful realistically at high frequency design due to the increase of model non-linearity,which leads to considerable difference between the predicted gain and phase values and their real values at high frequency.A common approach to address this problem is by modifying the crossover frequency value to make sure that the open-loop gain is below some desired level at high frequencies.This value is set based on the assumptions about the high-frequency modeling errors,sometimes based on test data,and often comes from hard-learned experience.A classical “rule of thumb”that addressed this value is introduced in Refs. [1,3].As a result,the crossover frequency is an important parameter in gain design process to achieve good trade-off between fastness and robustness.Nevertheless,in multi-loop autopilot design different gain combinations could meet the same open-loop crossover frequency with different f l ight performances.

    Consequently,different methods and strategies have been implemented by researchers in order to introduce the open-loop frequency requirements into the autopilot design procedure. From optimal design prospective,some methods are considered as weight adjusted LQR technique for the objective of minimum error between desired and actual open loop crossover frequency [4-7].Although it is possible to get the samecrossover frequency for different gain designs,these techniques take the prescribed crossover frequency as the design goal;this scheme will not essentially guarantee an ideal autopilot. Besides,it is based on initial guessing of weights which might need to be carried out and repeated many times to adjust the required initial performance.In a different way,the multiobjective optimization technique is introduced in Ref. [8],where both time and frequency performance design aspects are combined into one objective function through multi-weight technique.Even so,this method optimizes the autopilot to a certain specif i ed performance level with the challenge of objective's weight adjustment.Moreover,Ref. [9]introduces a dynamic inversion technique,which uses a constraint optimization algorithm to get the design parameters for the autopilot system.However,this method is considered for a specif i ed controller structure with some assumptions and totally numerical procedure.In addition,the system stability is conf i rmed by the inequality constraints on gain and phase margins and minimum controller cycle,which may perform a hard optimization problem with some performance degradation.

    Since the crossover dynamic itself cannot determine the total performance of the autopilot,so it is necessary to f i nd more reasonable objective function for optimal autopilot gain design so that an appropriate optimization technique can consider directly the open-loop crossover frequency constraint and avoid the burden of design weight adjustment.In this paper,an optimal autopilot gain design is introduced based on constraint optimization technique,where the tracking performance is set as design objective and the open-loop crossover frequency as design constraint.First,an analytical formula between the autopilot gain and the stable characteristic parameters of the autopilot closed loop is systematically derived.Then,the exact open-loop crossover frequency constraint is established in a form of analytical inequality.Moreover,the performance index ISE of the autopilot tracking error is analytically formed as the design objective [10-13].Both the objective and the constraint are manipulated in terms of the characteristic parameters. Finally,a constrained optimization problem is constructed and the optimal gain design is achieved for the corresponding optimum design parameters with the assistance of an optimization algorithm.This work is extended to numerical autopilot design of a typical missile system using the proposed technique,and the results are compared with the design strategy of Ref.[14].

    2.Missile modeling and analytical gain formula

    The classic three-loop missile autopilot [15,16],namely Raytheon autopilot,depicted in Fig.1,is the topology considered throughout this paper.Mathematically,the airframe transfer function input is the f i n def l ection,and the output is the achieved missile acceleration.The missile airframe dynamics is determined by six-dimensional equations of forces and moments acting on the missile body.The longitudinal missile dynamics,using the small disturbance linearization assumptions,are given as

    where ? is the body pitch angle,θ is the trajectory angle,α is the angle of attack,V is the missile velocity,δ is the fi n de fl ection,ayis the missile acceleration,and Mα,Mδ, Mq,Zαand Zδare the aerodynamics coef fi cients [3].The missile airframe transfer functions can be written as

    where

    Fig.1.Raytheon three-loop autopilot.

    The Raytheon autopilot is composed of rate loop,syntheticstability loop and accelerometer feedback loop with feedbackgains Kg,Kωand KAfor each loop respectively.These gains must be designed carefully to satisfy the desired performance. The gain KDCis computed from the above three gains so that the achieved acceleration will match the commanded acceleration.Regarding Fig.1,the closed-loop transfer function of the three-loop autopilot is computed from the inner to the outer loop through the following steps.

    Rate loop transfer function is written as

    The transfer function of stable-synthetic loop with rate loop is given as

    Then,the transfer function of the open forward loop is written as

    where

    Finally,the close-loop transfer function is given as

    For a stable closed-loop,the characteristic polynomial of the three-loop autopilot can be described by three positive parameters τ,ζ and ω with a real and a pair of conjugate complex stable poles [3],where the desired close-loop transfer function of the autopilot is written in the following form:

    The positive selection of the three parameters guarantees the stability of the autopilot closed-loop.Moreover,the autopilot performance is totally described by these design parameters.In the following,an analytical formula between the autopilot gain and the design parameters is derived by equating both transfer functions (4)and (5)to obtain

    and

    where the inverse matrix is well def i ned for applicable missile parameters with the assumption that T1? Tαand T2? Tα. Furthermore,regarding Eq.(3),the autopilot gains KA,Kωand Kgcan be calculated with analytical functions

    in terms of design parameters τ,ζ and ω.Furthermore,KDCis computed from the above three gains as

    Based on Eqs.(5)and (7),the autopilot design is handled by the parameters τ,ζ and ω to achieve the desired performance requirements.For optimal gain design,these parameters are tuned to the optimum of certain cost function.The tuning technique should be carried out under the system limitations,so the crossover frequency constraint will be highlighted in the next section.

    3.Crossover frequency constraint function

    For robust and adequate control properties,frequency domain speci fi cations are speci fi ed using the crossover frequency and stability margins of the open-loop system.The crossover frequency must be chosen to be high enough to ensure a wide autopilot bandwidth but low enough to prevent stability problems due to actuator,rate gyro and other un-modeled dynamics.The limit of crossover frequency can be determined by system stability requirements and fi n actuator performance.According to the classical “rule of thumb”,the crossover frequency should be less than one-third of the actuator bandwidth ωACT[1,3].The open-loop transfer function of the three-loop autopilot with loop broken right before the fi n actuator is expressed as

    The open loop magnitude ratio is written as

    For practical autopilot,the crossover frequency is beyond the airframe fundamental dynamic frequency,i.e.ωAF<ωACT. Moreover,the magnitude trajectory of the open-loop transfer functionGop(s) will cross the 0 dB line only once.At the crossover frequency,the magnitude ratio isequal to one,i.e.Therefore crossover frequency constraint should satisfy the following inequality:

    where ωCRdis the prescribed limitation of ωCR,that is,for any gain combination K1,K2and K3satisfying Eq.(10),then the corresponding ωCRwill beωCR≤ ωCRd<13ωACT.Referring to Eqs.(6)and (10),the crossover frequency constraint function is equivalently expressed in terms of τ,ζ,ω and ωCRdas

    where

    4.Optimal autopilot gain design

    The main objective of the autopilot system is to force the missile to follow the steering commands developed by the guidance system.According to Eqs.(5),(6)and (9),the positive parameters τ,ζ and ω are tuned to minimize the integral error criteria of the input-output of the autopilot closed-loop transfer function:

    Integral of various functions of error between the reference input and the controlled plant output is a powerful quantitative measurementofthesystemperformance.Thereareseveralkinds of integral error criteria to describe the system performance [8]. Among them,the integral of the square of the error (ISE)

    is chosen as the command tracking performance index of the autopilot with the consideration of obtaining its analytical expression.Referring to Eq.(12),with partial fraction expansion,the unit step response is expressed as

    where

    By inverse Laplace transform,the unit step output response in the time-domain is given as

    and the error for unity command tracking is expressed as

    Therefore,the analytical objective function of ISE performance index can be written as

    The value of the above ISE analytical formula is always a real positive number due to complex conjugated relation in Eq.(14).Then optimal autopilot gain design is stated in the form of constrained optimization problem as

    This optimization problem is the core of the introduced optimal technique,where the objective functionIJ

    SE(τ, ζ, ω)isthe performance evaluation scale and the constraint g(τ,ζ,ω)is the performance limitation for practical design.The bounds of design parameters are set to positive values to ensure the system stability for the whole space of the cost function.Since the crossover frequency cannot satisfy the total performance requirements,it is needed to set a lower limit for the closed loop damping parameter ζmin> 0,usually it is about 0.7.Referring to Table 3,this limit shall guarantee a suf fi cient system damping and phase margin.Particularly,the optimization problem (Eq.15)is a nonlinear constrained multi-variable optimization problem.As expected,the function fmincon of the MATLAB OptimizationToolbox can solve such kind of smooth objective optimization problem well effectively with feasible initial design parameters.Moreover,it converges to the same minimum point even starting from different initial guesses.In this line of thought,the optimal autopilot gains KA,Kωand Kgare easily calculated by substituting the optimum parameters τ,ζ and ω into Eqs.(7)and (8)without the need for design weight adjustment.

    Table 1Typical missile aerodynamic data.

    5.Numerical analysis

    In this section,numerical analysis is carried out to show the effectiveness of the proposed optimal technique for autopilot gain design.Data of a typical missile system [14],listed in Table 1,are used for this purpose.Moreover,the actuator is considered as a second-order dynamic system with naturalfrequency ωACT=220rad/s and damping factor ζACT=0. 65.Let ωCRd=50rad/s be used as the upper limitation to the open-loop crossoverfrequency, which guarantees the open-loop system to have about 30°of the phase margin after considering the phase lags caused by autopilot's hardware systems [14].

    In the following,the numerical analysis is introduced through two steps.In the fi rst step,the proposed technique is applied to introduce some analysis for the considered optimization problem,and the nature of its cost function alsoemphasizes the achievement of required crossover frequency for practical optimal design of autopilot system.Moreover,the lower boundζmin of damping factor is examined for proper setting.In the second step,the introduced technique is compared to another design strategy with the same crossover frequency requirement.

    Table 2Optimal design performance with and without constraint.

    First,the objective function (Eq.14)of the optimization problem (Eq.15)is the performance evaluation scale and it could be described as three-dimensional search space def i ned by the design parameters τ,ζ and ω.This space is formed by multi-surfaces for different values of ζ.Specif i cally,each particular point in this space corresponds to particular autopilot gain combination with particular response based on the analytical equation (7).Fig.2(a)exhibits the smooth objective space for the specif i ed region of the three design parameters without applying the crossover frequency constraint.The objective space after applying the crossover frequency constraint can be observed in Fig.2(b),where the unf i tted portion is removed.In both cases the optimization technique easily converges to the minimum point.The optimal design of both cases,with and without the crossover frequency constraint,is introduced in Table 2.Clearly,the constraint design achieves the open-loop crossover frequency within the constraint limit,while the unconstrained autopilot design derives very high open-loop crossover frequency which is compatible with the conclusion in Ref. [1].Furthermore,as listed in Table 3,for the constraint case,the smallest value of objective ISE mostly belongs to the surface of smaller value of ζ.As a result,the optimum performances express degradation in phase margin and overshootvalue even with good tracking performance.In order to achieve suf fi cient system damping and phase margin,a prescribed ζmin> 0is set as the lower bound of damping factor ζ.The results show that the bound ζmin=0. 7achieves a good compromise between system response and robustness with suf ficient phase margin,appropriate overshoot and settling time.

    Fig.2.ISE objective search space of certain design parameters period.(a)Objective function space without ωCRconstraint.(b)Objective function space after ωCRconstraint.

    Table 3Constraint optimal design performance for different ζminbound.

    Fig.3.Performance comparison with different strategies.(a)Acceleration response for 5g input command.(b)The f i n def l ection response for 5g input command.

    Second,the proposed technique is compared to the design strategy of Ref. [14]for the three-loop autopilot design.This strategy is keen on adjustment of the design parameters for single objective of minimizingSpeci fi cally,this strategy is pole adjustment technique where the pole position is described by τ,ζ and ω.Both τ and ζ are prescribed,while ω is tuned to minimize the crossover frequency objective with unclear relation between ω andωCR.Likewise,the strategies in Refs. [4-7]are LQR approach with weight adjustment procedure for minimizing the same objective.On the other hand,the proposed approach freely optimizes the whole three parameters for minimum tracking objective that satis fi es the crossover frequency constraint.

    To illustrate,the tracking performances of acceleration command 5g are displayed in Fig.3(a),and the numerical comparison results are stated in Table 4.The simulation results show that the proposed optimal design method derives much better tracking performance than that in Ref. [14],even if the open-loop crossover frequencies and phase margins in both cases are almost the same.Moreover,the related f i n def l ections are demonstrated in Fig.3(b),where the exhibited elevator def l ections reach the same steady value since it is totally determined by the aerodynamic parameters and the f l ight velocity ofthe missile.Besides,the slight larger elevator def l ection and def l ection rate introduced by the proposed technique during transient time serves as a payment for the faster response.Since the role of the autopilot system is to drive the missile to track the acceleration commands,so its tracking performance should be the main point to evaluate the design quality within the applicability dynamic constraints.

    Table 4Design performance comparison.

    6.Conclusion

    Optimal design technique is proposed for the three-loop missile autopilot.The command tracking performance is established as the design objective using the analytical form of the integral square of the autopilot closed-loop tracking error. Moreover,the design practicality and robustness are achieved by an inequality constraint on the system open-loop crossoverfrequency.Then a constrained optimization problem is constructed in terms of stable characteristic parameters of the autopilot closed-loop.The optimum design parameters are automatically achieved with the assistance of a numerical optimization algorithm.Numerical simulations show that the proposed method can provide a better tracking performance with the required robustness level.

    [1]Nesline FW,Zarchan P.Why modern controllers can go unstable in practice.J Guid Control Dyn 1984;7(4):495-500.

    [2]Jackson PB.Overview of missile f l ight control systems.Johns Hopkins APL Tech Dig 2010;29(1):9-24.

    [3]Zarchan P.Tactical and strategic missile guidance.Reston,VA:American Institute of Aeronautics and Astronautics;2002.p.483-526.

    [4]De-fu L,Jun-fang F,Zaikang Q,Yu M.Analysis and improvement of missile three-loop autopilots.J Syst Eng Electron 2009;20(4):844-51.

    [5]Hui W,Defu L,Jiaxin W,Tao S.An analytical design method for the missile two-loop acceleration autopilot.In:Tianyuan X,Lin Z,Shiwei,M,editors.System simulation and scientif i c computing (ICSC).Heidelberg: Springer;2012.p.157-65.

    [6]Fan J,Su Z,Li Q,Dong S.Design and control limitation analysis of two-loop autopilot.In:2011 Chinese control and decision conference(CCDC).Mianyang,China:IEEE;2011.p.3814-18.

    [7]Lidan X,Kenan Z,Wanchun C,Xingliang Y.Optimal control and output feedback considerations for missile with blended aero-f i n and lateral impulsive thrust.Chin J Aeronaut 2010;23(4):401-8.

    [8]Sreenuch T,Tsourdos A,Hughes E,White B.Lateral acceleration control design of a non-linear homing missile using multi-objective evolution strategies.In:American Automatic Control Council,editor.Proceedings of the 2004 American control conference,vol.4.Boston,MA: ETATS-UNIS;2004.p.3628-33.

    [9]Byoung-Mun M,Daekyu S,Min-Jea A,Byoung-Soo TK.Missile autopilot design via output redef i nition and gain optimization technique. In:SICE 2007 annual conference.Takamatsu,Japan:IEEE;2007.p. 2615-19.

    [10]Duarte-Mermoud MA,Prieto RA.Performance index for quality response of dynamical systems.ISA Trans 2004;43(1):133-51.

    [11]Kumar C,Jebakumar JS,Mishra B.Controller selection and sensitivity check on thebasisofperformanceindex calculation.IJEEDC 2014;2(1):91-3.

    [12]Patra J,Sarathi P,Samal S.Analysis and comparison of different performance index factor for conventional PID and GA plus PID controller.IJETCAS 2013;4(3):242-50.

    [13]Hussain KM,Rajendran RA,Kumar MS.Comparison of tuning methods of PID controllers for FOPTD system.IJIREEICE 2014;2(3): 1177-80.

    [14]Qiu-Qiu W,Qun-Li X,Zai-kang Q.Pole placement design with open-loop crossover frequency constraint for three-loop autopilot.Syst Eng Elect 2009;2:420-3 [in Chinese].

    [15]Mracek CP,Ridgely DB.Missile longitudinal autopilots:comparison of multiple three loop topologies.In:AIAA guidance,navigation,and control conference and exhibit,San Francisco;2005.p.917-28.

    [16]Jun-Fang F,Bao-Cai S,Zhong S,Si-Yu D.A novel analysis for tactical missile autopilot topologies.In:31st Chinese control conference (CCC). Hefei,China:IEEE;2012.p.2316-20.

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:08615905193644.

    E-mail address:Mdyosf2010@yahoo.com (M.A.ABD-ELATIF).

    http://dx.doi.org/10.1016/j.dt.2015.08.006

    2214-9147/? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    精品久久蜜臀av无| 在线观看一区二区三区| 国产97色在线日韩免费| 欧美在线一区亚洲| 欧美性猛交黑人性爽| 又紧又爽又黄一区二区| 亚洲自偷自拍图片 自拍| 丰满人妻熟妇乱又伦精品不卡| aaaaa片日本免费| 岛国在线免费视频观看| 观看美女的网站| 久久久水蜜桃国产精品网| 五月伊人婷婷丁香| 丁香欧美五月| 成人永久免费在线观看视频| 一区二区三区激情视频| 久久久精品大字幕| 久久精品国产99精品国产亚洲性色| 老司机午夜十八禁免费视频| 一夜夜www| 香蕉av资源在线| 亚洲专区国产一区二区| 中文字幕高清在线视频| 看免费av毛片| 亚洲人成网站高清观看| 成人18禁在线播放| 国产成人欧美在线观看| 国产69精品久久久久777片 | 国产视频内射| 老司机午夜十八禁免费视频| 亚洲欧美激情综合另类| 成年人黄色毛片网站| 美女 人体艺术 gogo| 男插女下体视频免费在线播放| 老鸭窝网址在线观看| 麻豆av在线久日| 欧美xxxx黑人xx丫x性爽| 成人无遮挡网站| 一边摸一边抽搐一进一小说| 91在线精品国自产拍蜜月 | 国产成年人精品一区二区| 深夜精品福利| 97超视频在线观看视频| 五月玫瑰六月丁香| 岛国视频午夜一区免费看| 精品乱码久久久久久99久播| 免费电影在线观看免费观看| 99久久精品热视频| 国产一区二区在线观看日韩 | 成年版毛片免费区| 国产乱人伦免费视频| 色老头精品视频在线观看| 日韩精品中文字幕看吧| 曰老女人黄片| 一级黄色大片毛片| 欧美不卡视频在线免费观看| 黄色日韩在线| 成人av一区二区三区在线看| 国产一区二区三区视频了| 日韩中文字幕欧美一区二区| 成年女人看的毛片在线观看| 国产99白浆流出| 香蕉丝袜av| 丰满的人妻完整版| 丰满人妻一区二区三区视频av | 成人永久免费在线观看视频| 又紧又爽又黄一区二区| 999久久久精品免费观看国产| 悠悠久久av| 国产高潮美女av| 国产高潮美女av| 久久人人精品亚洲av| 国产三级中文精品| 精品人妻1区二区| 精华霜和精华液先用哪个| 97超视频在线观看视频| 床上黄色一级片| 久久久精品欧美日韩精品| а√天堂www在线а√下载| 亚洲aⅴ乱码一区二区在线播放| 午夜免费激情av| 日韩有码中文字幕| 后天国语完整版免费观看| 这个男人来自地球电影免费观看| 国产真实乱freesex| 很黄的视频免费| 国产成人欧美在线观看| 色尼玛亚洲综合影院| 最近最新中文字幕大全电影3| 淫妇啪啪啪对白视频| 麻豆一二三区av精品| 人人妻人人看人人澡| 日本熟妇午夜| 又紧又爽又黄一区二区| 999久久久精品免费观看国产| 欧美日韩黄片免| 嫩草影视91久久| 五月伊人婷婷丁香| 久久99热这里只有精品18| 久久久久久久久久黄片| 亚洲国产欧美人成| 亚洲九九香蕉| а√天堂www在线а√下载| 欧美成人一区二区免费高清观看 | 成年版毛片免费区| 三级国产精品欧美在线观看 | 99riav亚洲国产免费| 一本久久中文字幕| 国产麻豆成人av免费视频| 久久久国产成人精品二区| 亚洲第一电影网av| 国产aⅴ精品一区二区三区波| 国产综合懂色| 亚洲午夜理论影院| 网址你懂的国产日韩在线| 悠悠久久av| 村上凉子中文字幕在线| 中文字幕人成人乱码亚洲影| 黄片小视频在线播放| 中文字幕熟女人妻在线| 18禁美女被吸乳视频| 欧美乱妇无乱码| 熟女人妻精品中文字幕| 国产亚洲欧美98| 久久午夜综合久久蜜桃| 小蜜桃在线观看免费完整版高清| 不卡av一区二区三区| 女同久久另类99精品国产91| 两个人的视频大全免费| 亚洲真实伦在线观看| av国产免费在线观看| 97人妻精品一区二区三区麻豆| 他把我摸到了高潮在线观看| 午夜免费观看网址| 午夜福利免费观看在线| 欧美成人性av电影在线观看| 久久九九热精品免费| 国产日本99.免费观看| 蜜桃久久精品国产亚洲av| 亚洲 欧美一区二区三区| 欧美激情久久久久久爽电影| 亚洲一区二区三区色噜噜| 欧美又色又爽又黄视频| 久久天堂一区二区三区四区| 国产一区二区在线av高清观看| 18禁美女被吸乳视频| 别揉我奶头~嗯~啊~动态视频| 色视频www国产| 国产 一区 欧美 日韩| 一个人看视频在线观看www免费 | 三级男女做爰猛烈吃奶摸视频| 全区人妻精品视频| 此物有八面人人有两片| 黄片小视频在线播放| 欧美日韩乱码在线| 欧美成狂野欧美在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩高清在线视频| 免费看光身美女| 黄色 视频免费看| 国产真人三级小视频在线观看| 国产黄a三级三级三级人| 国产成人精品久久二区二区91| 麻豆成人午夜福利视频| 色av中文字幕| 国产亚洲精品av在线| 成年人黄色毛片网站| 香蕉国产在线看| 国产精品久久电影中文字幕| 国产激情偷乱视频一区二区| 超碰成人久久| 亚洲乱码一区二区免费版| 97人妻精品一区二区三区麻豆| 人妻丰满熟妇av一区二区三区| 欧美日韩瑟瑟在线播放| 午夜视频精品福利| 久久久久久久久久黄片| 国产精华一区二区三区| 欧美成狂野欧美在线观看| svipshipincom国产片| 国产激情偷乱视频一区二区| 精品一区二区三区视频在线观看免费| 国产成人系列免费观看| 五月玫瑰六月丁香| 亚洲精品国产精品久久久不卡| 99久久精品一区二区三区| 级片在线观看| 国产伦一二天堂av在线观看| av在线蜜桃| 久久99热这里只有精品18| 久久久国产精品麻豆| 给我免费播放毛片高清在线观看| 亚洲av电影不卡..在线观看| 亚洲av片天天在线观看| 欧美日韩黄片免| 色综合亚洲欧美另类图片| 中文字幕熟女人妻在线| 免费观看的影片在线观看| 免费看日本二区| 麻豆一二三区av精品| 久久精品91蜜桃| 亚洲片人在线观看| 国内毛片毛片毛片毛片毛片| 狂野欧美白嫩少妇大欣赏| av黄色大香蕉| 99国产精品一区二区三区| 日韩免费av在线播放| 五月玫瑰六月丁香| 国产精品久久久久久人妻精品电影| 一进一出抽搐动态| 九色国产91popny在线| 亚洲最大成人中文| 2021天堂中文幕一二区在线观| 男女床上黄色一级片免费看| 国产成人影院久久av| 特大巨黑吊av在线直播| 黑人操中国人逼视频| 国内精品美女久久久久久| 日本 av在线| 国内毛片毛片毛片毛片毛片| 美女 人体艺术 gogo| 制服人妻中文乱码| 又黄又爽又免费观看的视频| 久久国产乱子伦精品免费另类| 88av欧美| 亚洲欧美日韩东京热| 亚洲中文字幕一区二区三区有码在线看 | 怎么达到女性高潮| 在线播放国产精品三级| 我要搜黄色片| 国产午夜精品久久久久久| 亚洲av熟女| 国产成人一区二区三区免费视频网站| 国产 一区 欧美 日韩| 国产伦一二天堂av在线观看| 午夜福利高清视频| 床上黄色一级片| 99在线视频只有这里精品首页| 久久热在线av| 黑人巨大精品欧美一区二区mp4| 午夜福利欧美成人| 国产精品av久久久久免费| 狂野欧美白嫩少妇大欣赏| 99热精品在线国产| 欧美日韩黄片免| 丰满人妻一区二区三区视频av | 91字幕亚洲| 亚洲,欧美精品.| 十八禁人妻一区二区| 欧洲精品卡2卡3卡4卡5卡区| 一本综合久久免费| 在线视频色国产色| 欧美一区二区国产精品久久精品| 亚洲欧美一区二区三区黑人| 此物有八面人人有两片| 国产91精品成人一区二区三区| 美女cb高潮喷水在线观看 | 欧美日韩瑟瑟在线播放| 男人和女人高潮做爰伦理| 久久九九热精品免费| 精品久久久久久久久久免费视频| 日本熟妇午夜| av国产免费在线观看| 久久久国产欧美日韩av| 成人高潮视频无遮挡免费网站| 大型黄色视频在线免费观看| 久久中文看片网| 亚洲五月天丁香| 国产精品久久电影中文字幕| 91在线观看av| 亚洲国产看品久久| 久久久国产成人免费| 欧美精品啪啪一区二区三区| 久久天堂一区二区三区四区| 午夜精品在线福利| 可以在线观看毛片的网站| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站| 国产亚洲av高清不卡| 99精品欧美一区二区三区四区| 国产成人一区二区三区免费视频网站| 亚洲一区二区三区不卡视频| 欧美在线黄色| 久久久久九九精品影院| 免费观看精品视频网站| 成人av一区二区三区在线看| 精华霜和精华液先用哪个| 久久香蕉国产精品| 操出白浆在线播放| 可以在线观看毛片的网站| 一级毛片高清免费大全| 亚洲色图av天堂| 成人特级黄色片久久久久久久| 国产成人影院久久av| 久9热在线精品视频| 亚洲精品456在线播放app | 精品电影一区二区在线| 久久久成人免费电影| 最近最新中文字幕大全免费视频| 两人在一起打扑克的视频| 欧美绝顶高潮抽搐喷水| 一级a爱片免费观看的视频| 日本a在线网址| 亚洲第一欧美日韩一区二区三区| 亚洲av片天天在线观看| 亚洲 国产 在线| 嫩草影院精品99| 两人在一起打扑克的视频| 一本综合久久免费| 午夜影院日韩av| av在线天堂中文字幕| 久久久久性生活片| 一本综合久久免费| 男人舔女人下体高潮全视频| 国产精品久久久久久人妻精品电影| 成人18禁在线播放| 精品一区二区三区视频在线观看免费| 亚洲激情在线av| tocl精华| 成人精品一区二区免费| 亚洲中文字幕日韩| 欧美黑人欧美精品刺激| 久99久视频精品免费| 亚洲av片天天在线观看| 色在线成人网| 亚洲九九香蕉| 亚洲精品456在线播放app | 亚洲 欧美 日韩 在线 免费| 国产精品一区二区三区四区久久| 美女cb高潮喷水在线观看 | 国产精品av视频在线免费观看| 啪啪无遮挡十八禁网站| 最近最新中文字幕大全电影3| 我的老师免费观看完整版| 免费高清视频大片| 在线免费观看不下载黄p国产 | 三级男女做爰猛烈吃奶摸视频| 他把我摸到了高潮在线观看| 欧美成人一区二区免费高清观看 | 亚洲片人在线观看| 桃红色精品国产亚洲av| 国产精品一区二区三区四区久久| 99久久久亚洲精品蜜臀av| 99国产极品粉嫩在线观看| 国产精品自产拍在线观看55亚洲| 两性夫妻黄色片| 精品久久久久久久久久免费视频| 一级黄色大片毛片| 国产av不卡久久| 18禁黄网站禁片免费观看直播| 欧美+亚洲+日韩+国产| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产 | 亚洲av电影不卡..在线观看| 757午夜福利合集在线观看| 日韩成人在线观看一区二区三区| 亚洲九九香蕉| 成人性生交大片免费视频hd| 国产激情偷乱视频一区二区| 好男人电影高清在线观看| 视频区欧美日本亚洲| 亚洲欧美精品综合久久99| 亚洲色图av天堂| 国产av不卡久久| 狂野欧美激情性xxxx| 中文字幕久久专区| 亚洲自拍偷在线| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 久久国产精品影院| АⅤ资源中文在线天堂| 日本撒尿小便嘘嘘汇集6| 久久久久国产精品人妻aⅴ院| 宅男免费午夜| 欧美日韩福利视频一区二区| 欧美日本视频| 亚洲片人在线观看| 最近在线观看免费完整版| netflix在线观看网站| 亚洲精品在线观看二区| 99国产精品一区二区蜜桃av| av黄色大香蕉| 18禁观看日本| 一夜夜www| 观看免费一级毛片| 日韩欧美 国产精品| 香蕉丝袜av| 精品久久蜜臀av无| 久久香蕉精品热| 淫秽高清视频在线观看| 蜜桃久久精品国产亚洲av| 三级国产精品欧美在线观看 | 国产1区2区3区精品| 啦啦啦免费观看视频1| 精品欧美国产一区二区三| 激情在线观看视频在线高清| 成年女人永久免费观看视频| 女警被强在线播放| 国产成人精品久久二区二区91| 久久久国产成人精品二区| 精品福利观看| 香蕉av资源在线| 97超级碰碰碰精品色视频在线观看| 国语自产精品视频在线第100页| 欧美午夜高清在线| 久久精品影院6| 老熟妇乱子伦视频在线观看| 国产欧美日韩一区二区三| 午夜免费激情av| 国产成人欧美在线观看| www日本在线高清视频| 无遮挡黄片免费观看| 久久精品影院6| 性欧美人与动物交配| 精品不卡国产一区二区三区| 日本精品一区二区三区蜜桃| 国产视频内射| 国产精品亚洲一级av第二区| 琪琪午夜伦伦电影理论片6080| 国产单亲对白刺激| 久久香蕉精品热| 搡老妇女老女人老熟妇| 男女那种视频在线观看| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区精品| 国产精品99久久久久久久久| 日韩欧美一区二区三区在线观看| 在线看三级毛片| 精品一区二区三区视频在线观看免费| 精品国产乱码久久久久久男人| 级片在线观看| 村上凉子中文字幕在线| 欧美激情在线99| 小蜜桃在线观看免费完整版高清| 国产91精品成人一区二区三区| 午夜激情福利司机影院| 国产视频一区二区在线看| 99国产综合亚洲精品| 级片在线观看| 少妇人妻一区二区三区视频| 一本一本综合久久| 成年版毛片免费区| 午夜福利免费观看在线| 99久久成人亚洲精品观看| 嫩草影视91久久| 午夜福利视频1000在线观看| 91在线观看av| 波多野结衣高清作品| 91麻豆av在线| 午夜福利在线在线| 成人无遮挡网站| 亚洲成av人片在线播放无| 黄片小视频在线播放| 精品99又大又爽又粗少妇毛片 | 精品一区二区三区视频在线观看免费| 亚洲,欧美精品.| 成人鲁丝片一二三区免费| 亚洲专区中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品av在线| 在线免费观看的www视频| 亚洲熟女毛片儿| 偷拍熟女少妇极品色| 男女那种视频在线观看| 18禁黄网站禁片免费观看直播| 精品熟女少妇八av免费久了| 日本成人三级电影网站| 国产亚洲欧美在线一区二区| 99久久成人亚洲精品观看| 无遮挡黄片免费观看| 狂野欧美白嫩少妇大欣赏| 午夜两性在线视频| 99国产精品一区二区蜜桃av| 色综合婷婷激情| 欧美黄色片欧美黄色片| 欧美极品一区二区三区四区| 国产一级毛片七仙女欲春2| 国产精品久久久久久人妻精品电影| 9191精品国产免费久久| 亚洲精品色激情综合| 亚洲avbb在线观看| 国产男靠女视频免费网站| 国产欧美日韩一区二区精品| 婷婷精品国产亚洲av| 一个人免费在线观看电影 | 在线永久观看黄色视频| 亚洲精品456在线播放app | 亚洲精品一区av在线观看| 久久天躁狠狠躁夜夜2o2o| 国产成+人综合+亚洲专区| 国产亚洲欧美在线一区二区| 最新美女视频免费是黄的| 亚洲成人精品中文字幕电影| 精品一区二区三区视频在线 | 一个人看视频在线观看www免费 | 国产精品九九99| 一本精品99久久精品77| 亚洲欧美日韩无卡精品| 欧美日韩福利视频一区二区| 亚洲人成网站在线播放欧美日韩| 91久久精品国产一区二区成人 | 老司机午夜福利在线观看视频| 999久久久国产精品视频| 真人一进一出gif抽搐免费| 黑人巨大精品欧美一区二区mp4| 最近最新中文字幕大全免费视频| 成人一区二区视频在线观看| 亚洲,欧美精品.| 国产高清videossex| 国产真人三级小视频在线观看| 免费在线观看亚洲国产| 国产精品久久久久久久电影 | 性色av乱码一区二区三区2| 国产亚洲精品av在线| 亚洲av日韩精品久久久久久密| 亚洲在线自拍视频| 91麻豆精品激情在线观看国产| 人妻久久中文字幕网| 国产三级在线视频| 熟女人妻精品中文字幕| 欧美日韩黄片免| 成人无遮挡网站| 一级黄色大片毛片| 夜夜爽天天搞| 国产精品乱码一区二三区的特点| 久久精品影院6| 久久久精品大字幕| 日韩欧美三级三区| 黄色丝袜av网址大全| 日韩 欧美 亚洲 中文字幕| 99久国产av精品| 色在线成人网| 国产精品亚洲av一区麻豆| 色在线成人网| 少妇的丰满在线观看| 亚洲真实伦在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲专区中文字幕在线| 高清毛片免费观看视频网站| 在线观看免费视频日本深夜| 免费看十八禁软件| 全区人妻精品视频| 18禁裸乳无遮挡免费网站照片| 久久久精品大字幕| 脱女人内裤的视频| 男人舔女人下体高潮全视频| 精品午夜福利视频在线观看一区| 男女午夜视频在线观看| 夜夜夜夜夜久久久久| 日韩免费av在线播放| 两性夫妻黄色片| 亚洲中文字幕日韩| 国产成人影院久久av| 成人国产综合亚洲| 亚洲av熟女| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成av人片在线播放无| 国产黄a三级三级三级人| 天堂网av新在线| 日韩三级视频一区二区三区| 国产精品电影一区二区三区| 老汉色av国产亚洲站长工具| 精品国内亚洲2022精品成人| 亚洲,欧美精品.| 国产探花在线观看一区二区| 波多野结衣高清作品| 免费在线观看日本一区| 国产午夜精品久久久久久| 少妇的逼水好多| 亚洲av电影在线进入| 亚洲国产日韩欧美精品在线观看 | 色哟哟哟哟哟哟| 99在线视频只有这里精品首页| 999精品在线视频| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| 午夜福利视频1000在线观看| 国产99白浆流出| 久久性视频一级片| 国产精品1区2区在线观看.| 亚洲aⅴ乱码一区二区在线播放| 亚洲av片天天在线观看| 午夜福利免费观看在线| 欧美日本视频| 国产成人精品久久二区二区91| 欧美激情久久久久久爽电影| 欧美成人性av电影在线观看| h日本视频在线播放| 丝袜人妻中文字幕| 亚洲人成网站在线播放欧美日韩| 男人的好看免费观看在线视频| 欧美日韩黄片免| 国产成人av教育| 久久久国产欧美日韩av| 色av中文字幕| 久久天堂一区二区三区四区| 国产在线精品亚洲第一网站| 国产欧美日韩精品亚洲av| 一级毛片女人18水好多| 视频区欧美日本亚洲| 国产伦在线观看视频一区| 51午夜福利影视在线观看| h日本视频在线播放| 青草久久国产| 悠悠久久av| 很黄的视频免费| 18禁黄网站禁片免费观看直播| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美三级三区| 美女被艹到高潮喷水动态| 舔av片在线| 欧美日韩瑟瑟在线播放| 日本 欧美在线| 亚洲精品在线美女|