• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass?

    2021-10-28 07:09:36XingCaiLi李興財(cái)JuanWang王娟andGuoQingSu蘇國慶
    Chinese Physics B 2021年10期
    關(guān)鍵詞:王娟

    Xing-Cai Li(李興財(cái)) Juan Wang(王娟) and Guo-Qing Su(蘇國慶)

    1School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan 750021,China

    2Ningxia Key Laboratory of Intelligent Sensing&Desert Information,Ningxia University,Yinchuan 750021,China

    3Xinhua College of Ningxia University,Yinchuan 750021,China

    Keywords: particle electrification,electrostatic force,photovoltaic glass,dust deposition

    1. Introduction

    Dust particle deposition is an essential factor affecting the efficiency of the photovoltaic (PV) power generation system.[1,2]Studies have shown that a mass density of 0.4 mg/cm2of the dust on the PV panel can reduce the generation efficiency of the panel by about 30%, and even a small amount of deposited dust (0.06 mg/cm2) can lead the generation efficiency to decrease by about 2.5%.[3]According to some researches, the electrical efficiency of not-cleaned PV cells decreases from 16%to 8%over 45 days,but in Baghdad–Iraq, it dropped to less than 6.24% in one day, 11.8% in one week, and 18.74% in one month.[4–6]The influence of deposited dust particles on the power generation performance of PV panel is related to the mass and physical properties of the particles.[7]Long-term accumulation of dust particles will cause the hot spot effect of PV panel, and even damage the panel in severe cases.[8]An effective dust removing technology can wipe out the deposited dust and frequently using it can reduce the loss dramatically. The widespread existence of atmospheric aerosols is beneficial to the cleaning of the PV panel surface.[9]To clarify the deposition mechanism of dust on the PV panel surface may be helpful in designing a more cost-effective dust removing method or PV panel installation process.[9]

    Numerical simulation research has been carried out on the sand & dust deposition on the surface of PV panel based on the fluid dynamics method in recent years. For example,Luet al. studied the flow field and the dust deposition process around the solar panel installed on the ground by adopting a technique coupling computational fluid dynamics(CFD)with the discrete particle model(DPM).[10]Another study discussed the deposition process and behavior of dust on groundmounted solar PV arrays based on the shear stress transportk-turbulence model and the discrete particle model.[11]Chitikaet al. investigated the parametric installation optimization for mitigating the non-tracking solar PV module fouling based on the CFD prediction of dust deposition.[12]Unfortunately, the above-mentioned studies only take the effects of the fluid force and gravity into account. However,the electric phenomenon caused by the contact between different materials has long been concerned.[13–17]The movement of particles in the air is bound to be accompanied by collisions with each other, which will lead to electrification and thus generate an electric field of a certain intensity in the air.[18,19]Few studies on the particle deposition considered the electrification in the atmosphere,except for the research of Cooperet al.,[20]who,however,explored the deposition of charged aerosol particles in the air rather than on the surface of PV panels.

    There are also a lot of studies on the adhesion force between particles and plates. For example,Rimaiet al.[21]studied the mechanism of deformations induced by adhesion between micrometer-sized particles and various substrates, and then discussed the effective application ranges of several adhesion theories.In the analysis of the effect of various fundamental forces on the adhesion of fine dust particles,Walton[22]suggested the dominant role that van der Waals adhesion forces played in small-sized particles. In particular,they gave special regard to the electrostatic image force between a particle and a conductor plane.The study of Moutinhoet al.[23]revealed that the van der Waals forces and capillary forces play the leading role in attaching dust particles to PV modules. Jianget al.[24]used an atomic force microscope to measure the adhesion force between dust particles and PV modules under the action of an electrostatic field,and found that the electrostatic force is five times and one order of magnitude larger than the van der Waals force when applied voltage is 100 V and 100 V to 500 V, respectively. Another paper reported that the electrostatic force is 1 or 2 orders of magnitude stronger than the van der Waals force and the capillary hydraulic force,[25]indicating that the electrostatic force induced by the electric field generated by PV modules cannot be ignored. Obviously,such a kind of electrostatic force differs from that generated in the process of dynamic contact between the deposited particles and the PV glass.

    According to the dynamic contact electrification mechanism, the PV glass will carry a great deal of static charges when contacted with a large number of moving particles,[26]and the resulting electrostatic field will increase the charges,[16,27]thus it also enhances the electrostatic force of moving particles.[28]Under certain conditions, more sand particles will be deposited on the PV panels.[29]However,the contact electrification between deposited dust and PV glass panels is rarely studied, and there is a lack of reports on the influence of such an electrostatic force on the dust deposition process. In view of these situations, in this work, the contact electrification between the deposited sand&dust and the PV panel is studied, and the electrostatic force of the electrified sand particles is analyzed. Furthermore,a new PV glass material is proposed based on the analysis.

    2. Contact electrification model

    The modeling of contact electrification mechanism is a classical problem,and a large number of physical models have been developed up to this time.[16,17,30–36]This paper adopts the physical model given by Xieet al.,[35]which can well describe the influence of the particle size ratio on its net charge.The basic equation of the model is

    whereρis the surface charge density andPDis the probability of ion exchange,which is set to be 0.5.[35]The contact areaAi(i=1,2)of two colliding particles can be calculated from[35]

    wherem1andm2are the masses of the two colliding particles, whose radii areR1andr1respectively,Eiandviare respectively the elastic modulus and Poisson’s ratio of the two particles,andvris the impact velocity.

    The particle electrification mechanism model under the impact of an electrostatic field can be expressed as[38]

    whereEis the environmental electric field,riis the radius of thei-th particle,θis the angle between the line of the particle center and the electric filed,QiandQjare the initial charge of thei-th andj-th particles,respectively,ωis the ratio between the charge of one particle transferred to other particles and this particle’s original charge,andγ1is the radius ratio of the two colliding particles.

    Therefore, the charge of the particle after collision in an electric field is given as

    In this paper,the collision occurs between the particle and the PV plate,so we assume that the radius of the massive particle is 1000 times larger than that of the smaller particle,similar to the treatment adopted in Ref.[19].

    3. Electrostatic force acting on charged deposition particles

    As shown in Figs.1 and 2,assuming the length of the PV panel to be 2aand the width to be 2b, a rectangular coordinate system is established by taking the center of the panel as the origin. The number concentration of particles in the atmosphere is represented byN, and the charge of particles is expressed by the charge–mass ratioqm. The coordinate of the center of the element is assumed to be (x,y,z) and the electric field intensity generated by it must have componentsEx,Ey, andEz. Owing to symmetry, there must be no horizontal electric field component and only a vertical component exists in the center of the plate. The three-dimensional(3D)electric field distribution can be found at other positions.

    Fig.1. Scheme of electric field generated by airborne particles.

    Fig.2. Scheme of electric field generated by plate.

    Assuming the diameter of particles suspended in the air to beD,the particle mass density to beρ,the particle number concentration to beN(z),and the particle charge-mass ratio to beqm, the electric field at the position (x1,y1,z1) above the PV panel can be expressed as[39]

    Considering the infinite nature of the space, the electric field generated by the sand particles suspended in the air has only a vertical component. Athough a single particle has a extremely small charge, the electrostatic field generated by the sand particles with a high concentration in the air should not be ignored. This extreme case is not considered in this paper.

    When a large number of falling particles collide with or slide on the PV glass panel,both the particles and the PV panel carry some electrostatic charges, thus generating an electric field around the PV panel.[39–41]Smaller particles are negatively charged while the larger ones are positively charged,[42]so we assume that the charge-mass ratio of the deposition particle is?qm. According to the law of charge conservation,the PV glass plate carries the same number of charges as the number of deposition particles.If we assume the mass concentration of deposited particles in the atmosphere under specified conditions to bemq,the falling velocity to bev,and the horizontal projection area of the PV panel to beA, there is aboutmqvAtparticles colliding with the PV glass panel at timet.The relative movement between deposition particles and the PV panel charges the PV glass plate, whose surface charge density should be

    When the distance between particles and the plate is a minimum value,the plate can be regarded as infinite,and then the electric field can be solvedE=σ/(2ε0).

    Then,the electrostatic force applied to the charged particles can be calculated from

    In order to highlight the effect of electrostatic force from the contact electrification process between the dust particles and the PV glass plate on the deposition and removal process of the particles, we compare the forces on the particles deposited on the tilted photovoltaic panels.

    4. Results and analysis

    Firstly,we measure the charge of polydisperse deposition particles when they fall from different heights and collide with tilted PV panels. We describe the particle charge by using the ratio of the charge to the mass of particle (i.e.charge–mass ratio)in this paper since it is widely used in the present research.[44]The schematic diagram of the experiment device and the particle size distribution function are shown in Fig.3.The dust particles used in the experiment are collected from the southeastern edge of the Tengger desert. When the particles fall free from a certain height, they will collide with and slide over the photovoltaic glass panel. Some of the particles remain on the glass panel, the other slides down the inclined plane and falls into the Faraday cup, from which we can obtain the total chargeQon the particles. Then we weigh the particles in the Faraday cup and record their massmsand. Now we can obtain the charge–mass ratioqm=Q/msand. In the experiment,the EST111 Static Charge Meter is used to measure the charge of the particles,the BSA224S electronic analytical balance is used to measure the mass of particles.

    Fig. 3. (a) Schematic diagram of experimental construction and (b) size distribution of experimental particles.

    Fig. 4. Particle charge–mass ratios varying with impact velocity on an inclined PV glass panel at tilt angle(a)30° and(b)60° for different L values.

    Figure 5 shows the variations of the charge–mass ratio of deposited dust particle with the sliding distance of particle on the PV glass plate. It is obvious that with the increase of the sliding distance and the drop height,the charge–mass ratio of particle increases nonlinearly. Besides,by comparing the four figures in Fig.5, it is easy to find that as the plate inclination angle increases,the charge–mass ratio of particle increases to different degrees. For this reason,the influence of the plate tilt angle on the particle charge–mass ratio is discussed in Fig.6,where the experiments on selected particles are conducted at a free-falling height of 30 cm and 70 cm,respectively. According to the figure,the charge–mass ratio of particle increases as the plate inclination angle enlarges, and a larger drop height results in a higher particle charge. As is well known,the particle’s charge increases more easily when it slides with a plate.The different experimental conditions make the motion states of particles and the contact mode between the particles and the glass plate changed. For example, when the plate inclination angle is small,the particles mainly roll,and with the increase of the angle, the sliding process of the particles is dominant,so the charge on particles increases.

    Fig.5. Particle charge–mass ratios versus sliding distance on an inclined PV glass panel at tilt angle(a)30° and(b)60° for different h values.

    Fig.6. Charge–mass ratios versus tilt angle on particle charge for different heights.

    At the same time, we also measure the distribution of electrostatic field on the photovoltaic glass plate in the abovementioned experiment process. The result is shown in Fig.7.From it we can find that the electrostatic field shows a bellshaped distribution. This is determined by the cooperation of the electric field forces around the location.

    In the above study, we involve with the charged rules of deposition particles after colliding with photovoltaic glass through some experimental measurements. Next, we will investigate the distribution law of electrostatic force received by particles through numerical simulation. These researches will be based on Eq. (11). The results are shown in Fig. 8.Here, we will set the particle distance to bez1=10 cm, the charge–mass ratio to be 2 nC/g, and the particle radius to be 35μm. The results show that the electrostatic forces are distributed in a bell shape,reaching a maximum value in the center of the plate and a minimum value around the edge of the plate. This law is consistent with the electric field distribution of PV glass plate obtained from the above-mentioned experiment. Although the electric quantity on the particle is small,the electrostatic force is still slightly higher than the gravity(4.66 nN),so it will change the deposition process of particles on the surface of photovoltaic panels. Therefore, it is necessary to consider the contact electrification process between deposited particles and the photovoltaic panels,especially the derived electrostatic force in the simulation of the dust deposition on the photovoltaic panels.

    Fig.7. The E-field profile on charged PV plate.

    Fig.8. Electrostatic force acting on charged particles.

    As indicated in Fig.9,the rule of electrostatic force varies with the distance between charged particles and the PV glass plate is discussed. All the parameters are equal to those in Fig. 8, except for the distancez1between particles and the PV plate. We can see that the electrostatic forces fluctuate violently, which can be explained by the mutual attraction between two charged particles with the same charge and the tablet with the opposite charge, as reported in Ref. [7]. It should be pointed out that the numerical results also show that the electric field at the central position diverges with the decrease of the distance between the particles and the plate surface.

    In order to analyze the magnitude relation among the electrostatic forces applied to particles of different sizes, we calculate the electrostatic force acting on particles with sizes of 15 μm, 25 μm, and 35 μm, located atz1=0.1 μm, and compare the results with those of particles each with a size of 5 μm. The simulation results shown in Fig. 10 indicate that the electrostatic force of particles increases significantly with the particle size increasing,which is attributed to the increasing of charge–mass ratio during the collision between particles and the plate surface. Besides, it can be seen from the figure that with the increase of the particle size,the electrostatic force applied to the particles does not always increase,but decreases tremendously in some regions.

    Fig.9. Distribution of electrostatic forces acting on charged particles at different places above PV panel.

    Fig.10. Electrostatic force ratios versus plate width and plate length of particles on flat surface.

    Finally, we calculate the electrostatic force acting on the particle located atz1=1 nm and with a radius of 20μm and a charge of 2.464×10?16C from Eq.(11),and compare it with the results achieved by other studies. The results shown in Fig.11 reveal that the electrostatic force ranges from 10?4μN(yùn) to 103μN(yùn), with an average value of 7 μN(yùn). This is basically consistent with the results of other literature. The electrostatic force is much higher than the gravity (0.87 nN) and the van der Waals force (1.8 nN),[25]indicating that the electrostatic force will promote more moving particles to deposit on the PV panel,thus resulting in a non-uniform distribution of dust particles deposited on the PV panel.

    Fig.11. Distribution of electrostatic force versus width and length under the same parameters as in other studies.

    5. Conclusions

    We report the electrification phenomenon between deposition particles and PV panels, and analyze the charge–mass ratios of polydisperse dust particles that fall from different heights and collide with tilted PV glass panels. In addition,the corresponding physical model is established to discuss the electrostatic force of dust on the surface of electrified PV panels. The results show that the dust particles colliding with the PV glass plate will carry a large number of static charges,and the number of charges increases to different degrees with the increasing of the impact velocity and the inclination angle of the PV panel. Besides, a larger particle size and a higher impact velocity can significantly increase the electrostatic force exerted on particles,which is even higher than the gravity and the van der Waals force. In addition,the electrostatic force is relatively large in the plate center,and distributed in an oscillatory manner at different positions. On the whole, the electrostatic force caused by the collision of PV glass plates and deposited particles may enhance the deposition of moving particles on the surface of the PV panel and show a non-uniform distribution, which possibly has more complex implications for PV cells.[45,46]Therefore, an anti-static transparent material should be considered for the PV panel that serves in the severe wind-sand environment,for example,the solar powered devices of the Mars explorer. The results of this paper facilitate the understanding of the deposition mechanism of dust particles on the PV panels in dusty weather,and provide some theoretical support for the removing of dust particles deposited on the PV panel in the desert environment.

    猜你喜歡
    王娟
    Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
    巧用“倍數(shù)的和”
    晚期腫瘤患者的姑息照護(hù)和臨床關(guān)懷
    The formation of adolescent performing culture in the chorus
    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*
    貧血鑒別診斷中血液檢驗(yàn)的效果及作用分析
    健康之家(2021年19期)2021-05-23 09:10:44
    哪里哪里?
    A Literature Review of Critical Discourse Analysis
    家族最大的失敗 是教育子女的失敗 智新超越王娟:一個(gè)高級女經(jīng)濟(jì)師的“百萬賭局”
    狂飆美少女
    夜夜骑夜夜射夜夜干| 欧美精品高潮呻吟av久久| 免费在线观看视频国产中文字幕亚洲| 一级毛片电影观看| 成人黄色视频免费在线看| 97在线人人人人妻| 法律面前人人平等表现在哪些方面| 国产黄频视频在线观看| 亚洲第一青青草原| 欧美 日韩 精品 国产| 丝袜美足系列| 一本色道久久久久久精品综合| 如日韩欧美国产精品一区二区三区| 俄罗斯特黄特色一大片| 国产又爽黄色视频| 亚洲中文字幕日韩| 美国免费a级毛片| 一级毛片电影观看| aaaaa片日本免费| 国产精品成人在线| 免费在线观看完整版高清| 侵犯人妻中文字幕一二三四区| 日日夜夜操网爽| 自拍欧美九色日韩亚洲蝌蚪91| 岛国毛片在线播放| 新久久久久国产一级毛片| 在线观看www视频免费| 天天躁日日躁夜夜躁夜夜| 制服人妻中文乱码| 夜夜夜夜夜久久久久| 国产成人精品无人区| 久久av网站| 建设人人有责人人尽责人人享有的| 中文字幕av电影在线播放| 日韩中文字幕视频在线看片| 国产黄色免费在线视频| 91成年电影在线观看| 精品视频人人做人人爽| 999久久久精品免费观看国产| 久久精品亚洲精品国产色婷小说| 色尼玛亚洲综合影院| 国产欧美日韩一区二区精品| 少妇裸体淫交视频免费看高清 | 啦啦啦 在线观看视频| 精品一区二区三区视频在线观看免费 | 丝袜在线中文字幕| 中文字幕av电影在线播放| 久久久久精品国产欧美久久久| 两人在一起打扑克的视频| 国产成人精品在线电影| 午夜视频精品福利| 亚洲中文日韩欧美视频| 50天的宝宝边吃奶边哭怎么回事| 国产男女内射视频| 桃红色精品国产亚洲av| 成人亚洲精品一区在线观看| 国产不卡一卡二| 每晚都被弄得嗷嗷叫到高潮| 成年人午夜在线观看视频| 午夜福利视频精品| 久久久精品94久久精品| 一本—道久久a久久精品蜜桃钙片| 黄色片一级片一级黄色片| 后天国语完整版免费观看| 天堂中文最新版在线下载| 国产免费av片在线观看野外av| 国产深夜福利视频在线观看| 国产精品久久久久成人av| 自拍欧美九色日韩亚洲蝌蚪91| 日本vs欧美在线观看视频| 别揉我奶头~嗯~啊~动态视频| av福利片在线| 这个男人来自地球电影免费观看| 日韩熟女老妇一区二区性免费视频| 1024香蕉在线观看| 日韩欧美一区视频在线观看| 久久久国产欧美日韩av| 大型黄色视频在线免费观看| 亚洲中文字幕日韩| 精品福利观看| 91九色精品人成在线观看| 色尼玛亚洲综合影院| 桃花免费在线播放| 亚洲国产av新网站| 亚洲国产精品一区二区三区在线| 99国产精品免费福利视频| 男女无遮挡免费网站观看| 久久人人97超碰香蕉20202| 天堂俺去俺来也www色官网| 一本大道久久a久久精品| 日日爽夜夜爽网站| 成人18禁在线播放| 国产精品亚洲av一区麻豆| 免费在线观看黄色视频的| 视频区图区小说| 国产色视频综合| 黄频高清免费视频| 久久人妻熟女aⅴ| 亚洲九九香蕉| 成人免费观看视频高清| 午夜福利在线免费观看网站| av视频免费观看在线观看| 免费黄频网站在线观看国产| 久久精品国产a三级三级三级| 国产精品影院久久| 女人高潮潮喷娇喘18禁视频| 国产男靠女视频免费网站| 中文字幕制服av| 激情在线观看视频在线高清 | a级毛片在线看网站| 亚洲av第一区精品v没综合| 免费女性裸体啪啪无遮挡网站| 国产一区有黄有色的免费视频| 欧美+亚洲+日韩+国产| 国产高清视频在线播放一区| 欧美 亚洲 国产 日韩一| 欧美性长视频在线观看| 99国产精品一区二区三区| 夜夜骑夜夜射夜夜干| 高清欧美精品videossex| 99久久99久久久精品蜜桃| 91精品国产国语对白视频| 国产99久久九九免费精品| 啦啦啦视频在线资源免费观看| 最新美女视频免费是黄的| 欧美日韩福利视频一区二区| 99国产精品一区二区蜜桃av | 18禁观看日本| 在线观看66精品国产| 激情在线观看视频在线高清 | 香蕉久久夜色| 久久精品亚洲精品国产色婷小说| 中文字幕精品免费在线观看视频| 亚洲av成人一区二区三| 免费在线观看日本一区| 国产精品久久电影中文字幕 | www.999成人在线观看| 热99久久久久精品小说推荐| 久久亚洲精品不卡| 国产xxxxx性猛交| 一个人免费看片子| 每晚都被弄得嗷嗷叫到高潮| 午夜两性在线视频| 国产日韩欧美视频二区| 成年人午夜在线观看视频| 久久精品亚洲精品国产色婷小说| 亚洲午夜理论影院| 99九九在线精品视频| 色综合婷婷激情| 中文字幕高清在线视频| 精品高清国产在线一区| 日日摸夜夜添夜夜添小说| 91精品国产国语对白视频| 窝窝影院91人妻| 国产成人免费无遮挡视频| 啦啦啦视频在线资源免费观看| 免费在线观看日本一区| 在线播放国产精品三级| 国产精品久久电影中文字幕 | av欧美777| 成年动漫av网址| 女人高潮潮喷娇喘18禁视频| 美女午夜性视频免费| 亚洲精品久久成人aⅴ小说| 亚洲视频免费观看视频| 国产欧美日韩精品亚洲av| 老汉色av国产亚洲站长工具| 深夜精品福利| 精品人妻熟女毛片av久久网站| 国产男靠女视频免费网站| 亚洲精品在线观看二区| 人人妻,人人澡人人爽秒播| 99久久人妻综合| 99久久人妻综合| 久久亚洲精品不卡| 大香蕉久久网| 久久中文看片网| 欧美黄色片欧美黄色片| 热99久久久久精品小说推荐| 国产免费现黄频在线看| 天天添夜夜摸| 丝袜人妻中文字幕| 精品一区二区三区四区五区乱码| 69精品国产乱码久久久| 国产成人一区二区三区免费视频网站| av片东京热男人的天堂| 婷婷丁香在线五月| 久久久精品94久久精品| 亚洲中文日韩欧美视频| 热99国产精品久久久久久7| 在线十欧美十亚洲十日本专区| 无限看片的www在线观看| 久久99热这里只频精品6学生| 亚洲欧美一区二区三区久久| 午夜两性在线视频| 久久国产精品影院| 午夜两性在线视频| 少妇粗大呻吟视频| 人人妻,人人澡人人爽秒播| 久久久国产欧美日韩av| 久久久精品免费免费高清| 另类亚洲欧美激情| a级片在线免费高清观看视频| 最近最新中文字幕大全免费视频| aaaaa片日本免费| 色综合欧美亚洲国产小说| 久久国产精品人妻蜜桃| 国产99久久九九免费精品| 最近最新中文字幕大全电影3 | 搡老熟女国产l中国老女人| 国产成+人综合+亚洲专区| 国产精品久久久久久精品电影小说| 一级a爱视频在线免费观看| 亚洲熟女毛片儿| 黄色 视频免费看| 国产欧美日韩一区二区三区在线| 自线自在国产av| 男女午夜视频在线观看| 美女午夜性视频免费| 亚洲精品一二三| 老汉色av国产亚洲站长工具| 亚洲人成77777在线视频| 亚洲七黄色美女视频| 免费高清在线观看日韩| 久久中文字幕人妻熟女| a级毛片在线看网站| 免费在线观看黄色视频的| 国产国语露脸激情在线看| 老司机午夜福利在线观看视频 | 精品国产乱子伦一区二区三区| 一本久久精品| 亚洲熟女毛片儿| 亚洲国产毛片av蜜桃av| www.999成人在线观看| 男女之事视频高清在线观看| 老鸭窝网址在线观看| 母亲3免费完整高清在线观看| 一级,二级,三级黄色视频| 成人手机av| 777米奇影视久久| 国产高清videossex| 一本久久精品| 久久久精品区二区三区| 嫩草影视91久久| 亚洲精品久久成人aⅴ小说| 天堂动漫精品| 亚洲九九香蕉| 国产av又大| 人妻久久中文字幕网| 日日摸夜夜添夜夜添小说| 在线观看66精品国产| 女人高潮潮喷娇喘18禁视频| 欧美黄色片欧美黄色片| 狠狠狠狠99中文字幕| 国产欧美日韩一区二区精品| 国产成人欧美在线观看 | 欧美激情 高清一区二区三区| 久久国产精品大桥未久av| 久久久久久久精品吃奶| 女警被强在线播放| svipshipincom国产片| 亚洲自偷自拍图片 自拍| 亚洲三区欧美一区| 97在线人人人人妻| 宅男免费午夜| 免费观看av网站的网址| 国产精品成人在线| 2018国产大陆天天弄谢| 中文字幕高清在线视频| 亚洲熟女毛片儿| 少妇精品久久久久久久| 欧美激情极品国产一区二区三区| 欧美成狂野欧美在线观看| 大码成人一级视频| 丁香六月欧美| 午夜视频精品福利| 国产不卡一卡二| 国产亚洲精品久久久久5区| 久久久国产成人免费| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区在线不卡| 手机成人av网站| 亚洲国产成人一精品久久久| 国产又色又爽无遮挡免费看| 老汉色av国产亚洲站长工具| 亚洲精品中文字幕一二三四区 | 窝窝影院91人妻| 午夜激情av网站| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩一区二区三| 午夜福利免费观看在线| 国产成人影院久久av| 成人国产av品久久久| 黑人巨大精品欧美一区二区mp4| 999精品在线视频| 两个人免费观看高清视频| 日本a在线网址| 精品午夜福利视频在线观看一区 | 欧美性长视频在线观看| 久久精品国产a三级三级三级| 在线永久观看黄色视频| 国产精品久久久久久人妻精品电影 | 操美女的视频在线观看| 怎么达到女性高潮| 亚洲专区国产一区二区| 国产淫语在线视频| 久久中文字幕人妻熟女| 久久久国产成人免费| 中文字幕色久视频| 国产成人av激情在线播放| 一级a爱视频在线免费观看| 国产在线观看jvid| 日韩视频一区二区在线观看| 午夜老司机福利片| 18禁裸乳无遮挡动漫免费视频| 啦啦啦在线免费观看视频4| 欧美精品一区二区免费开放| 精品少妇内射三级| 免费看a级黄色片| 日韩制服丝袜自拍偷拍| 99精国产麻豆久久婷婷| 在线观看免费高清a一片| 久久精品国产亚洲av香蕉五月 | 高清欧美精品videossex| 他把我摸到了高潮在线观看 | 日韩精品免费视频一区二区三区| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区mp4| 日韩欧美免费精品| 国产成人精品久久二区二区免费| 国产一区二区三区综合在线观看| 91老司机精品| 考比视频在线观看| 欧美精品一区二区大全| 女人爽到高潮嗷嗷叫在线视频| 91麻豆精品激情在线观看国产 | 国产黄频视频在线观看| 在线观看66精品国产| 日韩欧美免费精品| 一本久久精品| 中文字幕人妻丝袜一区二区| 久久婷婷成人综合色麻豆| 午夜福利乱码中文字幕| 久久久久久亚洲精品国产蜜桃av| 韩国精品一区二区三区| 国产色视频综合| 欧美激情久久久久久爽电影 | 色综合婷婷激情| 国产精品二区激情视频| 亚洲avbb在线观看| 亚洲美女黄片视频| 一区二区av电影网| 国产欧美日韩一区二区三区在线| 久久久国产成人免费| 成人特级黄色片久久久久久久 | 色播在线永久视频| 国产一区二区激情短视频| 高清在线国产一区| 男女无遮挡免费网站观看| 国产精品秋霞免费鲁丝片| 激情视频va一区二区三区| 午夜福利在线免费观看网站| 日韩中文字幕视频在线看片| 一区二区三区国产精品乱码| 女人精品久久久久毛片| 91九色精品人成在线观看| www.自偷自拍.com| 中文字幕另类日韩欧美亚洲嫩草| 国产精品亚洲av一区麻豆| av国产精品久久久久影院| 韩国精品一区二区三区| 久久久久精品人妻al黑| 亚洲人成电影观看| 国产1区2区3区精品| 亚洲专区中文字幕在线| 久热这里只有精品99| 国产黄色免费在线视频| 在线观看免费高清a一片| 国产真人三级小视频在线观看| 性少妇av在线| 日本五十路高清| 三级毛片av免费| 欧美日韩亚洲高清精品| 99久久国产精品久久久| 人人妻,人人澡人人爽秒播| 99久久国产精品久久久| 99国产极品粉嫩在线观看| 99热国产这里只有精品6| 亚洲熟女毛片儿| 最近最新免费中文字幕在线| 亚洲中文字幕日韩| 国产av又大| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 在线观看www视频免费| 亚洲av国产av综合av卡| 亚洲精品一卡2卡三卡4卡5卡| 男女之事视频高清在线观看| 无限看片的www在线观看| 18禁美女被吸乳视频| 国产亚洲精品一区二区www | 日本a在线网址| 午夜福利影视在线免费观看| 免费观看人在逋| 啦啦啦视频在线资源免费观看| 男女床上黄色一级片免费看| 9色porny在线观看| 国产伦理片在线播放av一区| 精品少妇久久久久久888优播| 亚洲精品粉嫩美女一区| 亚洲色图综合在线观看| 大香蕉久久网| 热re99久久国产66热| 亚洲中文av在线| 亚洲精品久久午夜乱码| 十八禁网站网址无遮挡| 国产高清videossex| 国产高清激情床上av| 美女扒开内裤让男人捅视频| 日韩欧美一区二区三区在线观看 | www.熟女人妻精品国产| 精品人妻在线不人妻| 久久久精品94久久精品| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 亚洲,欧美精品.| 伦理电影免费视频| 久久天堂一区二区三区四区| 国产成人av激情在线播放| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 捣出白浆h1v1| 国产1区2区3区精品| 大陆偷拍与自拍| 亚洲国产欧美网| 久久国产精品大桥未久av| 国产成人精品久久二区二区免费| 一夜夜www| 欧美精品啪啪一区二区三区| 一区二区三区激情视频| 99riav亚洲国产免费| 精品一区二区三区视频在线观看免费 | 久久久国产一区二区| 涩涩av久久男人的天堂| 亚洲成a人片在线一区二区| 国产亚洲精品第一综合不卡| 国产区一区二久久| 精品国产一区二区三区四区第35| 熟女少妇亚洲综合色aaa.| 日韩 欧美 亚洲 中文字幕| 成人国语在线视频| 国产精品影院久久| 18禁裸乳无遮挡动漫免费视频| 美女午夜性视频免费| 人妻久久中文字幕网| 亚洲国产看品久久| 久久久久精品国产欧美久久久| 久久久欧美国产精品| 黄片播放在线免费| 日本黄色日本黄色录像| 丰满少妇做爰视频| 满18在线观看网站| 国产视频一区二区在线看| 久久午夜亚洲精品久久| 天天躁夜夜躁狠狠躁躁| 最新在线观看一区二区三区| 精品国产一区二区三区四区第35| 两个人看的免费小视频| 久久久久精品人妻al黑| 精品少妇内射三级| 国产欧美日韩精品亚洲av| 色综合婷婷激情| 少妇裸体淫交视频免费看高清 | 一本—道久久a久久精品蜜桃钙片| 丁香六月天网| 婷婷丁香在线五月| 久久久欧美国产精品| 一级毛片女人18水好多| 80岁老熟妇乱子伦牲交| 制服人妻中文乱码| 99re6热这里在线精品视频| xxxhd国产人妻xxx| 丝袜美腿诱惑在线| 亚洲精品一卡2卡三卡4卡5卡| 欧美亚洲 丝袜 人妻 在线| 亚洲精品在线美女| 黄色片一级片一级黄色片| 国产日韩欧美亚洲二区| av一本久久久久| 国产在线视频一区二区| 亚洲成人手机| 久久精品国产亚洲av高清一级| 久久国产精品影院| 免费观看a级毛片全部| 三上悠亚av全集在线观看| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 看免费av毛片| 叶爱在线成人免费视频播放| 岛国在线观看网站| 欧美日韩成人在线一区二区| 嫩草影视91久久| 久久久久久亚洲精品国产蜜桃av| 欧美黑人精品巨大| 50天的宝宝边吃奶边哭怎么回事| 国产av精品麻豆| 亚洲午夜精品一区,二区,三区| 视频在线观看一区二区三区| 悠悠久久av| aaaaa片日本免费| 日韩视频在线欧美| 精品一区二区三区av网在线观看 | 久久ye,这里只有精品| 精品人妻熟女毛片av久久网站| 大片免费播放器 马上看| 日本a在线网址| 超碰97精品在线观看| 久久这里只有精品19| av线在线观看网站| 大片电影免费在线观看免费| 天堂动漫精品| 国产精品熟女久久久久浪| 一区二区三区精品91| 飞空精品影院首页| 十分钟在线观看高清视频www| 国产av一区二区精品久久| 黄色怎么调成土黄色| 成人亚洲精品一区在线观看| 久久久久网色| 久久久国产成人免费| tube8黄色片| 久久久精品94久久精品| 亚洲精品国产精品久久久不卡| xxxhd国产人妻xxx| 亚洲中文av在线| 啦啦啦视频在线资源免费观看| 亚洲久久久国产精品| 亚洲国产中文字幕在线视频| 无遮挡黄片免费观看| 操出白浆在线播放| 999久久久精品免费观看国产| 狠狠婷婷综合久久久久久88av| 99国产精品99久久久久| 亚洲久久久国产精品| 亚洲国产av新网站| 老司机在亚洲福利影院| 90打野战视频偷拍视频| 99精品在免费线老司机午夜| 中文字幕另类日韩欧美亚洲嫩草| 亚洲五月色婷婷综合| 国产精品美女特级片免费视频播放器 | 每晚都被弄得嗷嗷叫到高潮| 国产成人免费观看mmmm| 亚洲成人国产一区在线观看| 国产成人精品久久二区二区免费| 精品福利永久在线观看| 国产精品久久久久久精品古装| 一本色道久久久久久精品综合| 国产av一区二区精品久久| 国精品久久久久久国模美| 中文字幕另类日韩欧美亚洲嫩草| 精品国产超薄肉色丝袜足j| 久久久久久亚洲精品国产蜜桃av| 黄片小视频在线播放| 免费在线观看日本一区| 香蕉丝袜av| 亚洲熟女毛片儿| 国产成人欧美在线观看 | 一级片免费观看大全| 少妇粗大呻吟视频| e午夜精品久久久久久久| 亚洲精品一二三| 美女福利国产在线| 亚洲av欧美aⅴ国产| 亚洲全国av大片| 午夜激情久久久久久久| 久久久久精品人妻al黑| 咕卡用的链子| 啪啪无遮挡十八禁网站| 三上悠亚av全集在线观看| 欧美成人免费av一区二区三区 | 午夜福利,免费看| 高清欧美精品videossex| 在线观看免费日韩欧美大片| 伊人久久大香线蕉亚洲五| 欧美成人免费av一区二区三区 | 国产免费现黄频在线看| 精品少妇一区二区三区视频日本电影| 亚洲色图 男人天堂 中文字幕| 少妇精品久久久久久久| 天堂8中文在线网| 香蕉丝袜av| 建设人人有责人人尽责人人享有的| 一区在线观看完整版| 国产精品麻豆人妻色哟哟久久| 日本av手机在线免费观看| 国产免费福利视频在线观看| 精品国产亚洲在线| 亚洲全国av大片| 精品欧美一区二区三区在线| 女性生殖器流出的白浆| 亚洲精品成人av观看孕妇| 在线观看免费午夜福利视频| avwww免费| 国产免费视频播放在线视频| 69av精品久久久久久 | 国产区一区二久久| 国产精品二区激情视频| 777久久人妻少妇嫩草av网站| 热99re8久久精品国产| 在线观看免费视频网站a站| 少妇猛男粗大的猛烈进出视频| 亚洲人成电影观看|