• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient flutter prediction based on Harmonic Balance and V-g methods

    2016-04-01 07:26:52LiuNanBaiJunqiangLiuYanHuaJun
    關(guān)鍵詞:方法

    Liu Nan,Bai Junqiang,*,Liu Yan,Hua Jun

    (1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China;2.China Aeronautical Establishment,Beijing 100012,China)

    Efficient flutter prediction based on Harmonic Balance and V-g methods

    Liu Nan1,Bai Junqiang1,*,Liu Yan1,Hua Jun2

    (1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China;2.China Aeronautical Establishment,Beijing 100012,China)

    An efficient flutter prediction method is proposed and applied in the analysis of transonic flutter boundary and influences of structural parameters.Based on frequency domain flutter analysis V-g method,an artificial damping term is applied to aeroelastic system to maintain harmonic motion.Thus,the frequency domain structural dynamic equations can be obtained.The aerodynamic describing function matrices can be acquired efficiently by harmonic balance method at a variety of harmonic frequencies.Combining aerodynamic describing function matrices and frequency domain structural equations,the aeroelastic stability problem can be transferred into a generalized eigenvalue problem.It is demonstrated that the flutter boundary of this method conforms with high-fidelity time-marching method and the analysis efficiency improves significantly.Moreover,when the structural parameters change,new flutter boundary can be easily obtained by generalized eigenvalue analysis in this method,other than time-marching method which needs numerous CFD/CSD coupled simulations.

    flutter;frequency domain;harmonic balance;aerodynamic describing function;timemarching method

    0 Introduction

    Flutter is a typical dynamic aeroelastic phenomenon,which could cause catastrophic results.Transonic flutter prediction is greatly important for the design of transport aircrafts and fighters.Nowadays, Computational Fluid Dynamics(CFD)has been widely applied in transonic flutter predictions[1].However,it is still very time-consuming to calculate instantaneous response of aeroelastic system by time-marching methods.However,it is still very time-consuming to calculate instantaneous response of aeroelastic system by time-marching methods.

    To improve analysis efficiency,reduced order model has been widely applied in flutter analysis.Weiwei Zhang et al[2]applied ARX reduced order model to construct aeroelastic equation in state space form,which shows similar results with CFD/CSD simulation,except for transonic condition.Walter A.Silva[3]created multiple-input multiple-output reduced order aeroelastic system based on Volterra series,which established the relationship between modal inputs and generalized aerodynamic forces(GAFs).However,the precision of unsteady aerodynamic forces based on Volterra series is very sensitive to amplitude of input signals and time steps[4].Weiwei Zhang et al[5]also predicted flutter boundary by nonlinear ROM based on RBF neural network model.

    Except for the time domain method,frequency domain method is another important approach of flutter analysis[6].Aerodynamic describing functions can be obtained by exciting aeroelastic system with harmonic disturbance of small amplitudes.Then,flutter velocity and frequency of different structural parameters can be obtained by V-g or P-K method,which shows great efficiency,comparing with time-marching methods[7].However,it takes excessive computational costs to calculate harmonic responses of aeroelastic system,because it needs to carry on unsteady flow simulation for each structural mode every harmonic frequency.

    In addition,harmonic balance(HB)method shows superior efficiency in the simulation of periodic unsteady flow[8-10],which is widely applied in the simulation of turbomachines[11-12],helicopter rotors[13-14],dynamic derivations[15],et al.Therefore,a frequency domain flutter analysis method based harmonic balance is proposed in this paper,which takes efficiency and precision into account.

    1 Time-marching method

    Reynolds-Averaged Navier-Stokes(RANS) equation is the highest-fidelity flow solver in current engineering applications,which can be written as:

    where Q and R are the vectors of flow variables and residuals respectively.Third-order Roe scheme is applied in spatial discretization,while approximate factorization scheme is used in implicit time-marching method.And S-A turbulence model is adopted.

    Two-degree-of-freedom structural dynamic equation can be written as:

    where

    where

    Eq.(3)can be solved by second-order Euler prediction-correction method:

    The flow chart of time-marching approach of aeroelastic system is shown in Fig.1.

    Fig.1 Flow chart of time-marching m ethod of aeroelastic system圖1氣動(dòng)彈性系統(tǒng)時(shí)間推進(jìn)求解的流程

    2 Harmonic balance method

    Harmonic balance method is an efficient approach of periodic unsteady flow field.Because of the periodicity,the vector of flow variables and residuals can be deployed by Fourier series:

    The time derivation of Q is:

    Substituting Eq.(5)into Eq.(1)and rearranging,we can get a pair of algebraic equations:

    Eq.(7)can be written into matrix form:

    where

    Eq.(8)is the governing equation of original harmonic balance method.In this method,the calculation of residual terms by Fourier transformation is very complex and tedious,which is as follows:

    To resolve this problem,sub-time levels were introduced by Hall et al[11]to convert Q back to time domain through Fourier transformation:

    where

    {ti,i=1,2,...,2NH}are equally distributed sub-time levels in a cycle,and ti=2π(i-1)/2NH.

    Substituting Eq.(10)into Eq.(8):

    Both sides in Eq.(11)are multiplied by E-1:

    To achieve an easy approach,the residual terms are simplified by:

    where

    In this step,nonlinear residual terms can produce terms whose frequencies are higher that NHω,which are included in low-frequency terms by Eq.(13).This rough simplification may produce non-physical solutions in strong nonlinear problems[16].Therefore,the number of harmonics should be chose adequately to guarantee that high-frequency harmonic terms approach zero.Finally the governing equation of harmonic balance method can be obtained:

    In order to solve Eq.(14)by time-marching method,pseudo time derivation is added:

    Eq.(15)is the same as original RANS Eq.(1),except for its middle term(which is also called harmonic balance source term).Therefore,harmonic balance solver can be obtained from original steady RANS solver.

    Then the harmonic balance method is validated by NACA64A010 airfoil under forced harmonic motion[17].The angle of attack changes as follows:

    The flow conditions of two test cases are shown in Table 1.The comparison of unsteady aerodynamic forces between harmonic balance and time-marching methods are illustrated in Fig.2 and Fig.3.It is demonstrated that the unsteady forces calculated by harmonic balance and time-marching methods coincide with each other,which validates the precision of harmonic balance method.The time costs of time-marching and harmonic balance methods are shown in Table 2.

    Table 1 Flow condition of NACA64A010 under forced motions表1 NACA64A010強(qiáng)迫運(yùn)動(dòng)算例的來(lái)流條件

    Fig.2 Com parison of unsteady aerodynam ic forces between time-marching and harmonic balance methods in CT2 case圖2 CT2算例時(shí)間推進(jìn)和諧波平衡方法計(jì)算結(jié)果對(duì)比

    Fig.3 Com parison of unsteady aerodynam ic forces between time-marching and harmonic balance methods in CT5 case圖3 CT5算例時(shí)間推進(jìn)和諧波平衡方法計(jì)算結(jié)果對(duì)比

    Table 2 Time costs of time-marching and harmonic balance methods(unit:s)表2時(shí)間推進(jìn)和諧波平衡方法計(jì)算時(shí)間對(duì)比(單位:s)

    3 Frequency domain solver

    The corresponding lift and pitch moment coefficients can be written as:

    Therefore,the structural Eq.(2)can be transferred into frequency domain:

    When the aeroelastic system is undergoing single harmonic motion,the plunge and pitch displacements can be written as:

    Through aerodynamic describing function matrix F,the aerodynamic forces can be easily obtained by:

    where

    The aerodynamic describing functions can be obtained through exciting aeroelastic system by harmonic disturbance of small amplitude.Harmonic Balance method is applied to acquired aerodynamic describing functions efficiently.

    However,the aeroelastic systemmay exhibit different behaviors(convergent oscillation,simple harmonic or divergent oscillation)in different freestream condi-tions.Therefore,an artificial damping coefficient j g K can be added into the aeroelastic system(19)to maintain harmonic motion:

    The stability of aeroelastic system can be judged by the sign of artificial damping coefficient.Eq.(21)can be rearranged into a generalized complex eigenvalue problem:

    where

    At a fixed frequency ω,the matrix A will only change with freestream velocity.Different eigenvalue λ can be obtained in various velocity.When the real part of eigenvalue λReis equal to 1.0,the imaginary part of eigenvalue λImis the damping coefficient at a certain velocity.Thus we can get the relationship between damping coefficients and frequencies(or velocities).When damping coefficient is equal to 0,the frequency and velocity is flutter frequency and velocity respectively.

    The procedure of frequency domain flutter analysis is as follows:

    1)Calculate aerodynamic forces when the system are undergoing harmonic motionsat different frequencies;

    2)Obtain aerodynamic transfer function matrix;

    3)Construct generalized complex eigenvalue problem by aerodynamic transfer function matrix and structural dynamic equation;

    4)Get the freestream velocity which makes the real part of eigenvalue λRe=1;

    5)Obtain the relationship between damping coefficients and frequencies/velocities;

    6)Acquire the flutter velocity and frequency.

    4 Flutter analysis of Isogai wing

    The Isogai Case A wing[18-19]is a standard configuration of flutter analysis.The structural parameters of this case are:xα=1.8,r2α=3.48,a=-2.0,ωh=ωα=100 rad/s,μ=60.The inviscid flutter velocity boundary shows a“S”shape in transonic Mach number,while the viscous flutter velocity boundary does not.

    4.1 Aerodynamic describing function matrix

    The aerodynamic describing function matrix is calculated byharmonic balance method to improve efficiency.Take h-/b=0.001 and ω=0.10 as an example.Tables 3 and 4 are the lift describing functionsand pitch moment describing functionsat two Mach number (Ma=0.60 and Ma=0.87)respectively.

    Table 3 Aerodynam ic describing functions at Ma=0.60表3 Ma=0.60時(shí)的氣動(dòng)描述函數(shù)

    Table 4 Aerodynam ic describing functions at Ma=0.87表4 Ma=0.87時(shí)的氣動(dòng)描述函數(shù)

    It is illustrated that first-order harmonic is enough for subsonic case and more harmonics are necessary for transonic case to ensure the precision of aerodynamic describing functions.

    4.2 Flutter boundary

    Fig.4 Com parison of inviscid flutter boundaries between time-marching and frequency domain methods圖4時(shí)間推進(jìn)方法和頻域法得到的無(wú)粘顫振邊界對(duì)比

    Fig.5 Comparison of viscous flutter boundaries between time-marching and frequency domain methods圖5時(shí)間推進(jìn)方法和頻域法得到的粘性顫振邊界對(duì)比

    Fig.6 Inviscid damping coefficient versus speed index at Ma=0.88圖6 Ma=0.88時(shí)無(wú)粘阻尼系數(shù)隨來(lái)流速度的變化趨勢(shì)

    The inviscid and viscous flutter boundaries are shown in Figs.4 and 5.It is demonstrated that the difference between time-marching and frequency domain methods is insignificant,even in trmansonic range. The inviscid damping coefficient at Ma=0.88 is exhibited in Fig.6,from which we can obtain the reason of“S”shape flutter boundary.The damping coefficient of plunge mode exceeds zero at a low flow velocity.But as the velocity increases,the damping coefficient returns back and falls below zero at a moderate velocity.Then the damping coefficient of pitch mode exceeds zero at a high velocity.

    4.3 Influence of structural parameters

    If the structural parameters undergo some change,flutter boundary can be easily obtained by generalized eigenvalue analysis in frequency domain method,other than time-marching method,which must carry on numerous CFD/CSD simulations.Therefore,the influences of mass ratio and frequency ratio on viscous flutter boundary are investigated below,based on the frequency domain method.

    The influences of mass ratio μ and frequency ratio ωh/ωαare shown in Fig.7 and 8 respectively.It is illustrated that higher mass ratio is preferable in subsonic region,while lower mass ratio is better in transonic region of Isogai A case.The frequency ratio also has a great impact on flutter boundary.When the frequency ratio is close to 1.0,the flutter velocity decreases significantly.

    Fig.7 Influence of mass ratio on flutter velocity圖7質(zhì)量比對(duì)顫振速度的影響

    Fig.8 Influence of frequency ratio on flutter velocity圖8頻率比對(duì)顫振速度的影響

    5 Conclusion

    1)Comparing with time-marching method,harmonic balance method is an efficient approach of periodic unsteady flow;

    2)A frequency domain flutter analysis method based on harmonic balance is proposed,which shows high efficiency and precision;

    3)When the structural parameters undergo some change,new flutter boundary can be obtained quickly by generalized eigenvalue analysis in the proposed frequency domain method,other than time-marching method,which must carry on a series of CFD/CSD coupled simulations.

    [1]Schuster D M,Liu D D,Huttsell L J.Computational aeroelastic: success,progress,challenge[J].Journal of Aircraft,2003,40 (5):843-856.

    [2]Zhang Weiwei,Ye Zhengyin.Effect of control surface on airfoil flutter in transonic flow[J].Acta Astronautica,2010,66:999-1007.

    [3]Silva W A.Simultaneous excitation of multiple-input multipleoutput CFD-based unsteady aerodynamic systems[C]//48th AIAA/ ASME/AS-CE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Honolulu,Hawaii.AIAA 2007-1988.

    [4]Raveh D E.Reduced-order models for nonlinear unsteady aerodynamics[J].AIAA Journal,2001,39(8):1417-1429.

    [5]Zhang Weiwei,Wang Bobin,Ye Zhengyin,et al.Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reducedorder models[J].AIAA Journal,2012,50(5):1019-1028.

    [6]Ueda T,Dowell E H.Flutter analysis using nonlinear aerodynamic forces[C]//Proceedings of the 23rd AIAA/ASME/ASCE/AHS Structures,Structural,Dynamics,and Materials Conference,New Orleans,LA.AIAA 82-0728-CP.

    [7]He S,Yang Z,Gu Y.Transonic limit cycle oscillation analysis using aerodynamic describing functions and superposition principle[J].AIAA Journal,2014,52(7):1393-1403.

    [8]Woodgate M A,Badcock K J.Implicit harmonic balance solver for transonic flow with forced motions[J].AIAA Journal,2009,47 (4):893-901.

    [9]Im D,Kwon J,Park S.Periodic unsteady flow analysis using a diagonally implicit harmonic balance method[J].AIAA Journal,2012,50(3):741-745.

    [10]Blanc F,Roux F X,Jouhaud J C.Harmonic-balance-based codecoupling algorithm for aeroelastic systems subjected to forced excitation[J].AIAA Journal,2010,48(11):2472-2481.

    [11]Hall K C,Thomas J P,Clark W S.Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J].AIAA Journal,2002,40(5):879-886.

    [12]Weiss J M,Subramanian V,Hall K C.Simulation of unsteady turbomachinery flows using an implicitly coupled nonlinear harmonic balance method[C]//Proceedings of ASME Turbo Expo 2011.Vancouver,British Columbia.GT 2011-46367.

    [13]Ekici K,Hall K C,Dowell E H.Computationally fast harmonic balance methods for unsteady aerodynamic predictions of helicopter rotors[C]//46th AIAA Aerospace Sciences Meeting and Exhibit.Reno,Nevada.AIAA 2008-1439.

    [14]Xu Jianhua,Song Wenping,Wang Long.Application of harmonic balance method in forward flight simulation for helicopter rotors[J].Acta Aerodynamica Sinica,2013,31(5):546-553.(In Chinese)許建華,宋文萍,王龍.諧波平衡法在旋翼前飛繞流數(shù)值模擬中的應(yīng)用研究[J].空氣動(dòng)力學(xué)學(xué)報(bào),2013,31(5):546-553.

    [15]Ronch A D,McCracken A J,Badcock K J.Linear frequency domain and harmonic balance predictions of dynamic derivatives[J].Journal of Aircraft,2013,50(3):694-707.

    [16]Liu L,Thomas J P,Dowell E H,et al.A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator[J].Journal of Computational Physics,2006,215:298-320.

    [17]Davis S S.NACA64A010(NASA AMES model)oscillatory pitching[R].AGARD Report No.702.

    [18]Isogai K.On the transonic-dip mechanism of flutter of a sweptback wing[J].AIAA Journal,1979,17(7):793-795.

    [19]Alonso J J,Jameson A.Fully-implicit time-marching aeroelastic solutions[C]//32nd Aerospace Sciences Meeting&Exhibit.Reno,NV.AIAA-94-0056.

    V211.3

    A

    0258-1825(2016)05-0631-07

    基于諧波平衡法和V-g法的高效顫振預(yù)測(cè)分析

    劉南1,白俊強(qiáng)1,*,劉艷1,華俊2
    (1.西北工業(yè)大學(xué)航空學(xué)院,陜西西安710072;2.中國(guó)航空研究院,北京100012)

    提出了一種高效的顫振預(yù)測(cè)分析方法,將之應(yīng)用于跨聲速顫振邊界分析及結(jié)構(gòu)參數(shù)影響研究中。本方法基于頻域顫振分析V-g方法,為氣彈系統(tǒng)提供一定的人工阻尼使之保持簡(jiǎn)諧運(yùn)動(dòng)狀態(tài),從而將結(jié)構(gòu)動(dòng)力學(xué)方程轉(zhuǎn)換到頻域內(nèi)。然后通過(guò)高效的諧波平衡法得到一系列簡(jiǎn)諧運(yùn)動(dòng)頻率下的氣動(dòng)力描述函數(shù)矩陣,結(jié)合頻域結(jié)構(gòu)方程,將氣彈系統(tǒng)的穩(wěn)定性問(wèn)題轉(zhuǎn)化為廣義特征值求解。結(jié)果表明:本方法計(jì)算得到的顫振邊界與高精度的時(shí)間推進(jìn)方法非常吻合,分析效率有了明顯的提升,而且當(dāng)結(jié)構(gòu)參數(shù)發(fā)生變化后,只需進(jìn)行若干次廣義特征值求解即可得到新的顫振邊界,無(wú)需像時(shí)間推進(jìn)方法一樣開(kāi)展大量的氣動(dòng)/結(jié)構(gòu)耦合數(shù)值模擬。

    顫振;頻域;諧波平衡;氣動(dòng)力描述函數(shù);時(shí)間推進(jìn)方法

    2015-09-13;

    2015-11-10

    劉南(1989-),男,碩士,主要研究方向:飛行器氣動(dòng)設(shè)計(jì),氣動(dòng)彈性.E-mail:revolution890926@163.com

    白俊強(qiáng)*(1971-),教授,博士生導(dǎo)師.E-mail:junqiang@nwpu.edu.cn

    劉南,白俊強(qiáng),劉艷,等.基于諧波平衡法和V-g法的高效顫振預(yù)測(cè)分析(英文)[J].空氣動(dòng)力學(xué)學(xué)報(bào),2016,34(5):631-637.

    10.7638/kqdlxxb-2015.0178 Liu N,Bai J Q,Liu Y,et al.Efficient flutter prediction based on Harmonic Balance and V-g methods[J].Acta Aerodynamica Sinica,2016,31(5):631-637.

    10.7638/kqdlxxb-2015.0178

    猜你喜歡
    方法
    中醫(yī)特有的急救方法
    中老年保健(2021年9期)2021-08-24 03:52:04
    高中數(shù)學(xué)教學(xué)改革的方法
    化學(xué)反應(yīng)多變幻 “虛擬”方法幫大忙
    變快的方法
    兒童繪本(2020年5期)2020-04-07 17:46:30
    學(xué)習(xí)方法
    可能是方法不對(duì)
    用對(duì)方法才能瘦
    Coco薇(2016年2期)2016-03-22 02:42:52
    最有效的簡(jiǎn)單方法
    山東青年(2016年1期)2016-02-28 14:25:23
    四大方法 教你不再“坐以待病”!
    Coco薇(2015年1期)2015-08-13 02:47:34
    賺錢(qián)方法
    免费观看a级毛片全部| 熟女少妇亚洲综合色aaa.| 观看av在线不卡| 2022亚洲国产成人精品| 老汉色av国产亚洲站长工具| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久久久久久免| 一级毛片我不卡| 国产激情久久老熟女| 亚洲国产av影院在线观看| 亚洲精品自拍成人| 欧美日韩一区二区视频在线观看视频在线| 黄片小视频在线播放| 青春草视频在线免费观看| 91精品国产国语对白视频| 青春草视频在线免费观看| 欧美人与性动交α欧美软件| 国产精品女同一区二区软件| 2018国产大陆天天弄谢| av免费在线看不卡| av免费观看日本| 97在线视频观看| 高清黄色对白视频在线免费看| 伦理电影大哥的女人| 在线天堂中文资源库| 中文字幕人妻丝袜一区二区 | 亚洲成人手机| 久久青草综合色| 热re99久久国产66热| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区久久| 一级毛片我不卡| 好男人视频免费观看在线| 卡戴珊不雅视频在线播放| 亚洲精品国产一区二区精华液| 久久99蜜桃精品久久| 久久精品人人爽人人爽视色| 国产毛片在线视频| 国产欧美亚洲国产| 秋霞伦理黄片| 美女中出高潮动态图| 热99久久久久精品小说推荐| 亚洲在久久综合| 欧美激情极品国产一区二区三区| 九草在线视频观看| 国产成人一区二区在线| 成人亚洲欧美一区二区av| av.在线天堂| 寂寞人妻少妇视频99o| 女性生殖器流出的白浆| 久久久久久久久久久免费av| 国产成人精品在线电影| 午夜福利在线观看免费完整高清在| 精品福利永久在线观看| 青草久久国产| 久久这里只有精品19| 日日撸夜夜添| 大片电影免费在线观看免费| 亚洲内射少妇av| 亚洲精品乱久久久久久| 亚洲av男天堂| 亚洲欧洲日产国产| 又粗又硬又长又爽又黄的视频| 午夜激情久久久久久久| 少妇的丰满在线观看| 国产精品秋霞免费鲁丝片| 日韩精品有码人妻一区| 少妇人妻久久综合中文| 国产成人精品婷婷| av一本久久久久| 青青草视频在线视频观看| 天美传媒精品一区二区| 啦啦啦中文免费视频观看日本| 在线观看免费高清a一片| 男男h啪啪无遮挡| 午夜91福利影院| 日韩免费高清中文字幕av| 亚洲国产最新在线播放| 日日爽夜夜爽网站| 精品卡一卡二卡四卡免费| 老司机亚洲免费影院| 国产亚洲一区二区精品| 熟妇人妻不卡中文字幕| 国产亚洲精品第一综合不卡| 欧美97在线视频| 黄片小视频在线播放| 国产成人精品福利久久| 国产av码专区亚洲av| 日韩人妻精品一区2区三区| 这个男人来自地球电影免费观看 | 久久99一区二区三区| 国产精品成人在线| 成人黄色视频免费在线看| 亚洲国产av新网站| 啦啦啦在线观看免费高清www| 久久久精品94久久精品| 久久久久人妻精品一区果冻| 国产1区2区3区精品| 国产老妇伦熟女老妇高清| 侵犯人妻中文字幕一二三四区| 国产一级毛片在线| 韩国精品一区二区三区| 久久精品国产a三级三级三级| 丝袜喷水一区| 欧美变态另类bdsm刘玥| 免费在线观看完整版高清| 国产精品不卡视频一区二区| 亚洲欧美成人精品一区二区| 国产成人精品福利久久| 99国产综合亚洲精品| 黑丝袜美女国产一区| 欧美黄色片欧美黄色片| 国产精品二区激情视频| 亚洲成人av在线免费| 18在线观看网站| 美女主播在线视频| 亚洲av.av天堂| 国产高清国产精品国产三级| 嫩草影院入口| 在线 av 中文字幕| 91精品三级在线观看| 欧美黄色片欧美黄色片| 亚洲成色77777| 男女边摸边吃奶| 69精品国产乱码久久久| 精品久久久久久电影网| 亚洲内射少妇av| 在线观看美女被高潮喷水网站| 人妻人人澡人人爽人人| 久久久久国产精品人妻一区二区| 亚洲国产欧美日韩在线播放| 国产爽快片一区二区三区| 男女无遮挡免费网站观看| 久久久久精品人妻al黑| 亚洲欧美精品自产自拍| 欧美日韩成人在线一区二区| 性少妇av在线| 一级片'在线观看视频| 久久97久久精品| 亚洲欧美中文字幕日韩二区| 国产欧美日韩一区二区三区在线| 日韩电影二区| 九草在线视频观看| 电影成人av| 99香蕉大伊视频| 国产成人91sexporn| 国产片内射在线| 色播在线永久视频| 国产乱来视频区| 精品人妻一区二区三区麻豆| 人妻 亚洲 视频| 最近中文字幕2019免费版| 欧美日韩成人在线一区二区| av又黄又爽大尺度在线免费看| 日韩av免费高清视频| 9色porny在线观看| 曰老女人黄片| 晚上一个人看的免费电影| 在线观看一区二区三区激情| kizo精华| 欧美最新免费一区二区三区| a级毛片在线看网站| 亚洲国产av新网站| 久久ye,这里只有精品| 午夜91福利影院| 国产精品国产三级国产专区5o| 国产又爽黄色视频| 女性生殖器流出的白浆| 国产极品天堂在线| 性少妇av在线| 高清不卡的av网站| 国产成人aa在线观看| 久久精品国产亚洲av天美| 考比视频在线观看| 大香蕉久久网| 久久免费观看电影| av免费在线看不卡| 我的亚洲天堂| 最近的中文字幕免费完整| av在线app专区| 国产成人一区二区在线| 国产精品av久久久久免费| 在线天堂最新版资源| 波多野结衣av一区二区av| 成人毛片a级毛片在线播放| 中文精品一卡2卡3卡4更新| 少妇人妻精品综合一区二区| 国产探花极品一区二区| kizo精华| 免费大片黄手机在线观看| 国产毛片在线视频| 欧美日韩综合久久久久久| 成人手机av| 欧美另类一区| 超碰成人久久| 伊人久久大香线蕉亚洲五| 欧美激情 高清一区二区三区| 人人妻人人澡人人爽人人夜夜| 成人亚洲欧美一区二区av| 1024视频免费在线观看| 爱豆传媒免费全集在线观看| 午夜福利视频精品| 亚洲精品在线美女| 精品一区二区三卡| av有码第一页| 青草久久国产| 精品久久蜜臀av无| 天堂8中文在线网| 丝袜脚勾引网站| 亚洲伊人色综图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日本中文国产一区发布| 视频在线观看一区二区三区| 在线观看三级黄色| 国产免费视频播放在线视频| 日韩中文字幕欧美一区二区 | 1024视频免费在线观看| 在线观看免费日韩欧美大片| 一边亲一边摸免费视频| 亚洲精品av麻豆狂野| 妹子高潮喷水视频| 久久精品aⅴ一区二区三区四区 | 婷婷色综合大香蕉| 日本猛色少妇xxxxx猛交久久| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久精品古装| 考比视频在线观看| 中国三级夫妇交换| 男男h啪啪无遮挡| 欧美成人精品欧美一级黄| 两个人免费观看高清视频| 寂寞人妻少妇视频99o| 欧美日韩视频精品一区| 伦理电影免费视频| 9热在线视频观看99| 亚洲第一av免费看| 午夜福利在线免费观看网站| 欧美人与性动交α欧美精品济南到 | 国产精品 国内视频| 国产97色在线日韩免费| 久久97久久精品| 婷婷成人精品国产| a级片在线免费高清观看视频| 母亲3免费完整高清在线观看 | 国产精品嫩草影院av在线观看| 久久精品国产鲁丝片午夜精品| 十八禁网站网址无遮挡| 国产一区二区三区av在线| 国产亚洲最大av| 精品少妇一区二区三区视频日本电影 | 亚洲精品aⅴ在线观看| 最近最新中文字幕免费大全7| 久久 成人 亚洲| 婷婷成人精品国产| 亚洲男人天堂网一区| 国产精品成人在线| 国产亚洲欧美精品永久| 丰满少妇做爰视频| 亚洲精品一区蜜桃| 久久久久国产网址| 两性夫妻黄色片| 国产视频首页在线观看| 欧美日韩精品网址| 国产免费又黄又爽又色| 久久久久久久久久人人人人人人| 国产麻豆69| 热re99久久国产66热| 女的被弄到高潮叫床怎么办| 尾随美女入室| 久久99蜜桃精品久久| 亚洲av电影在线观看一区二区三区| 韩国av在线不卡| 另类亚洲欧美激情| 久久免费观看电影| 欧美国产精品一级二级三级| 亚洲精品日本国产第一区| 午夜福利乱码中文字幕| 亚洲国产精品一区二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区四区激情视频| 老汉色∧v一级毛片| www.av在线官网国产| 黄片无遮挡物在线观看| 黄片播放在线免费| 久热久热在线精品观看| 黄色一级大片看看| 波多野结衣一区麻豆| 国产视频首页在线观看| 97精品久久久久久久久久精品| 久久久欧美国产精品| 欧美精品一区二区大全| 欧美日韩亚洲国产一区二区在线观看 | 男女下面插进去视频免费观看| 可以免费在线观看a视频的电影网站 | 久久久久精品久久久久真实原创| 一二三四中文在线观看免费高清| 久久久久久人人人人人| 深夜精品福利| 欧美日韩精品成人综合77777| 校园人妻丝袜中文字幕| 国产精品久久久久久久久免| 色94色欧美一区二区| 亚洲国产av影院在线观看| 亚洲精品国产av成人精品| 久久久久久久亚洲中文字幕| 满18在线观看网站| 色哟哟·www| 麻豆乱淫一区二区| 宅男免费午夜| av免费观看日本| 精品卡一卡二卡四卡免费| tube8黄色片| 叶爱在线成人免费视频播放| 亚洲综合色惰| 日本欧美国产在线视频| 美女午夜性视频免费| 肉色欧美久久久久久久蜜桃| 亚洲综合色惰| 国产精品久久久久成人av| 日韩电影二区| 亚洲av国产av综合av卡| 国产日韩一区二区三区精品不卡| 一边摸一边做爽爽视频免费| 人人妻人人爽人人添夜夜欢视频| 制服诱惑二区| 国产精品久久久久久av不卡| 一个人免费看片子| 一级片免费观看大全| 两个人看的免费小视频| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 久久久欧美国产精品| 一级片免费观看大全| 国产精品一区二区在线不卡| 黄网站色视频无遮挡免费观看| 亚洲在久久综合| 日本wwww免费看| 下体分泌物呈黄色| 久久av网站| 欧美bdsm另类| 亚洲四区av| 久久这里有精品视频免费| 久久99精品国语久久久| 9色porny在线观看| 丁香六月天网| 视频在线观看一区二区三区| 亚洲国产精品一区二区三区在线| 日韩精品有码人妻一区| 久久 成人 亚洲| 久久精品国产鲁丝片午夜精品| 男女免费视频国产| 伦理电影免费视频| 久热久热在线精品观看| 伦理电影大哥的女人| 成年女人毛片免费观看观看9 | 黄色毛片三级朝国网站| 在线亚洲精品国产二区图片欧美| 国产有黄有色有爽视频| 激情五月婷婷亚洲| 熟妇人妻不卡中文字幕| 寂寞人妻少妇视频99o| 亚洲情色 制服丝袜| 天天躁夜夜躁狠狠躁躁| 亚洲第一区二区三区不卡| 免费av中文字幕在线| 久久久久久久大尺度免费视频| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 天天躁夜夜躁狠狠躁躁| 高清黄色对白视频在线免费看| 亚洲国产精品一区三区| 丝瓜视频免费看黄片| 日韩av在线免费看完整版不卡| 国产精品女同一区二区软件| 男女午夜视频在线观看| 人成视频在线观看免费观看| 亚洲国产精品一区三区| 亚洲精品一区蜜桃| 日韩av不卡免费在线播放| 久久97久久精品| 日韩视频在线欧美| 日本色播在线视频| 2021少妇久久久久久久久久久| 另类亚洲欧美激情| 精品国产一区二区久久| av女优亚洲男人天堂| 国产在线免费精品| 国产精品人妻久久久影院| 热re99久久精品国产66热6| 久久女婷五月综合色啪小说| √禁漫天堂资源中文www| 国产欧美日韩一区二区三区在线| 日本-黄色视频高清免费观看| 亚洲av电影在线观看一区二区三区| 日韩制服丝袜自拍偷拍| 精品人妻偷拍中文字幕| 亚洲,一卡二卡三卡| 欧美精品高潮呻吟av久久| 国产精品成人在线| 日本欧美国产在线视频| 亚洲精品美女久久久久99蜜臀 | 日本91视频免费播放| 日产精品乱码卡一卡2卡三| 热re99久久国产66热| 国产不卡av网站在线观看| 色婷婷av一区二区三区视频| 97人妻天天添夜夜摸| 亚洲国产日韩一区二区| 欧美中文综合在线视频| 熟妇人妻不卡中文字幕| 日韩人妻精品一区2区三区| av卡一久久| 老女人水多毛片| 国产熟女午夜一区二区三区| 亚洲欧美清纯卡通| 日韩在线高清观看一区二区三区| 精品一区二区三区四区五区乱码 | 成人亚洲精品一区在线观看| 中文精品一卡2卡3卡4更新| 女的被弄到高潮叫床怎么办| 美女大奶头黄色视频| 亚洲色图综合在线观看| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 水蜜桃什么品种好| 99精国产麻豆久久婷婷| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 国产黄频视频在线观看| 欧美人与性动交α欧美软件| 十八禁网站网址无遮挡| 国产精品免费大片| 精品99又大又爽又粗少妇毛片| 欧美亚洲 丝袜 人妻 在线| 夜夜骑夜夜射夜夜干| 国产成人一区二区在线| 国产精品三级大全| 日日啪夜夜爽| 哪个播放器可以免费观看大片| 最近的中文字幕免费完整| 精品国产露脸久久av麻豆| 免费观看性生交大片5| 久久毛片免费看一区二区三区| 亚洲成国产人片在线观看| 久久久久久久大尺度免费视频| 美女大奶头黄色视频| 一区二区三区乱码不卡18| 看免费成人av毛片| av一本久久久久| 老女人水多毛片| 在线观看免费日韩欧美大片| 国产老妇伦熟女老妇高清| 成人免费观看视频高清| 久久热在线av| 两个人免费观看高清视频| 女人精品久久久久毛片| 黄色 视频免费看| 亚洲精品视频女| 久久国内精品自在自线图片| 日韩伦理黄色片| 精品卡一卡二卡四卡免费| 欧美黄色片欧美黄色片| 欧美中文综合在线视频| 美女午夜性视频免费| 又大又黄又爽视频免费| 久久久久久免费高清国产稀缺| 一级片免费观看大全| 国产精品嫩草影院av在线观看| 亚洲人成77777在线视频| 天美传媒精品一区二区| 秋霞伦理黄片| 少妇的丰满在线观看| 自线自在国产av| 亚洲天堂av无毛| 日韩一区二区三区影片| 男的添女的下面高潮视频| av不卡在线播放| 久久国产精品大桥未久av| 久久97久久精品| 欧美激情 高清一区二区三区| 欧美国产精品一级二级三级| tube8黄色片| 国产成人91sexporn| 最近的中文字幕免费完整| 欧美xxⅹ黑人| 大片免费播放器 马上看| 捣出白浆h1v1| 搡老乐熟女国产| 男女无遮挡免费网站观看| 免费不卡的大黄色大毛片视频在线观看| 熟妇人妻不卡中文字幕| 国产黄频视频在线观看| 最近2019中文字幕mv第一页| 大陆偷拍与自拍| 一二三四中文在线观看免费高清| 18禁国产床啪视频网站| 夫妻午夜视频| 免费少妇av软件| 少妇人妻久久综合中文| 纯流量卡能插随身wifi吗| 日本色播在线视频| 久久久久国产精品人妻一区二区| 精品国产乱码久久久久久男人| 黄色毛片三级朝国网站| 99re6热这里在线精品视频| 成人漫画全彩无遮挡| 赤兔流量卡办理| 国产激情久久老熟女| 精品一品国产午夜福利视频| 亚洲av男天堂| 女人高潮潮喷娇喘18禁视频| 免费在线观看黄色视频的| 如何舔出高潮| 国产黄频视频在线观看| 少妇 在线观看| 久久久亚洲精品成人影院| av女优亚洲男人天堂| 日本-黄色视频高清免费观看| 色播在线永久视频| 90打野战视频偷拍视频| 免费观看无遮挡的男女| 伦精品一区二区三区| 久久影院123| 亚洲精品一二三| 在线观看国产h片| 国产精品国产av在线观看| av网站在线播放免费| 久久久a久久爽久久v久久| 亚洲国产av新网站| 自线自在国产av| 久久这里只有精品19| 亚洲伊人色综图| 菩萨蛮人人尽说江南好唐韦庄| 久久人人97超碰香蕉20202| 看非洲黑人一级黄片| 亚洲国产欧美日韩在线播放| 国产精品成人在线| 一区二区三区激情视频| 欧美日韩成人在线一区二区| 精品国产超薄肉色丝袜足j| 欧美日韩成人在线一区二区| 久久人人爽人人片av| 中文天堂在线官网| 热99国产精品久久久久久7| 亚洲第一区二区三区不卡| 热99国产精品久久久久久7| 永久网站在线| 老司机影院成人| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 亚洲欧美一区二区三区黑人 | 国产在线视频一区二区| 日日爽夜夜爽网站| 色94色欧美一区二区| 91精品伊人久久大香线蕉| 午夜福利在线免费观看网站| 国语对白做爰xxxⅹ性视频网站| 一级毛片黄色毛片免费观看视频| 99久久精品国产国产毛片| 国产成人精品久久二区二区91 | 欧美另类一区| 欧美变态另类bdsm刘玥| 久久ye,这里只有精品| 宅男免费午夜| 成人漫画全彩无遮挡| 99re6热这里在线精品视频| 日日爽夜夜爽网站| 亚洲av电影在线进入| 亚洲精品国产av成人精品| 寂寞人妻少妇视频99o| 欧美日韩精品网址| 亚洲人成电影观看| 久久精品久久久久久久性| 制服诱惑二区| 欧美成人精品欧美一级黄| 少妇被粗大猛烈的视频| 韩国精品一区二区三区| 成人国语在线视频| 美女中出高潮动态图| www.熟女人妻精品国产| 国产又色又爽无遮挡免| 国产一区二区 视频在线| 国产欧美亚洲国产| 亚洲婷婷狠狠爱综合网| 肉色欧美久久久久久久蜜桃| 免费在线观看视频国产中文字幕亚洲 | 两个人免费观看高清视频| 两个人看的免费小视频| 亚洲中文av在线| 一本久久精品| 亚洲精品aⅴ在线观看| 一级黄片播放器| 欧美日韩精品成人综合77777| 日韩制服丝袜自拍偷拍| 免费不卡的大黄色大毛片视频在线观看| 国产一区有黄有色的免费视频| 97在线视频观看| 国产探花极品一区二区| 精品国产国语对白av| 久久99一区二区三区| 久久人人爽人人片av| 日韩中字成人| 男女午夜视频在线观看| 亚洲综合色网址| 蜜桃在线观看..| 久久97久久精品| 国产熟女欧美一区二区| 最近2019中文字幕mv第一页| 黄片无遮挡物在线观看| 99久久人妻综合| 2018国产大陆天天弄谢| 欧美老熟妇乱子伦牲交| 国产1区2区3区精品|