• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studies on impact sensitivity of nanosized trinitrotoluene (TNT)conf i ned in silica processed by sol-gel method

    2016-04-18 10:45:24INGALEWAGHPSASTRYBASAKBANDYOPADHYAYPHAPALEStishGUPTA
    Defence Technology 2016年1期

    S.V.INGALE*,P.B.WAGHP.U.SASTRY,C.B.BASAK,D.BANDYOPADHYAY,S.B.PHAPALE,Stish C.GUPTA

    aApplied Physics Division,Bhabha Atomic Research Centre,Mumbai,India

    bSolid State Physics Division,Bhabha Atomic Research Centre,Mumbai,India

    cGlass and Advanced Materials Division,Bhabha Atomic Research Centre,Mumbai,India

    dHeavy Water Division,Bhabha Atomic Research Centre,Mumbai,IndiaeChemistry Division,Bhabha Atomic Research Centre,Mumbai,India

    Studies on impact sensitivity of nanosized trinitrotoluene (TNT)conf i ned in silica processed by sol-gel method

    S.V.INGALEa,*,P.B.WAGHa,P.U.SASTRYb,C.B.BASAKc,D.BANDYOPADHYAYd,S.B.PHAPALEe,Satish C.GUPTAa

    aApplied Physics Division,Bhabha Atomic Research Centre,Mumbai,India

    bSolid State Physics Division,Bhabha Atomic Research Centre,Mumbai,India

    cGlass and Advanced Materials Division,Bhabha Atomic Research Centre,Mumbai,India

    dHeavy Water Division,Bhabha Atomic Research Centre,Mumbai,IndiaeChemistry Division,Bhabha Atomic Research Centre,Mumbai,India

    Nano-sized trinitrotoluene (TNT)material restrained in silica gel has been prepared by using the sol-gel process to study the effect of varying porosity in gel on the sensitivity ofTNT.TheTNT content in the gel has been varied from 60 to 90 wt% (at f i xed acetone/tetramethoxysilane ratio of 50).Also,for a f i xed TNT content of 75 wt%,the pore structure in the gel has been varied by changing the ratio of silica gel precursor to the solvent.The resultantTNT-silica gel composites have been characterized using scanning electron microscopy,thermal analysis,small angle X-ray scattering and surface area analysis techniques.Impact sensitivity studies were carried out using Fall Hammer ImpactTest.The results showed that the sensitivity of nanostructured explosives prepared by sol-gel process can be tailored precisely by controlling the process parameters.

    Nanostructured TNT;Sol-gel method;Composites;Impact sensitivity

    1.Introduction

    Chemical explosives are the materials capable of storing energy due to its chemical composition and this energy can be harnessed with proper stimulant over an exceedingly short period of time.The detonation behavior of explosive materials is inf l uenced by their microstructural features like particle size distribution,surface area,density of explosive charge,impurities,defects or inhomogeneities present,as well as processing methods [1].Among these parameters,particle size and defects play a critical role in controlling the explosive properties like sensitivity and rate of energy release.As the particle size of explosive material is reduced,there is more surface area in contact between the particles of an explosive which may cause a faster reaction rate [2].It has been observed that explosive materials with reduced particle size show a decrease in impact sensitivity,but this trend has been found to be reversed for theexplosive materials with particle size less than 200 nm [3]. Many attempts have been carried out to study the effect of particle size distribution in nanometer range on the sensitivity of explosive materials.However,the limited data are available on the effect of the microstructure of nano-sized particles on the sensitivity of explosives materials [4,5].Therefore,investigation of nano-sized explosives with varying microstructure is an important aspect in studying the sensitivity of these materials.

    Some of the popular techniques used to produce nanosized explosive materials are crystallization out of solutions,crystallization using supercritical f l uids or rapid expansion of supercritical solvent (RESS)and sol-gel technique [6].Out of these techniques,crystallization out of solutions is a commonly used method.Using this method,particle size can be reduced to submicron level.Although this method is very simple and safe,it is diff i cult to control the particle size and size distribution. Using the RESS method,nano-crystals of explosive with mean particle size in the range of 110-220 nm have been produced[7].However,it requires sophisticated instrumentation including low temperature and high pressure set-up.Moreover,various parameters like solvent temperature,pressure,nozzlesize,etc.,need to be controlled accurately,which makes this method complicated.In the sol-gel method,the explosive material is dissolved in a specif i c solvent and to this solution silica gel precursors like tetramethoxysilane and water are added.The hydrolysis and condensation of tetramethoxysilane results in the formation of nanosized primary particles of silica suspended in the solution,called sol.The primary particles of silica cross-link to form a three dimensional porous network which is referred to as gel.The pores of the gel contain the solvent in which explosive material is dissolved.Evaporation of liquid from the gel at ambient conditions results in xerogel material with recrystallized explosive material in the gel pores. Unlike other methods,the sol-gel method is simpler and safer as it does not require complicated instruments and it does not involve high temperature or high pressure.The advantage of sol-gel method is that the microstructure can be tailor-made so as to achieve the particle size in nanometer range with narrow size distribution as well as the porosity in the gel matrix can be varied.The usual average particle size obtained by this method is about 20-30 nm [8].However,the sensitivity of explosive materials may get affected due to enhanced defect density in terms of pores [9].

    We synthesized nano-sized trinitrotoluene (TNT)material in silica gel by using sol-gel method to study the effect of varying porosity in the gel on the sensitivity of TNT.TNT has been chosen for these studies because,due to high solubility of TNT in acetone,by controlling acetone to silica gel precursor molar ratio,the microstructure and porosity in the TNT-SiO2composite can be varied signif i cantly so as to study these materials in wide range.The TNT content in the gel was varied from 60 to 90 wt%.The porosity was also varied by varying the process parameters.The resultant explosive materials were characterized by various techniques and impact sensitivity of these materials has been studied.

    2.Materials and methods

    2.1.Preparation of TNT-SiO2composites

    The TNT-SiO2nanocomposites were prepared by using the sol-gel method [10].To prepare the TNT-SiO2composites,the predetermined amount of TNT was dissolved in acetone. The molar ratio ofTNT/tetramethoxysilane (TMOS)was varied from 0.4 to 2.4 to obtain the TNT content in the gel ranging from 60 wt%to 90 wt%.TMOS and water in the form of diluted hydrof l uoric (HF)acid (1 M)were added to this solution as silica gel precursors.H2O/TMOS ratio was kept at 16,whereas acetone/TMOS ratio was kept at 50.To vary the pore volume in the gel matrix in the samples containing 75 wt% TNT,the ratio ofTMOS to acetone was varied from 50 to 20 by maintaining the molar ratio of TNT/TMOS as 0.8 and H2O/ TMOS as 16.The hydrolysis and condensation of TMOS resulted in the formation of a clear gel within three hours.After the formation of the gel,the solvent from the gel pores was allowed to evaporate at ambient conditions to obtain nano-sized TNT retained in the pores of the gel.The samples containing 60 wt%,75 wt%and 90 wt%of TNT and acetone/TMOS ratio as 50 have been designated as T60,T75-I and T90 respectively. The samples containing 75 wt%of TNT has been further designated as T75-I,T 75-II and T75-III with acetone/TMOS ratio as 50,35 and 20,respectively.

    2.2.Characterization of TNT-SiO2composites

    The presence of TNT in the gel was conf i rmed by X-ray diffraction (XRD)measurements.The XRD data for the resultant TNT-SiO2xerogel were obtained on a Philips X-ray diffractometer using a PW 1710 goniometer (CuKα,30 kV,20 mA).The data were recorded by step-scan mode from 2θ of 10.01°to 79.99°,with step size of 0.02°.The amount ofTNT in the gel was conf i rmed by thermogravimetric and differential scanning calorimetry (TG-DSC)analysis using SETSYS Evolution,SETARAM system.The samples were heated in Argon atmosphere from room temperature to 500 °C at heating rate of 10 °C/min.The microstructure of the gel containing nano-sized TNT was studied by using Carl Zeiss Auriga f i eld emission scanning electron microscope (FESEM).For FESEM analysis,the TNT-SiO2gel powder was suspended in methanol and the suspension was dispersed on a copper plate.The samples were then gold coated.Small angle X-ray scattering (SAXS)measurements were carried out on pure silica xerogels and TNT incorporated silica xerogels using a Rigaku small angle goniometer mounted on rotating anode X-ray generator.Scattered intensity I(Q)was recorded using a scintillation counter by varying the scattering angle 2θ.Here Q is the scattering vector equal to 4π sin (θ)/λ,λ is the wavelength of incident (CuKα)X-rays.The intensities were corrected for sample absorption and smearing effects of collimating slits [11].Specif i c surface area was measured by nitrogen physisorption method using a Sorptomatic 1990 analyzer from CE Instruments.Prior to surface area measurements,the samples were degassed at 40 °C under vacuum for 6 hours.The specif i c surface area was calculated using the Brunauer-Emmett-Teller (BET)method from the amount of N2gas adsorbed at 77 K at various partial pressures (eleven points;0.05 < p/p0< 0.3).Impact sensitivity studies were carried out by Fall Hammer Impact Test using a 2 kg weight.For impact sensitivity test,powder sample of about 30-40 mg was placed on anvil and the height of impact (2 kg hammer)was varied to arrive at a height where 50%probability of initiation is found.Tetryl with f i gure of insensitivity (FoI)of 70 was considered as the standard.

    3.Results and discussion

    3.1.X-ray diffraction studies

    Fig.1 shows the XRD patterns for raw TNT and the sol-gel processed TNT-SiO2composites containing 90,75 and 60 wt %TNT.The diffraction peaks of crystalline phase in the XRD pattern corresponds to the monoclinic phase of TNT [12].It indicates the presence ofTNT in the sol-gel processed composites.As the silica content in the composite samples increases,the visibility of crystalline nature ofTNT is less prominent due to the amorphous nature of silica gel.As TNT recrystallizes in the pores of silica gel,there could be some variation in the peak intensity of scattering planes.

    Fig.1.XRD pattern forTNT andTNT-SiO2composites:(a)rawTNT;(b)T90;(c)T75;(d)T60.

    3.2.TG-DSC analysis

    Fig.2 shows typical TG-DSC curves for the TNT-SiO2nano-composite with 90 wt%TNT (T90).The endothermic peak at about 70 °C indicates melting of TNT.The melting temperature of TNT in the composite has shifted to lower temperature as compared to melting temperature of 80 °C for neat TNT.It reveals that recrystallized TNT in the composites is with nanometric size.The exothermic peak at about 280 °C is attributed to TNT decomposition [13].This conf i rms that TNT is retained in the gel matrix.

    Fig.2.TG-DSC curves for TNT-SiO2composite with 90%TNT content.

    There is a weight loss of about 86%within the range of 210-280 °C as shown in the TG curve of the T90 sample.As TNT decomposes completely into gaseous product,this weight loss is consistent with the desired TNT wt%in the composite. The remaining part is silica which is inert in this temperature range.The exothermic peak at 280 °C corresponds to the decomposition of TNT and the formation of gaseous products like CO,CO2,H2O,etc.,that accounts for sudden energy release.

    3.3.FESEM

    Fig.3(a)and (b)shows FESEM pictures of TNT-SiO2xerogels containing 75 wt%TNT with acetone/TMOS ratio as 50 and 20,respectively.Whereas Fig.3(c)shows FESEM of the sample containing 90 wt%TNT prepared with acetone/TMOS ratio of 50.

    All the composite samples show nano-structures.It is observed from Fig.3(a)and (b)that the sample T75-I is more porous as compared to T75-III.As the molar ratios of Acetone/ TMOS for theT75-I andT75-III samples are 50 and 20,respectively,the pores in T75-I are more widespread with larger pore volume which is conf i rmed by SEM pictures.The pores and particles are in mesoporous range.In the T75-III sample,the particles are closely spaced due to low acetone/TMOS ratio and the microstructure is more compact and indicates a signif i cant decrease in porosity.Fig.3(c)shows the SEM picture of T90 sample.The acetone/TMOS ratio for bothT 75-I andT 90 is 50. Compared to T75-I sample,the particles in T90 sample are more grown and the particle size is bigger.Due to higher loading of TNT,more pores get occupied with TNT and the particles grow more and particle size is bigger that result in less porous microstructure as compared to T75-I.As compared to T75-III sample,the microstructure in T90 sample is less compact which is due to higher acetone/TMOS ratio.These observations suggest that by varying the process parameters like solvent to TMOS ratio and TNT content in the composite,the microstructure can be suitably controlled.These results are found to be consistent with SAXS studies and surface area measurements.

    3.4.SAXS measurements

    The SAXS prof i les displayed on log-log scale are shown in Fig.4.

    The structure of silica based xerogels has been investigated extensively in earlier studies [14].In the silica xerogel,the scattering at low-Q (Q < Q1)region occurs from larger,submicron size particles and the inter-particle voids.Whereas in the region Q2< Q < Q1,the scattered intensity arises due to surfaces of the smaller particles or pores within the aggregates. For particles with smooth surface,I(Q)in this (Porod)region varies as Q-β,with β being equal to 4.In the region beyond Q2,the intensity is contributed by micropores within the silica network.

    As shown in Fig.4,the SAXS prof i le of pure sample follows a linear behavior with a change of slope at a Q.Below this crossover point,I(Q)varies as Q-α,with a value of 1.1 for α. This suggests that the silica particles are in the form of mass fractal aggregates with fractal dimension of 1.1.From the crossover point,the average size (D)of the basic particles within the aggregates is found to be about 18.5 nm.In thehigh-Q region,the slope of the linear prof i le is steeper than 4.0,suggesting a fuzzy or diffuse boundary [15]between particles and pores.The micropore region (Q > Q2)is beyond the Q-range of measurements of this study.

    Fig.3.FESEM of TNT-SiO2composites.

    Fig.4.Small angle X-ray scattering of silica xerogel with TNT (T).Lines are a guide to the eyes.

    For silica xerogels with TNT,the SAXS prof i les are in the same shape as for pure sample but the mass fractal dimension has increased with the highest value of 2.26 for 90%TNT.Thus,the matrix became compact with the presence ofTNT.The size of the basic particles (pores)increased marginally to about 20 nm forT60 andT75-I samples.It is increased to 22.5 nm for T75-III sample and a steep rise to 30.4 nm for 90 wt%TNT sample.The typical size of the particles is concurrent in order of magnitude with SEM pictures.

    3.5.Surface area measurements

    The results of surface area and pore volume measurements for silica xerogel and typical TNT-SiO2composites are shown in Table 1.

    The pore volume and surface area measured for TNT-SiO2composite are less as compared to SiO2xerogel.The decrease in pore volume of TNT-SiO2composites as compared to SiO2xerogels indicates that pores of the gel have been occupied by TNT.For samples T75-I and T90 which were prepared with acetone/TMOS ratio of 50,the surface area has been found to be decreased from 189 to 74 m2/g with an increase in the content of TNT.The pore volume has been found to be decreased from 0.136 to 0.053 cm3/g,respectively.This is due to growth of larger size particles of TNT in the pores.In the T75-I sample,some of the pores may also be non-occupied which might have resulted in high pore volume and surface area.For T75-I and T75-III samples,the surface area has been found to be drastically decreased from 189 to 18 m2/g.The acetone/TMOS ratios for these samples were 50 and 20,respectively.The decrease in solvent/precursor ratio has resulted in a much compact network,leading to a decrease in porosity as revealed from the SEM pictures.This has led to a decrease in surface area and pore volume.The pore volume has been found to be decreased from 0.136 to 0.011 cm3/g forT75-I andT75-III samples,respectively.The results show that porosity in TNTSiO2composites can be suitably controlled by controlling the process parameters likeTNT content or solvent/precursor ratio. The observed trend in surface area and pore volume measurements for TNT-SiO2composites is consistent with the FESEM results.

    Table 1Preparative condition and textural properties of SiO2xerogel and TNT-SiO2composites.

    3.6.Impact sensitivity

    Fig.5.Impact sensitivity data for raw TNT and TNT-SiO2composites.

    The data for sensitivity to impact of nano-sized TNT processed by sol-gel method are shown in Fig.5.It has been observed that f i gure of insensitivity (FoI)decreases,that is,the sensitivity to impact of the TNT-SiO2composite material increases as compared to raw TNT.The particle size of TNT in the TNT-SiO2composites has been found to be less than 100 nm.The impact sensitivity results are not in agreement with the general belief that the sensitivity of explosives is reduced with a decrease in particle size.However,it has to be mentioned that the reported data in the literature are accounted for the explosive materials in pure form and for the particle size in the micrometer range.In the present work,the decrease in particle size up to nanometer scale might have enhanced the reactivity due to high specif i c surface area which dominates the initiation mechanism and results in higher sensitivity.The sensitivity to impact for the TNT-SiO2composites has also been found to be increased with a decrease in TNT content in the composite from 90 wt%to 60 wt%.Generally the impurities like grit or silica in the explosives lead to friction in localized area and therefore increase of temperature in surrounding area that causes initiation.However,in sol-gel processing,the silica is homogeneously distributed at nanometer scale,and therefore although silica as an impurity may contribute to an increase in sensitivity of the composite,its contribution is limited.In the composites with 75%TNT and 25%silica,although the silica content is the same,the impact sensitivity was found to be increased with an increase in the acetone/TMOS ratio from 20 to 50.It indicates that the impact sensitivity could be altered with change in process parameters and hence microstructure of the composites.Therefore,the increase in sensitivity of the composites might be due to an increase in the density of defects like pores/voids which may lead to adiabatic compression of interstitial gases and act at centers for initiation of chemical reaction.In samples with lesser TNT content,the number of non-occupied pores will be more,which leads to higher defect density,which has also been observed from fractal dimensions in SAXS studies.

    4.Conclusions

    The sol-gel method has been successfully used to prepare nano-crystalline TNT materials.The advantage of sol-gel method of high solid loading in the porous matrix is utilized to prepare theTNT-SiO2xerogels containing up to 90 wt%explosive material.The results on impact sensitivity measurement showed that the sensitivity of nano-sized explosives can be tailored precisely by controlling either the amount of explosive loading in the gel or the microstructure of the material by varying process parameters like precursor ratio.These studies could be useful to understand the role of pore density defects in the initiation and detonation phenomenon of nano-sized secondary explosives.

    Acknowledgments

    The authors acknowledge the help from Ratanesh Kumar,I. K.Singh,Rakesh Patel,Sonu Gavit and SandipVirnak ofAPD,BARC in the experimental work.

    [1]Howe P.Trends in shock initiation of heterogeneous explosives.In: Proceedings of 11th Symposium (Int.)on Detonation,Washington,DC,USA;1998.p.670-8.

    [2]Armstrong RW. Dual advantages of ultra f i ne crystal-sized energetic/reactive material formulations.Int J Energ Mater Chem Prop 2007;6:335-45.

    [3]Stepanov V,Anglade V,Balas H,Wendy A,Bezmelnitsyn AV,Krasnoperov LN.Production and sensitivity evaluation of nanocrystalline RDX-based explosive compositions.Propell Explos Pyrotech 2011;36:240-6.

    [4]Jie L,Wei J,Jiang-bao Z,Qing Y,Yu-jiao W,F(xiàn)eng-sheng L.Effect of drying on particle size and sensitivities of nano hexahydro-1,3,5-trinitro-1,3,5-triazine.Def Technol 2014;10(1):9-16.

    [5]Jie L,Wei J,Qing Y,Jian S,Ga-zi H,F(xiàn)eng-sheng L.Study of nano-nitramine explosives:preparation,sensitivity and application.Def Technol 2014;10(2):184-9.

    [6]Huang B,Cao M,Nie F,Huang H,Hu C.Construction and properties of structure and size-controlled micro/nano energetic materials.DefTechnol 2013;9:59-79.

    [7]Stepanov V,Krasnoperov LN,Elkina IB,Zhang X.Production of nanocrystalline RDX by rapid expansion of supercritical solutions. Propell Explos Pyrotech 2005;30(3):178-83.

    [8]Ingale SV,Sastry PU,Patra AK,Tewari R,Wagh PB,Gupta SC.Micro structural investigations onTNT and PETN incorporated silica xerogels.J Sol-Gel Sci Technol 2010;54:238-42.

    [9]Ingale SV,Sastry PU,Wagh PB,Tripathi AK,Tewari R,Jayakrishnan VB,et al.Preparation of nano-structured RDX in a silica xerogel matrix. Propell Explos Pyrotech 2013;38(4):515-19.

    [10]Ingale SV,Wagh PB,Tewari R,Gupta SC.Nanocrystalline trinitrotoluene(TNT)using sol-gel process.J Non-Cryst Solids 2010;356:2162-7.

    [11]Schmidt PW,Height R.Slit height corrections in small angle X-ray scattering.Acta Cryst 1960;13:480-3.

    [12]Gallagher HG,Sherwood JN.Polymorphism,twinning and morphology of crystals of 2,4,6-trinitrotoluene grown from solution.J Chem Soc Faraday Trans 1996;92(12):2107-21.

    [13]Trzcin′ski WA,Cudzi?o S,Dyjak S,Nita M.A comparison of the sensitivity and performance characteristics of melt-pour explosives with TNT and DNAN binder.Cent Eur J Energ Mater 2014;11(3): 443-55.

    [14]Fei H,Xiaodong H,Mingwei L,Sumei Z.SAXS investigations of the fractal character of additive silica xerogels.J Ceramic Proc Res 2008;9:389-92.

    [15]Schmidt PW,Anvir D,Levy D,Hohr A,Steiner M,R?ll A.Small-angle x-ray scattering from the surfaces of reversed-phase silicas:power-law scattering exponents of magnitudes greater than four.J Chem Phys 1991;94:1474-9.

    Received 16 April 2015;revised 17 August 2015;accepted 18 August 2015 Available online 15 September 2015

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+912225591808.

    E-mail address:svingale@barc.gov.in (S.V.INGALE).

    http://dx.doi.org/10.1016/j.dt.2015.08.004

    2214-9147/? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    国产v大片淫在线免费观看| 美女被艹到高潮喷水动态| www.色视频.com| 国产探花在线观看一区二区| 激情五月婷婷亚洲| 成人毛片60女人毛片免费| 欧美高清成人免费视频www| 欧美高清性xxxxhd video| 麻豆av噜噜一区二区三区| 亚洲欧美中文字幕日韩二区| 大香蕉97超碰在线| 亚洲欧美成人综合另类久久久| 91精品国产九色| 亚洲av一区综合| 麻豆久久精品国产亚洲av| 久久精品久久久久久久性| 国产伦精品一区二区三区视频9| 看十八女毛片水多多多| 丝袜喷水一区| 免费观看性生交大片5| 国产一区二区在线观看日韩| 大陆偷拍与自拍| 联通29元200g的流量卡| 午夜精品在线福利| 免费看美女性在线毛片视频| 亚洲欧美精品专区久久| 国产男女超爽视频在线观看| 小蜜桃在线观看免费完整版高清| 亚洲内射少妇av| 国产精品一区二区在线观看99 | 老女人水多毛片| 亚洲欧美日韩无卡精品| 青春草国产在线视频| 久久久亚洲精品成人影院| 亚洲av电影不卡..在线观看| 国产成人福利小说| 亚洲精品乱码久久久久久按摩| 丝瓜视频免费看黄片| 在线观看美女被高潮喷水网站| 男人舔女人下体高潮全视频| 成人亚洲精品一区在线观看 | 国产精品99久久久久久久久| 日韩欧美精品免费久久| 亚洲av二区三区四区| 嫩草影院精品99| 又黄又爽又刺激的免费视频.| 欧美成人a在线观看| 高清日韩中文字幕在线| 久久久久久久久久黄片| 18禁动态无遮挡网站| 美女xxoo啪啪120秒动态图| 日本与韩国留学比较| av在线亚洲专区| 极品教师在线视频| 一个人观看的视频www高清免费观看| 神马国产精品三级电影在线观看| 日韩电影二区| 欧美zozozo另类| 天堂影院成人在线观看| 青青草视频在线视频观看| 插逼视频在线观看| 国产午夜精品一二区理论片| 18禁动态无遮挡网站| 在线 av 中文字幕| 国产高清国产精品国产三级 | 国产精品人妻久久久影院| 欧美+日韩+精品| 国产精品一二三区在线看| 少妇被粗大猛烈的视频| 国产男女超爽视频在线观看| 国产在线男女| 久久精品国产亚洲av天美| 老司机影院成人| 一个人免费在线观看电影| 亚洲精品aⅴ在线观看| 国产激情偷乱视频一区二区| 少妇熟女欧美另类| 亚洲国产欧美在线一区| 一级毛片黄色毛片免费观看视频| 人妻少妇偷人精品九色| 久久精品国产自在天天线| 久久精品国产亚洲网站| 欧美精品一区二区大全| 成人亚洲精品av一区二区| 九九久久精品国产亚洲av麻豆| 99re6热这里在线精品视频| 久久久久久久国产电影| 午夜爱爱视频在线播放| 亚洲婷婷狠狠爱综合网| 最近视频中文字幕2019在线8| 美女国产视频在线观看| 肉色欧美久久久久久久蜜桃 | av网站免费在线观看视频 | 免费观看a级毛片全部| 91精品国产九色| 亚洲成人中文字幕在线播放| 美女xxoo啪啪120秒动态图| 日本爱情动作片www.在线观看| 亚洲综合色惰| 国内揄拍国产精品人妻在线| 我的老师免费观看完整版| 成人亚洲精品一区在线观看 | 中文字幕亚洲精品专区| 熟女人妻精品中文字幕| 超碰av人人做人人爽久久| 亚洲国产最新在线播放| 国产淫片久久久久久久久| 麻豆乱淫一区二区| 成年av动漫网址| 亚洲av成人精品一区久久| 小蜜桃在线观看免费完整版高清| 国产成人a区在线观看| 国产视频内射| 好男人视频免费观看在线| 欧美一区二区亚洲| 毛片一级片免费看久久久久| 国产淫片久久久久久久久| 特大巨黑吊av在线直播| 国产黄色视频一区二区在线观看| 久久99精品国语久久久| 免费播放大片免费观看视频在线观看| 看非洲黑人一级黄片| 男女国产视频网站| 久久韩国三级中文字幕| 最近2019中文字幕mv第一页| 成人美女网站在线观看视频| 91精品一卡2卡3卡4卡| 高清午夜精品一区二区三区| 精品人妻视频免费看| 床上黄色一级片| 久久国内精品自在自线图片| 亚洲一区高清亚洲精品| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 只有这里有精品99| 免费不卡的大黄色大毛片视频在线观看 | 老司机影院毛片| 国产三级在线视频| 国产精品日韩av在线免费观看| 丰满少妇做爰视频| 亚洲人成网站在线播| 色5月婷婷丁香| 国产精品国产三级专区第一集| 亚洲18禁久久av| 插阴视频在线观看视频| 中文字幕久久专区| 黄片无遮挡物在线观看| 国产亚洲av嫩草精品影院| 欧美变态另类bdsm刘玥| 热99在线观看视频| 简卡轻食公司| 日本熟妇午夜| xxx大片免费视频| 一级黄片播放器| 国内精品一区二区在线观看| 一级a做视频免费观看| 青春草国产在线视频| 免费无遮挡裸体视频| 亚洲精品色激情综合| 国产人妻一区二区三区在| 色5月婷婷丁香| 亚洲欧洲国产日韩| 亚洲欧美一区二区三区国产| 国产精品.久久久| 我的女老师完整版在线观看| 三级国产精品片| 亚洲色图av天堂| 国产精品人妻久久久影院| 最近2019中文字幕mv第一页| 成年版毛片免费区| 黑人高潮一二区| 97精品久久久久久久久久精品| 日韩,欧美,国产一区二区三区| 美女黄网站色视频| 韩国高清视频一区二区三区| 国产有黄有色有爽视频| 国产亚洲最大av| 久久草成人影院| 国产高清不卡午夜福利| 嫩草影院精品99| 国产单亲对白刺激| av网站免费在线观看视频 | 联通29元200g的流量卡| 欧美bdsm另类| 久久久久精品性色| 成年版毛片免费区| 色哟哟·www| 国产美女午夜福利| 大香蕉久久网| 97在线视频观看| 亚洲一区高清亚洲精品| 肉色欧美久久久久久久蜜桃 | 国产精品熟女久久久久浪| 国产又色又爽无遮挡免| 九九久久精品国产亚洲av麻豆| 在线免费十八禁| 国产成人一区二区在线| 最近最新中文字幕免费大全7| 午夜福利视频1000在线观看| 不卡视频在线观看欧美| 国产精品国产三级国产av玫瑰| 国产黄色视频一区二区在线观看| 免费无遮挡裸体视频| 床上黄色一级片| 国产精品蜜桃在线观看| 午夜福利网站1000一区二区三区| 国产av国产精品国产| 99热这里只有是精品50| 国产一区二区在线观看日韩| 久久久久性生活片| 国产免费一级a男人的天堂| 一级二级三级毛片免费看| 亚洲美女搞黄在线观看| 国产黄频视频在线观看| 春色校园在线视频观看| 免费看光身美女| 欧美精品国产亚洲| 国产在线一区二区三区精| 大话2 男鬼变身卡| 好男人视频免费观看在线| 国产激情偷乱视频一区二区| 国产成人91sexporn| 国产老妇伦熟女老妇高清| 欧美+日韩+精品| 亚洲18禁久久av| 极品教师在线视频| 91午夜精品亚洲一区二区三区| 久久97久久精品| 最近最新中文字幕大全电影3| 男女边摸边吃奶| 91久久精品国产一区二区成人| 亚洲丝袜综合中文字幕| 丰满人妻一区二区三区视频av| 五月天丁香电影| www.av在线官网国产| 亚洲熟妇中文字幕五十中出| 伊人久久国产一区二区| 欧美bdsm另类| 非洲黑人性xxxx精品又粗又长| 在线a可以看的网站| 亚洲最大成人av| 真实男女啪啪啪动态图| 日本午夜av视频| 亚洲av免费高清在线观看| 久久鲁丝午夜福利片| av又黄又爽大尺度在线免费看| 啦啦啦啦在线视频资源| 天天躁夜夜躁狠狠久久av| 亚洲国产精品成人综合色| 午夜免费观看性视频| 亚洲国产av新网站| 国产精品伦人一区二区| 亚洲精品久久久久久婷婷小说| 午夜免费激情av| 国产成人一区二区在线| 激情五月婷婷亚洲| 国产免费又黄又爽又色| 久久精品国产自在天天线| 精品久久久精品久久久| 不卡视频在线观看欧美| 精品一区在线观看国产| 日本一本二区三区精品| 亚洲精品日韩在线中文字幕| 大香蕉97超碰在线| 国产老妇女一区| 亚洲欧美一区二区三区国产| 在线a可以看的网站| 国产综合精华液| 国产成人精品一,二区| 深夜a级毛片| 男人和女人高潮做爰伦理| 亚洲在久久综合| 亚洲国产欧美人成| 亚洲在线自拍视频| www.色视频.com| 欧美丝袜亚洲另类| kizo精华| 亚洲一级一片aⅴ在线观看| 青春草国产在线视频| av在线蜜桃| 免费观看性生交大片5| 欧美潮喷喷水| 久久人人爽人人爽人人片va| 亚洲人成网站高清观看| 又大又黄又爽视频免费| 少妇人妻精品综合一区二区| 日本黄大片高清| 天美传媒精品一区二区| 欧美高清成人免费视频www| 亚洲精品色激情综合| 亚洲美女搞黄在线观看| 男人舔女人下体高潮全视频| 欧美成人精品欧美一级黄| av网站免费在线观看视频 | 小蜜桃在线观看免费完整版高清| 国产成人福利小说| 免费观看精品视频网站| 色综合亚洲欧美另类图片| 麻豆乱淫一区二区| 日韩一本色道免费dvd| 2021少妇久久久久久久久久久| www.av在线官网国产| 亚洲av电影在线观看一区二区三区 | 又黄又爽又刺激的免费视频.| av免费观看日本| 亚洲最大成人手机在线| 国产男女超爽视频在线观看| 性插视频无遮挡在线免费观看| 日韩欧美一区视频在线观看 | 亚洲在线观看片| 成人国产麻豆网| 天堂俺去俺来也www色官网 | 国内精品宾馆在线| 免费观看av网站的网址| 97热精品久久久久久| 天天一区二区日本电影三级| 99九九线精品视频在线观看视频| 91精品一卡2卡3卡4卡| 国产成人福利小说| av专区在线播放| xxx大片免费视频| 天堂影院成人在线观看| 日韩制服骚丝袜av| 欧美高清性xxxxhd video| 国产亚洲5aaaaa淫片| 国产片特级美女逼逼视频| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 久久久久久久久久久免费av| 国产av国产精品国产| 人妻一区二区av| 国产精品三级大全| 精品久久久久久久人妻蜜臀av| 国产成人精品婷婷| 国产色婷婷99| 五月玫瑰六月丁香| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| 色视频www国产| 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 夜夜看夜夜爽夜夜摸| videossex国产| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 伦精品一区二区三区| 色综合站精品国产| 波多野结衣巨乳人妻| 九色成人免费人妻av| 久久久a久久爽久久v久久| 26uuu在线亚洲综合色| 国产成人aa在线观看| 黄色日韩在线| 精品久久久精品久久久| 精品熟女少妇av免费看| 高清欧美精品videossex| 99视频精品全部免费 在线| 日本爱情动作片www.在线观看| 18+在线观看网站| xxx大片免费视频| 亚洲人成网站高清观看| 久久久国产一区二区| 成人综合一区亚洲| 日韩欧美三级三区| 又爽又黄a免费视频| 菩萨蛮人人尽说江南好唐韦庄| 91精品国产九色| 亚洲精品日韩av片在线观看| 久久精品久久久久久久性| 2021天堂中文幕一二区在线观| 欧美xxxx性猛交bbbb| 亚洲av日韩在线播放| 婷婷色综合www| av.在线天堂| 久久国内精品自在自线图片| 1000部很黄的大片| 人妻少妇偷人精品九色| 久久久亚洲精品成人影院| 国产片特级美女逼逼视频| av在线蜜桃| 亚洲国产精品成人久久小说| 男的添女的下面高潮视频| 久99久视频精品免费| 亚洲av日韩在线播放| 好男人在线观看高清免费视频| 国产精品一区二区性色av| 好男人在线观看高清免费视频| 国内精品美女久久久久久| 国产成人a∨麻豆精品| 国产成人精品福利久久| 成人无遮挡网站| .国产精品久久| 六月丁香七月| 最近中文字幕2019免费版| 一区二区三区免费毛片| 精品国产露脸久久av麻豆 | 精品酒店卫生间| 久久精品久久精品一区二区三区| 特级一级黄色大片| 一个人观看的视频www高清免费观看| 免费无遮挡裸体视频| 亚洲婷婷狠狠爱综合网| 人体艺术视频欧美日本| 免费观看的影片在线观看| 熟女电影av网| 成年人午夜在线观看视频 | 亚洲va在线va天堂va国产| 你懂的网址亚洲精品在线观看| 丰满少妇做爰视频| 国产精品一区二区性色av| 国产精品久久久久久精品电影小说 | 亚洲在线自拍视频| 夫妻午夜视频| 免费看不卡的av| 噜噜噜噜噜久久久久久91| 波多野结衣巨乳人妻| 乱人视频在线观看| 欧美人与善性xxx| 国精品久久久久久国模美| 看免费成人av毛片| 大片免费播放器 马上看| 99视频精品全部免费 在线| 大香蕉97超碰在线| 久久精品人妻少妇| 久久精品国产亚洲网站| 久久国产乱子免费精品| 亚洲精品一区蜜桃| 亚洲av男天堂| 日韩视频在线欧美| 综合色av麻豆| 99re6热这里在线精品视频| 综合色丁香网| 国产精品一区二区在线观看99 | 十八禁网站网址无遮挡 | 国产一级毛片七仙女欲春2| 亚洲欧美中文字幕日韩二区| 亚洲精品亚洲一区二区| 久热久热在线精品观看| 99热网站在线观看| 黄色欧美视频在线观看| 嫩草影院精品99| 日韩国内少妇激情av| av卡一久久| 日日撸夜夜添| 日韩视频在线欧美| 青春草亚洲视频在线观看| 国产伦在线观看视频一区| 69人妻影院| 天天一区二区日本电影三级| 一级毛片我不卡| 天堂中文最新版在线下载 | 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 久久久a久久爽久久v久久| 日本猛色少妇xxxxx猛交久久| 国产淫语在线视频| 青青草视频在线视频观看| 亚洲在久久综合| 美女内射精品一级片tv| 国产女主播在线喷水免费视频网站 | 老女人水多毛片| 国产黄a三级三级三级人| 国产亚洲精品久久久com| 欧美日本视频| 丝袜美腿在线中文| 日本免费在线观看一区| 国产精品美女特级片免费视频播放器| 国产精品福利在线免费观看| 女的被弄到高潮叫床怎么办| 久久久久久伊人网av| 啦啦啦韩国在线观看视频| 激情 狠狠 欧美| 久久久久久久久中文| av在线天堂中文字幕| 免费大片黄手机在线观看| 国语对白做爰xxxⅹ性视频网站| 91久久精品电影网| 嘟嘟电影网在线观看| 久久这里只有精品中国| 成人鲁丝片一二三区免费| 亚洲怡红院男人天堂| 联通29元200g的流量卡| 视频中文字幕在线观看| 国产有黄有色有爽视频| 一级黄片播放器| 看非洲黑人一级黄片| 日本一本二区三区精品| 欧美性猛交╳xxx乱大交人| 成人一区二区视频在线观看| 亚洲精品久久午夜乱码| 全区人妻精品视频| 精品人妻熟女av久视频| 欧美bdsm另类| 中文字幕久久专区| 日本爱情动作片www.在线观看| 欧美区成人在线视频| 亚洲国产精品成人久久小说| 免费观看a级毛片全部| av在线老鸭窝| 精品久久久久久久久av| 欧美日本视频| 精品久久久精品久久久| freevideosex欧美| 干丝袜人妻中文字幕| 久久久成人免费电影| a级一级毛片免费在线观看| 国产av国产精品国产| 欧美xxⅹ黑人| 亚洲成人一二三区av| 我的女老师完整版在线观看| 午夜免费观看性视频| 成人午夜高清在线视频| 我的老师免费观看完整版| 婷婷色av中文字幕| 久久久久久伊人网av| 亚洲人成网站在线观看播放| 精品一区在线观看国产| 国产精品一区二区在线观看99 | 夜夜看夜夜爽夜夜摸| 麻豆精品久久久久久蜜桃| www.色视频.com| 精品久久久久久久人妻蜜臀av| 丝袜美腿在线中文| 国产爱豆传媒在线观看| 色视频www国产| 99久久中文字幕三级久久日本| 亚洲精品一二三| 啦啦啦中文免费视频观看日本| 全区人妻精品视频| 欧美3d第一页| 国产成年人精品一区二区| 国产免费又黄又爽又色| 免费看美女性在线毛片视频| 亚洲电影在线观看av| 亚洲va在线va天堂va国产| 国产av在哪里看| 国产精品国产三级国产专区5o| 国产成人91sexporn| kizo精华| 亚洲精品国产av成人精品| 久久热精品热| 成年av动漫网址| 97在线视频观看| 黄色日韩在线| 久久精品国产亚洲网站| 一级毛片 在线播放| 尾随美女入室| 欧美成人一区二区免费高清观看| 亚洲精品久久久久久婷婷小说| 又爽又黄a免费视频| 听说在线观看完整版免费高清| 精品国产露脸久久av麻豆 | ponron亚洲| 中文字幕免费在线视频6| 床上黄色一级片| 国产白丝娇喘喷水9色精品| 国产淫片久久久久久久久| 久久精品久久久久久噜噜老黄| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| 欧美精品一区二区大全| 亚洲国产成人一精品久久久| 少妇的逼好多水| 网址你懂的国产日韩在线| 午夜爱爱视频在线播放| 日韩不卡一区二区三区视频在线| 看黄色毛片网站| 亚洲国产精品成人综合色| 男女边摸边吃奶| 午夜久久久久精精品| 青春草亚洲视频在线观看| 高清午夜精品一区二区三区| 男人狂女人下面高潮的视频| 亚洲18禁久久av| 国产成人精品福利久久| 免费黄色在线免费观看| 日韩制服骚丝袜av| 国产午夜精品论理片| 禁无遮挡网站| 久久国产乱子免费精品| 亚洲丝袜综合中文字幕| 欧美xxxx黑人xx丫x性爽| 人人妻人人澡欧美一区二区| 丝袜喷水一区| 观看美女的网站| 国产精品综合久久久久久久免费| 色尼玛亚洲综合影院| 国产精品女同一区二区软件| 亚洲欧美精品自产自拍| 欧美成人精品欧美一级黄| 国产精品日韩av在线免费观看| 色网站视频免费| 一级av片app| 国产av不卡久久| 伦理电影大哥的女人| 狂野欧美白嫩少妇大欣赏| www.色视频.com| 搞女人的毛片| 国产亚洲精品久久久com| 26uuu在线亚洲综合色| 免费看不卡的av| 亚洲最大成人手机在线| 久久久久精品久久久久真实原创| 欧美高清成人免费视频www| 亚洲四区av| eeuss影院久久| 看黄色毛片网站| 国内精品宾馆在线| 亚洲美女视频黄频| 麻豆成人av视频| 国产老妇伦熟女老妇高清| 久久99热这里只有精品18| 日日摸夜夜添夜夜添av毛片| 99久国产av精品国产电影| 久久这里只有精品中国|