• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancement of seal life through carbon composite back-up rings under shock loading conditions in defence applications

    2016-04-18 10:45:23ShnkrBHAUMIKKUMARASWAMYGURUPRASAD
    Defence Technology 2016年1期

    Shnkr BHAUMIK,A.KUMARASWAMY*,S.GURUPRASAD

    aR&DE (Engrs.),Pune 411015,Maharashtra,India

    bDefence Institute of Advanced Technology (DU),Pune 411025,Maharashtra,India

    Enhancement of seal life through carbon composite back-up rings under shock loading conditions in defence applications

    Shankar BHAUMIKa,A.KUMARASWAMYb,*,S.GURUPRASADa

    aR&DE (Engrs.),Pune 411015,Maharashtra,India

    bDefence Institute of Advanced Technology (DU),Pune 411025,Maharashtra,India

    The life of Nitrile Butadiene Rubber(NBR)O-ring seal having shore hardness ofA70 andA90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig.Shock tests have been carried out on bare seals,seal with conventional polytetraf l uoroethylene (PTFE)back-up rings and seal with newly developed carbon composite back-up rings to study its behaviour under different operating conditions until failure.Experiments were conducted by varying annular gap ranging from 0.3 to 0.5 mm,oil temperature from 30 °C to 70 °C and rate of pressure rise from 600 to 2400 MPa/s.Signif i cant enhancement in seal life was observed with carbon composite back-up ring at reduced annular clearances compared to seal life with conventional PTFE back-up ring and without back-up rings.

    Hydraulic seal;O-rings;Shock load;Seal extrusion;Pneumo-hydraulic shock absorber;Back-up rings

    1.Introduction

    Hydraulic seals are used in a variety of critical applications involving machinery and are several times more expensive compared to seals.The critical importance of the seal can be quantif i ed by the failure of a static O-ring due to cold temperature freezing,causing catastrophe of NASA space shuttle“Challenger1986”.Therefore,the precise design and evaluation of reciprocating hydraulic seals are of supreme importance to avoid such costly mistakes.

    O-rings are the simplest and most versatile seals among various types and cross sections of hydraulic seals having wide applications involving static and dynamic loading conditions. O-rings are employed in reciprocating hydraulic actuators involving long stroke and large diameter seals.The most important application includes the use of O-rings in reciprocating hydraulic rod and piston seals.The life of reciprocating dynamic O-ring seals is inf l uenced by extrusion,spiraling,f i nish of sliding surface and hardness of the seal.

    Shock is def i ned as a non-periodic excitation of a system characterized by sudden relative displacement in a system.Allstructures in general and aerospace structures in particular experience shock loads of different magnitudes throughout their service life.Shock is generally measured through time histories expressed in seconds and amplitude expressed in g's of the shock event.Shock can also be measured in terms of velocity,displacement,force,pressure,etc.Shock testing is commonly performed by imparting kinetic energy to the system by drop hammering,impact,shaker,pyro-shock,etc.The failures caused by shock include crack or deformation of structural elements,failure of weld joints,hydraulic seal failure,etc.

    High pressure hydraulic seals are the common and most critical elements of any hydraulic system.Many of the defence equipment experiences shock/blast loads during deployed conditions.These blast/shock loads create short duration peak pressures,which are several times higher than the system operating pressure that will affect the seal life and in turn affect the reliability of the system.Shock isolators/dampers are generally used to isolate the shock loads and safeguard the delicate components of the system.One such pneumo-hydraulic shock absorber is shown in Fig.1,in which the dynamic seals experience a short duration pressure surge of 1000 bar during shock load isolation.

    Fig.1.Effect of shock load on pneumo-hydraulic shock absorber.

    Experimental research on hydraulic seals has been in progress for several decades.Over the years,theoretical and experimental investigation of tribological characteristics of reciprocating hydraulic seals such as leakage,friction,wear and extrusion has been carried out by numerous researchers. Numbers of test rigs have been built and various methods were employed for determination of tribological characteristics. Nikas,Müller,F(xiàn)ield and Nau investigated the leakage and friction of reciprocating hydraulic seals [1-4].Hirano and Kaneta investigated the friction characteristics of f l exible seals for reciprocating motion [5].Nau determined the friction of oil lubricated sliding seals by conducting a number of experiments[6].Iwanami and Tikamori experimentally determined leakage from O-ring packing [7].Kawahara et al. [8]and Kaneta [9]also contributed to the experimental investigation of tribological characteristics of reciprocating hydraulic seals.Nikas formulated algebraic equations to describe the shape and contact pressure of the extruded part of the seal with the rod [10]. Signif i cant theoretical work was carried out by Salant[11-13],Nikas [14-17],F(xiàn)atu and Hajjam [18]to determine the tribological characteristics of reciprocating hydraulic seals.Bhaumik et al.investigated the contact mechanics in reciprocating hydraulic U-seals for defence applications [19].Thatte and Salant developed a transient numerical model for reciprocating hydraulic seals to take account of the varying rod speeds [20]. However,no theoretical or experimental data to assess the inf l uence of shock/blast load on hydraulic seals were found in the literature.Therefore,in order to quantify the performance of hydraulic seals under severe operating conditions,it is necessary to design a test rig capable of generating shock pressure peaks to test the sealing elements of the hydraulic system.

    In view of the above,in the present investigation,a special test rig has been developed and seal life as a function of parameters such as annular gap,rate of pressure rise,seal hardness,oil temperature,etc.,was investigated with and without the use of back-up rings.It was observed that the seal life was enhanced signif i cantly with carbon composite back-up ring at reduced annular clearances compared to seal life with conventional PTFE back-up ring and without back-up rings.

    2.Pneumo-hydraulic test rig for hydraulic seals subjected to shock loading

    The test rig [21]capable of generating various types of shocks pulses by variation of parameters such as peak pressure,pulse duration,pulse shape,etc.,shown in Fig.2 has been developed to simulate the performance of static and dynamic hydraulic seals.The test rig is integrated with a data acquisition system for capturing test data for further analysis.The shock test rig will generate controlled hydraulic pressure pulse in a test chamber.The test chamber having bore diameter of 63 mm,rod diameter of 36 mm and stroke length of 300 mm is similar to a hydraulic cylinder integrated with rod/piston seal to be tested under dynamic conditions.The schematic of hydraulic system for the test rig consisting of hydraulic power pack,hydro-pneumatic accumulator,controlled valves,impact cylinder,test chamber,transducers and data recorder is shown in Fig.3.The hydraulic power source consists of 2 cc/rev,30 MPa,f i xed displacement radial piston pump driven by an electric drive unit.The accumulator of 50 L capacity is charged by a hydraulic power source to the desired pressure depending on the peak test pressure.After charging the accumulator to relief pressure setting,the pump f l ow is by-passed to the reservoir of 60 L capacity through the maximum pressure set relief valve and a return line f i lter.The pump pressure isalso available to the DC valve for operation of pilot operated check valves provided in the circuit for forward and reverse motion of impact cylinder of bore diameter of 125 mm,rod diameter of 90 mm and stroke length of 500 mm.The DC valve solenoids are energized by a power supply through a timer to control the pressure pulseduration.The rate of pressure rise and pressure drop is controlled by hydraulic f l ow control valves.A set of parallel f l ow control valves of 600 L/min has been provided to cater for high f l ow rate to the piston side of impact cylinder;the low oil volume from annular side is drained into the reservoir through a smaller pilot operated check valve.The pressure prof i le and peak pressure in the chamber may be controlled by hydraulic control valves and accumulator charge pressure.The accumulator sizing is done to meet the impulse pressure prof i le requirements.

    Fig.2.Pneumo-hydraulic shock test rig.

    All of the test parameters can be controlled by hydraulic system accumulator,control valves and timer based switching of the DC valve.The peak-test pressure up to 120 MPa can be maintained,which is three times the working pressure of a mobile hydraulic high-pressure system with an extra load factor of 20%.

    With a rate of pressure rise of 1200 MPa/s,i.e.,120 MPa pressure rise in 100 ms,a total impulse cycle duration of 1800 ms can be achieved.The impulse data generated using the test rig are given in Table 1.Cyclic impulse test may be carried out by controlling hydraulic valves using a timer.The test chamber is f i tted with pressure and temperature transducers,which are connected to a data recorder.Test at elevated temperature is controlled by wrapping a heating strip around the test chamber and a controller to maintain the test temperature. The test chamber is f i tted with pressure sensor (160 MPa)andtemperature sensor (100 °C)connected to a data recorder,which is capable of capturing data within a span of 2 ms. Different types of sensors along with their specif i cations are given in Table 2.

    Fig.3.Schematic of hydraulic system.

    Table 1Impulse data generated on shock test rig.

    Table 2Sensors and their specif i cations.

    3.Experimental

    Nitrile Butadiene Rubber (NBR)O-ring seal of 36 mm internal diameter and 3.53 mm cross-sectional diameter with shore hardness ofA70 andA90,with and without back-up ring under shock loading conditions,has been considered in the current investigation.Shock tests have been carried out on (a)bare O-ring seals,(b)O-ring seal with PTFE back-up rings and (c)O-ring seal with carbon composite back-up rings to study seals under different operating conditions until failure.The shock load test arrangement for three conf i gurations is shown in Fig.4.Tests were carried out by varying annular gap/clearance,temperature and rate of pressure rise.

    The stroke length of rod during shock test was kept at 100 mm.A hydraulic mineral oil conforming to the ISOVG 68 specif i cation was used during the test.The test chamber was initially charged to a pressure of 20 MPa.The rod surface f i nish(Ra)and the rod speed were 0.2 μm and 2 m/s,respectively.A white colored pure PTFE back-up ring having tensile strength of 28 MPa was used.Specially developed black colored carbon composite of carbon f i ber plus resin and ring machined out of composite sheet having tensile strength of 135 MPa was used in the current investigation.All of the above parameters are generally used in a typical hydro-pneumatic shock absorber.

    3.1.Variation of annular clearance

    Linear actuators involving longer strokes and larger diameters will experience large dynamic/shock loads.Therefore,the annular/diametral clearance/gap should be large enough to avoid metal to metal abrasion in the system.Depending on the size and type of seal in linear actuators under dynamic loading conditions,0.3 mm annular gap is recommended.However,in the case of linear actuators subjected to shock loads that are transferred between rod and gland,annular gap of the order of 0.3-0.5 mm is preferred.Annular gap less than 0.3 mm could cause metal to metal contact at rod/gland or piston/tube interface,thus damaging seal sliding surfaces.On the other hand,annular gap more than 0.5 mm results in seal extrusion.Therefore,in the present work,annular gap ranging between 0.3 mm and 0.5 mm has been considered to study seal behavior.A schematic of annular clearance in test cylinder for shock load is illustrated in Fig.4.

    3.2.Results and discussion

    The pressure in the test chamber due to impact load is built up to 120 MPa and the rate of pressure rise in the test chamber is 1200 MPa/s as shown in Fig.5.The peak pressure is attained in 100 ms and is maintained for 1695 ms duration.This addedpressure for impact load is obtained from the accumulator into the impact cylinder.

    Fig.4.Schematic of annular/diametral clearance in the test cylinder for shock load.

    Fig.5.Pressure in the test chamber.

    It may also be noted that there is a sudden drop of pressure in the impact cylinder as the impact load is applied.A rate of pressure rise at 2000 MPa/s in the test chamber can also be obtained by applying impact load as shown in Fig.5.The peak pressure of 130 MPa is obtained in the test cylinder in 50 ms,then reduced to 120 MPa and remained constant for 1350 ms. The pressure was reduced to 4 MPa upon removal of the load and the cycle was continued until seal failure takes place.

    3.3.Effect of annular clearance on seal life

    Shock tests were carried out on a set of three similar NBR O-ring seals (made of the same material duly inspected for dimensional tolerances chosen from the same manufacturing lot)to ascertain repeatability of results,considering diametric clearance of 0.3,0.4 and 0.5 mm.The number of shock pulses,which the seal can sustain before failure,is plotted in Fig.6 and the extent of seal damage is shown in Fig.7.It was observed that seal without back-up ring at a lower annular gap of 0.3 mm was capable of sustaining oil pressure up to 275 ± 25 repeated shock pulses,while seal ceased to function satisfactorily at increased annular gaps (0.4 mm:75 ± 25 shock pulses and 0.5 mm:only 20 shock pulses).

    3.4.Effect of back-up rings on seal life

    Fig.7.Extent of seal damage with annular/diametral gap (without back-up ring).

    Fig.8.Seal extrusion under shock load.

    Table 3No.of shock pulses the seal can sustain before failure (shore hardness:A90).

    Shock load experiments were conducted on O-ring hydraulic seals of shore hardness A70 and A90 using conventional PTFE and carbon composite back-up rings considering annular/ diametral gap of 0.3,0.4 and 0.5 mm.The number of shock pulses,which the seal can sustain before failure with and without back-up rings,is plotted as a function of diametral gap as shown in Fig.8 and listed in Table 3.The number of shock pulses the seal could sustain before failure followed a regression type of second-order polynomial.It was observed that use of high strength conventional PTFE back rings delayed the seal failure due to extrusion and back-up rings failed due to higher frictional force before the seal failure as shown in Fig.9.Motivated by these observations,the analysis was further extended to investigate the seal life with carbon composite back-up rings possessing high strength,low load-to-def l ection ratio,low friction,high resistance to wear and self-lubricating properties.It is interesting to note that the life of the sealing system was enhanced by 4-5 times compared to seal life with conventional PTFE back-up ring as seen in Fig.10.

    3.5.Effect of rate of pressure rise and oil temperature on seal life

    Fig.9.Improved seal life with PTFE back-up ring.

    Fig.10.Enhanced seal life with carbon composite back-up ring.

    Fig.11.Effects of rate of pressure rise and oil temperature on seal life without back-up ring (shore hardness A90).

    The effect of rate of pressure rise on seal life under shock loading was investigated by conducting tests on O-ring seals of shore hardness A90 with annular gaps of 0.3,0.4 and 0.5 mm and rate of pressure rise of 600,1200 and 2400 MPa/s.It can be seen in Fig.11 that the seal life with rate of pressure rise of 2400 MPa/s is slightly inferior compared to the rate of pressure rise of 600 MPa/s,indicating that seal life is weakly affected by the rate of pressure rise.

    The effect of oil temperature on seal life under shock load was investigated by conducting tests on O-ring seals of Shore hardness A90 with annular gaps of 0.3,0.4 and 0.5 mm and temperatures of 30 °C,50 °C and 70 °C.It may be observed from Fig.11 that the number of shock pulses that the seal could sustain before failure decreased with an increase in temperature due to swelling of seal at elevated temperatures.It may be noted that the effect of pressure rise on seal life is not as much as the effect of temperature.The number of shock pulses the seal can sustain was reduced with an increase in annular gap from 0.3 to 0.5 mm in both cases as described in the previous sections.

    4.Conclusions

    1)Catastrophic seal failure has taken place within 20-50 shock pulses with annular gap of 0.5 mm withoutback-up ring,while seal failure was delayed (up to 300 shock pulses)when the annular gap was reduced to 0.3 mm.

    2)The seal life was enhanced signif i cantly with carbon composite back-up ring at reduced annular clearances compared to seal life with conventional PTFE back-up ring and without back-up rings.

    3)The seal life at higher rate of pressure rise is slightly inferior compared to lower rate of pressure rise,indicating that seal life is weakly affected by the rate of pressure rise.

    4)The number of shock pulses that the seal could sustain before failure decreased with an increase in temperature due to swelling and hardening of seal.Further,the effect of the rate of pressure rise on seal life is not as much as the effect of temperature.

    Acknowledgments

    The authors would like to extend thanks to Mr.Rakesh,Mr. Abhishek Kumar,Mr.CKWaghmare and Mr.Manoj Bhujbal of R&DE (Engrs),Pune,India,for providing assistance during the course of the work.One of the authors,Shankar Bhaumik,would like to thank Vice Chancellor,DIAT (DU),Pune for permitting him to do PhD.

    [1]Nikas GK,Almond RV,Burridge G.Experimental study of leakage and friction of rectangular,elastomeric hydraulic seals for reciprocating motion from-54 to+135°C and pressures from 3.4 to 34.5 MPa.Tribol Trans 2014;57(5):846-65.

    [2]Cheyney LE,Müller WJ,Duval RE.Frictional characteristics of O-rings with a typical hydraulic f l uid.Trans ASME 1950;291-7.

    [3]Müller HK.Leakage and friction of f l exible packings at reciprocating motion with special consideration of hydrodynamic f i lm formation.In: Proc 2nd Int Conf Fluid Seal;1964.p.13-28.

    [4]Field GJ,Nau BS.An experimental study of reciprocating rubber seals. In:Proc.1972 Symposium on EHD lubrication,Leeds University;1972. p.29-36.

    [5]Hirano F,Kaneta M.Experimental investigation of friction and sealing characteristics of f l exible seals for reciprocating motion.In:Proc 5th Int Conf Fluid Seal;1971.p.17-32.

    [6]BS.Friction of oil lubricated sliding seals.In:Proc 5th Int Conf Fluid Seal;1971.p.81-96.

    [7]Iwanami S,Tikamori N.Oil leakage from an O-ring packing.In:Proc 1st Int Conf Fluid Seal;1961.

    [8]Kawahara Y,Ishiwata H,Ichikawa Y.An experimental investigation of dynamical characteristics of U-seal in reciprocating motion.In:Proc 6th Int Conf Fluid Seal;1973.p.33-43.

    [9]Kaneta M.Sealing characteristics of double reciprocating seals.J JSLE Int Ed 1986;7:141-6.

    [10]Nikas GK.Analytical study of the extrusion of rectangular elastomeric seals for linear hydraulic actuators.J Eng Tribol 2003;217:365-73.

    [11]Salant RF,Maser N,Yang B.Numerical model of a reciprocating hydraulic rod seal.ASME J Tribol 2007;129:91-7.

    [12]Yang B,Salant RF.Numerical model of a reciprocating rod seal with a secondary lip.Tribol Trans 2008;51:119-27.

    [13]Salant RF,Maser N,Yang B.Elasto hydrodynamic model of a reciprocating hydraulic rod seal.In:5th International Conference on Tribology,Parma,Italy;2006.

    [14]Nikas GK,Sayles RS.Nonlinear elasticity of rectangular elastomeric seals and its effect on elastohydrodynamic numerical analysis.Tribol Int 2004;37:651-60.

    [15]Nikas GK,Sayles RS.Computational model of tandem rectangular elastomeric seal for reciprocating motion.Tribol Int 2006;39:622-34.

    [16]Nikas GK.Theoretical study of solid back-up rings for elastomeric seals in hydraulic actuators.Tribol Int 2004;37:689-99.

    [17]Nikas GK.Transient elastohydrodynamic lubrication of rectangular elastomeric sealsforlinearhydraulic actuators.J Eng Tribol 2004;217:461-73.

    [18]Fatu A,Hajjam M.Numerical modelling of hydraulic seals by inverse lubrication theory.J Eng Tribol 2011;225:1159-73.

    [19]Bhaumik S,Kumar SR,Kumaraswamy A.Experimental investigation and FE modelling of contact mechanics phenomenon in reciprocating hydraulic U-seals for defence applications.Appl Mech Mater Trans Tech Publicat 2014;592-594:1950-4.

    [20]Thatte A,Salant RF.Transient EHL analysis of an elastomeric hydraulic seal.In:Proceeding of the 13th Nordic Symposium on Tribology,Tampere,F(xiàn)inland;2008.

    [21]Bhaumik S,Kumarswamy A,Guruprasad S.Design&development of test rig for investigation of contact mechanics phenomena in reciprocating hydraulic seals.Proced Eng 2013;64:835-43.

    Received 8 March 2015;revised 30 July 2015;accepted 7 August 2015 Available online 7 September 2015

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+912024304191.

    E-mail address: akswamy@diat.ac.in, adepu_kswamy@yahoo.com(A.KUMARASWAMY).

    http://dx.doi.org/10.1016/j.dt.2015.08.003

    2214-9147/? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    欧美乱色亚洲激情| 成人国产综合亚洲| 国产精品久久视频播放| 久久亚洲真实| 亚洲精品美女久久av网站| 亚洲精品美女久久av网站| or卡值多少钱| 女生性感内裤真人,穿戴方法视频| 精品乱码久久久久久99久播| 亚洲片人在线观看| 一区福利在线观看| 国产成年人精品一区二区| 琪琪午夜伦伦电影理论片6080| 欧美性猛交黑人性爽| 国产精品日韩av在线免费观看| 久久久国产精品麻豆| 中文字幕另类日韩欧美亚洲嫩草| bbb黄色大片| 国内精品久久久久精免费| 777久久人妻少妇嫩草av网站| 美女大奶头视频| 精品久久久久久久毛片微露脸| 1024手机看黄色片| 淫妇啪啪啪对白视频| 国产亚洲av高清不卡| av欧美777| а√天堂www在线а√下载| 成年免费大片在线观看| 亚洲国产日韩欧美精品在线观看 | 久久精品影院6| 18禁裸乳无遮挡免费网站照片 | 99国产极品粉嫩在线观看| 女性生殖器流出的白浆| 欧美日韩一级在线毛片| 免费观看精品视频网站| 丝袜在线中文字幕| 中文字幕人妻丝袜一区二区| 91av网站免费观看| 女人被狂操c到高潮| 欧美乱码精品一区二区三区| 神马国产精品三级电影在线观看 | 成人亚洲精品av一区二区| 在线av久久热| 国产在线精品亚洲第一网站| 亚洲av中文字字幕乱码综合 | videosex国产| 国产精品 国内视频| 亚洲五月婷婷丁香| 国产成人av教育| 国产精品 欧美亚洲| 成人永久免费在线观看视频| 国产一区二区三区视频了| 亚洲片人在线观看| 中亚洲国语对白在线视频| 99热这里只有精品一区 | 精品久久蜜臀av无| 欧美精品啪啪一区二区三区| 丰满的人妻完整版| 亚洲九九香蕉| 精品无人区乱码1区二区| 中文字幕高清在线视频| 欧美一区二区精品小视频在线| 日韩欧美三级三区| 香蕉国产在线看| 国产精品一区二区免费欧美| 999久久久精品免费观看国产| 免费在线观看完整版高清| 俺也久久电影网| 国产区一区二久久| 熟妇人妻久久中文字幕3abv| 久久国产精品男人的天堂亚洲| 18禁美女被吸乳视频| 女人被狂操c到高潮| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 香蕉丝袜av| 久久草成人影院| 两性午夜刺激爽爽歪歪视频在线观看 | 成人亚洲精品av一区二区| 国产精品国产高清国产av| 美女午夜性视频免费| 满18在线观看网站| 久久伊人香网站| 亚洲专区国产一区二区| 免费电影在线观看免费观看| 好男人在线观看高清免费视频 | 国产伦人伦偷精品视频| 午夜福利成人在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久精品电影 | 亚洲中文字幕日韩| 亚洲av成人av| 久99久视频精品免费| 99国产精品99久久久久| 国产野战对白在线观看| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 身体一侧抽搐| 午夜福利免费观看在线| 最新在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 99re在线观看精品视频| 中亚洲国语对白在线视频| 老司机午夜福利在线观看视频| 色综合婷婷激情| 老司机午夜福利在线观看视频| 亚洲av电影在线进入| 最近最新中文字幕大全免费视频| 女警被强在线播放| 老司机福利观看| 欧美最黄视频在线播放免费| 在线十欧美十亚洲十日本专区| 一区二区三区激情视频| 波多野结衣av一区二区av| videosex国产| 禁无遮挡网站| 日本在线视频免费播放| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 免费看十八禁软件| 别揉我奶头~嗯~啊~动态视频| 熟女少妇亚洲综合色aaa.| 亚洲精品av麻豆狂野| 岛国在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产又色又爽无遮挡免费看| 国产精品精品国产色婷婷| 久久久精品欧美日韩精品| av片东京热男人的天堂| 国产伦一二天堂av在线观看| av中文乱码字幕在线| 黄片小视频在线播放| 精品久久久久久久末码| 久久久国产成人精品二区| 精品一区二区三区av网在线观看| 国产亚洲精品综合一区在线观看 | www日本在线高清视频| 成人三级黄色视频| 91成年电影在线观看| 亚洲欧美激情综合另类| 夜夜躁狠狠躁天天躁| 国产精品亚洲美女久久久| 波多野结衣高清无吗| 啦啦啦免费观看视频1| 亚洲国产欧美网| 国产伦在线观看视频一区| 在线观看免费视频日本深夜| 制服丝袜大香蕉在线| 国产av又大| 欧美色欧美亚洲另类二区| 亚洲在线自拍视频| 亚洲成人久久性| 国产午夜精品久久久久久| 老汉色av国产亚洲站长工具| 亚洲三区欧美一区| 婷婷六月久久综合丁香| av在线播放免费不卡| 国产黄a三级三级三级人| 免费高清在线观看日韩| 中国美女看黄片| 日本撒尿小便嘘嘘汇集6| 中文在线观看免费www的网站 | 国产伦人伦偷精品视频| 国产亚洲av嫩草精品影院| 后天国语完整版免费观看| 久久人妻av系列| 国产精品99久久99久久久不卡| 午夜福利在线在线| 国产私拍福利视频在线观看| 欧美成人性av电影在线观看| 日韩大码丰满熟妇| 午夜久久久在线观看| 国产精品乱码一区二三区的特点| 此物有八面人人有两片| 天天添夜夜摸| 操出白浆在线播放| 欧美久久黑人一区二区| 91九色精品人成在线观看| 久久久久久免费高清国产稀缺| 91字幕亚洲| 欧美午夜高清在线| 搡老妇女老女人老熟妇| 一级作爱视频免费观看| 亚洲国产精品久久男人天堂| 亚洲国产欧美网| 色婷婷久久久亚洲欧美| 国产一级毛片七仙女欲春2 | 两性夫妻黄色片| 国产区一区二久久| 久久人妻av系列| 婷婷亚洲欧美| 欧美av亚洲av综合av国产av| 久久久国产欧美日韩av| 日本 av在线| 国产午夜精品久久久久久| 亚洲一码二码三码区别大吗| 亚洲成av人片免费观看| 欧美中文综合在线视频| 亚洲一区中文字幕在线| 国产成年人精品一区二区| 麻豆国产av国片精品| 伦理电影免费视频| 精品电影一区二区在线| 香蕉丝袜av| 婷婷丁香在线五月| 一本大道久久a久久精品| 午夜福利18| 一区二区三区高清视频在线| 1024视频免费在线观看| 一级作爱视频免费观看| 性欧美人与动物交配| 欧美黑人欧美精品刺激| 久久人妻福利社区极品人妻图片| 1024视频免费在线观看| 成年人黄色毛片网站| 亚洲第一电影网av| 又紧又爽又黄一区二区| 精华霜和精华液先用哪个| 久久天躁狠狠躁夜夜2o2o| 国产又黄又爽又无遮挡在线| 精品一区二区三区视频在线观看免费| 啦啦啦 在线观看视频| 久久久国产成人免费| 亚洲中文日韩欧美视频| 亚洲精品在线观看二区| 欧美成人性av电影在线观看| 天堂影院成人在线观看| 国产午夜福利久久久久久| 波多野结衣高清作品| 18禁裸乳无遮挡免费网站照片 | 美国免费a级毛片| 亚洲国产精品sss在线观看| 欧美黑人巨大hd| 精品国产乱子伦一区二区三区| 91字幕亚洲| 亚洲av第一区精品v没综合| 91大片在线观看| 不卡一级毛片| 成在线人永久免费视频| 国产激情久久老熟女| 成年版毛片免费区| 国产一卡二卡三卡精品| 青草久久国产| 精品一区二区三区av网在线观看| 色哟哟哟哟哟哟| 嫩草影院精品99| 一本一本综合久久| 日本一区二区免费在线视频| 欧美性猛交黑人性爽| 亚洲国产中文字幕在线视频| 少妇粗大呻吟视频| 91成人精品电影| 一区二区日韩欧美中文字幕| 嫁个100分男人电影在线观看| 黄片播放在线免费| 91成人精品电影| 一夜夜www| 国产精品永久免费网站| 999精品在线视频| 国产主播在线观看一区二区| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| www.自偷自拍.com| 欧美成人性av电影在线观看| 成人亚洲精品av一区二区| 日本黄色视频三级网站网址| 久久久水蜜桃国产精品网| 国产成人一区二区三区免费视频网站| 美女国产高潮福利片在线看| 亚洲精品美女久久久久99蜜臀| 高清毛片免费观看视频网站| 精品久久久久久久人妻蜜臀av| 国产在线观看jvid| 性色av乱码一区二区三区2| 久久热在线av| 亚洲精品一区av在线观看| 人成视频在线观看免费观看| 三级毛片av免费| 日韩国内少妇激情av| 丁香欧美五月| 一个人免费在线观看的高清视频| 亚洲精品在线观看二区| 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 好男人电影高清在线观看| 亚洲欧美精品综合久久99| 国产午夜福利久久久久久| or卡值多少钱| 国内久久婷婷六月综合欲色啪| 国内精品美女久久久久久| 国产成人福利小说| 国产亚洲欧美98| 亚洲经典国产精华液单| 国产男人的电影天堂91| 亚洲欧美日韩高清专用| 中文在线观看免费www的网站| 国产久久久一区二区三区| 精品熟女少妇av免费看| 综合色av麻豆| 岛国在线免费视频观看| 男女那种视频在线观看| 国产精品国产高清国产av| 99在线人妻在线中文字幕| 韩国av在线不卡| 国产成人freesex在线 | 亚洲精品久久国产高清桃花| av专区在线播放| 内地一区二区视频在线| 国产成人a区在线观看| 久久热精品热| 欧美性猛交╳xxx乱大交人| 少妇人妻精品综合一区二区 | 男女视频在线观看网站免费| 蜜桃久久精品国产亚洲av| 国产午夜福利久久久久久| 激情 狠狠 欧美| 联通29元200g的流量卡| 国产精品人妻久久久影院| 亚洲美女搞黄在线观看 | 校园春色视频在线观看| 婷婷色综合大香蕉| 色视频www国产| 亚洲激情五月婷婷啪啪| 熟女人妻精品中文字幕| 国产极品精品免费视频能看的| 俄罗斯特黄特色一大片| 又黄又爽又刺激的免费视频.| 国产 一区 欧美 日韩| 观看免费一级毛片| 九九在线视频观看精品| 99久久中文字幕三级久久日本| 别揉我奶头~嗯~啊~动态视频| 日韩成人伦理影院| 亚洲欧美成人综合另类久久久 | 亚洲在线观看片| av免费在线看不卡| 又爽又黄a免费视频| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 国产高清激情床上av| 精品午夜福利视频在线观看一区| 精品久久久久久久久亚洲| 亚洲一区高清亚洲精品| 欧美日本亚洲视频在线播放| 欧美3d第一页| 色在线成人网| 蜜桃亚洲精品一区二区三区| 亚洲自拍偷在线| 97超级碰碰碰精品色视频在线观看| 又粗又爽又猛毛片免费看| 人妻少妇偷人精品九色| 久久热精品热| 久久人人爽人人片av| 嫩草影视91久久| 久99久视频精品免费| 国产高清视频在线播放一区| 亚洲av免费高清在线观看| 精品熟女少妇av免费看| 国产欧美日韩一区二区精品| 久久精品91蜜桃| 高清毛片免费观看视频网站| 国产视频一区二区在线看| 一区二区三区免费毛片| 亚洲中文字幕日韩| 一本久久中文字幕| 国内精品美女久久久久久| 久久午夜亚洲精品久久| 91久久精品电影网| 中文字幕精品亚洲无线码一区| 久久精品人妻少妇| 中文字幕精品亚洲无线码一区| 男女啪啪激烈高潮av片| 麻豆精品久久久久久蜜桃| 日本五十路高清| 久久久久性生活片| 精品不卡国产一区二区三区| 99久国产av精品国产电影| 日本-黄色视频高清免费观看| 性色avwww在线观看| 亚洲中文字幕日韩| 麻豆成人午夜福利视频| 此物有八面人人有两片| 亚洲一区高清亚洲精品| 久久精品国产自在天天线| 欧美另类亚洲清纯唯美| 99热网站在线观看| 精品久久久久久久久久免费视频| 国产一区亚洲一区在线观看| 精品久久久噜噜| 哪里可以看免费的av片| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 赤兔流量卡办理| 欧美性猛交黑人性爽| 国产亚洲精品综合一区在线观看| 亚洲性夜色夜夜综合| 麻豆一二三区av精品| 亚洲无线在线观看| 亚洲国产日韩欧美精品在线观看| 久久综合国产亚洲精品| 婷婷亚洲欧美| 亚洲va在线va天堂va国产| 亚洲中文字幕日韩| 人妻少妇偷人精品九色| 免费看a级黄色片| 欧美中文日本在线观看视频| 日本色播在线视频| 色尼玛亚洲综合影院| 我的女老师完整版在线观看| 真实男女啪啪啪动态图| 成年女人永久免费观看视频| 国产精品人妻久久久久久| 久久综合国产亚洲精品| 国产白丝娇喘喷水9色精品| 欧美成人一区二区免费高清观看| 你懂的网址亚洲精品在线观看 | 夜夜爽天天搞| 成年女人看的毛片在线观看| 国产淫片久久久久久久久| 日韩一本色道免费dvd| a级毛色黄片| 一级a爱片免费观看的视频| 午夜福利成人在线免费观看| 久久久成人免费电影| 日本在线视频免费播放| 波多野结衣高清作品| 看片在线看免费视频| 国产一区二区亚洲精品在线观看| 成人一区二区视频在线观看| 色综合站精品国产| 国产精品乱码一区二三区的特点| 99久久无色码亚洲精品果冻| 少妇熟女aⅴ在线视频| 欧美成人a在线观看| 全区人妻精品视频| 亚洲人与动物交配视频| 少妇人妻一区二区三区视频| 麻豆av噜噜一区二区三区| 少妇被粗大猛烈的视频| 最近最新中文字幕大全电影3| 亚州av有码| av专区在线播放| 欧美性感艳星| 黄色视频,在线免费观看| 国产伦精品一区二区三区四那| 九九久久精品国产亚洲av麻豆| 又黄又爽又刺激的免费视频.| 国产黄a三级三级三级人| 日韩在线高清观看一区二区三区| 欧美激情在线99| 精品不卡国产一区二区三区| 免费人成视频x8x8入口观看| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 麻豆一二三区av精品| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 亚洲熟妇熟女久久| 欧美最黄视频在线播放免费| 亚洲熟妇熟女久久| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区视频9| 麻豆av噜噜一区二区三区| 波多野结衣高清无吗| 乱系列少妇在线播放| 亚洲电影在线观看av| 精品久久久久久久末码| 欧美激情久久久久久爽电影| 日日干狠狠操夜夜爽| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 人妻丰满熟妇av一区二区三区| 丰满的人妻完整版| 九九爱精品视频在线观看| 亚洲精品日韩av片在线观看| 免费在线观看成人毛片| 亚洲一区二区三区色噜噜| 亚洲欧美清纯卡通| 高清午夜精品一区二区三区 | 男人的好看免费观看在线视频| 人人妻人人澡人人爽人人夜夜 | 日韩av在线大香蕉| 波多野结衣巨乳人妻| 国产精品三级大全| 精品国内亚洲2022精品成人| 黑人高潮一二区| 成人综合一区亚洲| 变态另类丝袜制服| 成人欧美大片| 91在线精品国自产拍蜜月| 你懂的网址亚洲精品在线观看 | 99久久精品国产国产毛片| 欧美+亚洲+日韩+国产| 人妻久久中文字幕网| 亚洲自偷自拍三级| 欧美日韩国产亚洲二区| 日韩高清综合在线| 亚洲精品日韩在线中文字幕 | 老熟妇乱子伦视频在线观看| 麻豆成人午夜福利视频| 精华霜和精华液先用哪个| 日本一本二区三区精品| 免费看美女性在线毛片视频| 日本成人三级电影网站| 国产欧美日韩一区二区精品| 日本色播在线视频| 日本一本二区三区精品| 免费看美女性在线毛片视频| 白带黄色成豆腐渣| 久99久视频精品免费| 婷婷色综合大香蕉| 亚洲三级黄色毛片| av在线播放精品| 久久久久久大精品| 国产探花在线观看一区二区| 久久人人爽人人爽人人片va| 99热这里只有是精品50| 久久精品影院6| 精品国内亚洲2022精品成人| 国产高清视频在线观看网站| 日本一本二区三区精品| 国产精品国产三级国产av玫瑰| 老女人水多毛片| 深夜精品福利| 国产在线精品亚洲第一网站| 一区福利在线观看| 亚洲国产精品国产精品| 亚洲av美国av| 大又大粗又爽又黄少妇毛片口| 色哟哟·www| 18+在线观看网站| 天堂√8在线中文| 小蜜桃在线观看免费完整版高清| 免费大片18禁| 欧美激情久久久久久爽电影| 嫩草影院入口| 波野结衣二区三区在线| 久久久久九九精品影院| 你懂的网址亚洲精品在线观看 | 国产爱豆传媒在线观看| 久久精品夜色国产| 久久人人精品亚洲av| 老司机午夜福利在线观看视频| 亚洲精品日韩av片在线观看| 成熟少妇高潮喷水视频| 久久婷婷人人爽人人干人人爱| 午夜久久久久精精品| 亚洲国产欧洲综合997久久,| 99热精品在线国产| 国产精品日韩av在线免费观看| 赤兔流量卡办理| 久久综合国产亚洲精品| 国内精品一区二区在线观看| 99国产精品一区二区蜜桃av| 人妻夜夜爽99麻豆av| 亚洲av电影不卡..在线观看| 国国产精品蜜臀av免费| 免费av不卡在线播放| 在线看三级毛片| 18禁黄网站禁片免费观看直播| 成人综合一区亚洲| 日韩av在线大香蕉| 91午夜精品亚洲一区二区三区| 日本在线视频免费播放| 中国国产av一级| 看十八女毛片水多多多| 99热全是精品| 亚洲av免费在线观看| 久久鲁丝午夜福利片| 熟女人妻精品中文字幕| 色综合亚洲欧美另类图片| 国产精品人妻久久久久久| 久久久久九九精品影院| 成人三级黄色视频| 成人欧美大片| 国模一区二区三区四区视频| 亚洲乱码一区二区免费版| 久久久精品大字幕| 91久久精品国产一区二区成人| 国产爱豆传媒在线观看| 精品久久久久久久久久久久久| 国产精品精品国产色婷婷| 国产一级毛片七仙女欲春2| 午夜精品国产一区二区电影 | 男女之事视频高清在线观看| 国产高潮美女av| 日本在线视频免费播放| 深爱激情五月婷婷| 国产成人精品久久久久久| 成熟少妇高潮喷水视频| 综合色av麻豆| 日本-黄色视频高清免费观看| 人妻久久中文字幕网| 综合色av麻豆| 亚洲第一区二区三区不卡| 女的被弄到高潮叫床怎么办| 日韩欧美三级三区| 午夜免费男女啪啪视频观看 | 国产精品乱码一区二三区的特点| 国产成人影院久久av| 国内精品美女久久久久久| 久久人人爽人人片av| eeuss影院久久| 国产 一区 欧美 日韩| 久久久久久久午夜电影| 国产精品亚洲美女久久久| 精品久久久久久久末码| 91久久精品电影网| 亚洲精品456在线播放app| 免费av毛片视频| 99久久精品一区二区三区| 日本免费a在线| 在线天堂最新版资源| 美女 人体艺术 gogo| www日本黄色视频网|