胡 琦 綜述,廖 偉 審校
(第三軍醫(yī)大學(xué)西南醫(yī)院兒科,重慶 400038)
·綜 述·
IDO、Treg/Th17分化與中性粒細胞性哮喘*
胡 琦 綜述,廖 偉△審校
(第三軍醫(yī)大學(xué)西南醫(yī)院兒科,重慶 400038)
哮喘;中性粒細胞;調(diào)節(jié)性T細胞;限速酶
支氣管性哮喘是一種氣道慢性炎癥性疾病,具有明顯的異質(zhì)性。按哮喘氣道炎癥類型的不同,Simpson等[1]把哮喘分為嗜酸性粒細胞性哮喘、中性粒細胞性哮喘、混合細胞(嗜酸性粒細胞和中性粒細胞)性哮喘及寡細胞性哮喘。皮質(zhì)激素聯(lián)合支氣管擴張劑吸入是目前支氣管哮喘的主要治療手段,但在臨床治療中發(fā)現(xiàn)部分重癥或難治性哮喘出現(xiàn)激素抵抗,單用激素治療病情難以控制[2]。研究也發(fā)現(xiàn),這些患者氣道內(nèi)有更多的中性粒細胞浸潤、更明顯的組織損傷及氣道重塑[3]。Moore等[4]進一步發(fā)現(xiàn)按氣道炎癥表型分類的中性粒細胞性哮喘在臨床上往往是重癥哮喘或難治性哮喘。因此明確中性粒細胞性哮喘的發(fā)病機制,對于重癥及難治性哮喘的防治有重要意義。
過去認為Th1/Th2細胞失衡,尤其是Th2細胞的活化是哮喘發(fā)病的免疫機制中的關(guān)鍵環(huán)節(jié),調(diào)節(jié)性T細胞(regulatory T cell,Treg)具有抑制Th2細胞活性的功能,在哮喘的防治中占有重要地位[5]。近年研究證實Th17細胞類細胞因子在重癥或難治性哮喘發(fā)病中有重要作用,尤其與中性粒細胞性哮喘發(fā)病密切相關(guān)[6-8]。而色氨酸分解代謝的限速酶吲哚胺2,3雙加氧酶(indoleamine 2,3 dioxygenase,IDO), 在一定條件下是Th17細胞向Treg轉(zhuǎn)換的分子“開關(guān)”[9-10]。因此IDO介導(dǎo)的色氨酸代謝可能參與Treg/Th17細胞分化。本文就IDO、Treg/Th17分化與中性粒細胞性哮喘可能關(guān)系綜述如下。
多種免疫細胞(Th1、Th2、Th17及Treg細胞)和細胞因子參與了哮喘發(fā)病。目前認為,Th2細胞與嗜酸性粒細胞性哮喘密切相關(guān),而Th17細胞在中性粒細胞性哮喘發(fā)病的免疫機制中起著重要作用[11-13]。Treg可抑制Th2及Th17細胞活化,F(xiàn)oxp3+是其主要的調(diào)控基因,CD4+CD25+Treg在外周免疫耐受中起著關(guān)鍵作用。變應(yīng)原特異性免疫治療(SIT)是目前唯一有效的針對哮喘病因的預(yù)防治療,SIT能有效防治哮喘也是由于變應(yīng)原的反復(fù)刺激誘導(dǎo)了體內(nèi)可誘導(dǎo)Treg(inducible Treg,iTreg)產(chǎn)生。目前較多文獻證實哮喘發(fā)生的免疫機制正是由于Treg功能受到抑制、Th2細胞活化導(dǎo)致機體產(chǎn)生嗜酸性粒細胞炎癥,以及Th17細胞活化導(dǎo)致機體產(chǎn)生中性粒細胞性炎癥[12,14-15]。因此Treg誘導(dǎo)氣道免疫耐受在哮喘防治中占有重要地位[16-17],其作用機制可能與表達細胞毒性T淋巴細胞相關(guān)抗原-4(CTLA-4)分泌IL-10、轉(zhuǎn)化生長因了β(TGF-β)等細胞因子有關(guān)[18-19]。
中性粒細胞性哮喘是按哮喘氣道炎癥表型分類的一種哮喘,目前沒有統(tǒng)一定義,加拿大Nair等[20]將誘導(dǎo)痰中中性粒細胞計數(shù)持續(xù)(至少有2次)大于細胞總數(shù)的65%,或絕對計數(shù)大于5.0×106/mL的哮喘定義為中性粒細胞哮喘。這種類型哮喘臨床上往往多是重癥或激素抵抗性哮喘,并且氣道炎癥細胞以中性粒細胞為主,Th17細胞比例遠遠高于Th2細胞[21]。Th17細胞是2005年發(fā)現(xiàn)的CD4+T 細胞亞群,以分泌IL-17為特征,獨核受體-γt(ROR-γt)是其重要轉(zhuǎn)錄因子[22]。Nakagome等[23]在卵蛋白致敏小鼠哮喘動物模型中證實,反復(fù)給予抗IL-17抗體可以顯著減少骨髓外周血和肺泡灌洗液(BALF) 的中性粒細胞數(shù)量。除動物模型實驗外,Al-Ramli等[24]發(fā)現(xiàn)在哮喘患者肺組織中IL-17大量表達,并且表達量與哮喘嚴重程度有關(guān),在那些激素抵抗性哮喘患者這一現(xiàn)象更為明顯。Kerzel等[25]在兒童重癥哮喘患者的肺泡灌洗液中檢測到大量IL-17。IL-17可激活上皮細胞分泌CXCL8蛋白趨化募集中性粒細胞形成中性粒細胞炎癥。因此Th17 細胞介導(dǎo)的免疫反應(yīng)導(dǎo)致氣道內(nèi)中性粒細胞的增多和募集,在中性粒細胞哮喘形成占有重要地位[13,26]。此外,IL-17還參與了其他的哮喘發(fā)病機制,包括上皮細胞的結(jié)構(gòu)改變、黏液分泌增加、氣道高反應(yīng)性及平滑肌的收縮等[27-30]。因此,通過抑制Th17細胞活化來防治中性粒細胞哮喘,引起了研究者們極大的興趣。但遺憾的是,Busse等[31]在300多例中度哮喘患者中用3種劑量的抗IL-17A的單克隆抗體藥物(brodalumab)皮下注射,在為期10周的療程中并未發(fā)現(xiàn)該藥對哮喘治療有效,與安慰劑治療組相比較無顯著差異。但是將IL-17A的單克隆抗體藥物用于中性粒細胞性哮喘的研究,目前尚無研究涉及。
肺部樹突狀細胞(dendritic cells,DC)是氣道最有效的抗原呈遞細胞。機體初次接觸過敏原,樹突狀細胞攝取過敏原后被激和,提呈抗原,刺激初始型(Na?ve )CD4+T淋巴細胞增殖,產(chǎn)生特異記憶性CD4+T細胞;當機體再次接觸該過敏原,特異記憶性CD4+T淋巴細胞分化為效應(yīng)性T細胞,并刺激其他細胞釋放炎性細胞因子,始動了哮喘的發(fā)生。健康人肺部在反復(fù)吸入過敏原后,體內(nèi)由于存在某種免疫耐受機制,CD4+T淋巴細胞分化成Treg,避免了哮喘發(fā)生。
目前研究證實中性粒細胞性哮喘發(fā)生時,氣道CD4+T細胞通過CD40配基與氣道DC上的共刺激分子CD40結(jié)合,并在一定的細胞因子(IL-1β、TGF-β及IL-6)微環(huán)境下,上調(diào)ROR-γt轉(zhuǎn)錄基因,使CD4+T細胞向Th17細胞分化,產(chǎn)生IL-17,募集中性粒細胞至氣道,并釋放IL-23等炎性細胞因子,始動哮喘的發(fā)生[7,32-33]。因此中性粒細胞哮喘的發(fā)生是由于CD4+T細胞向Treg分化減弱,而向Th17細胞分化增強,即Th17/Treg分化失衡,如果能逆轉(zhuǎn)在中性粒細胞哮喘中的Th17/Treg分化失衡,有望對其有治療作用。然而,哮喘發(fā)病機制極為復(fù)雜,CD4+T淋巴細胞向何種細胞分化,除了與呈遞的抗原種類、數(shù)量及細胞因子微環(huán)境外,還可能與呈遞抗原的DC亞群有關(guān)。Vroman等[7]研究證實氣道CD4+T細胞向效應(yīng)性T細胞或Treg分化取決于提呈抗原的不同DC亞群,已證實氣道內(nèi)類漿細胞樣DC(plasmacytoid DC,pDC)亞群可誘導(dǎo)Treg產(chǎn)生,從而抑制Th1、Th2和Th17細胞的活化,形成免疫耐受;髓樣DC(myeloid DC,mDC) 亞群可誘導(dǎo)效應(yīng)性T細胞形成,產(chǎn)生炎癥反應(yīng);但是氣道pDC誘導(dǎo)Treg分化的機理還不完全清楚。有趣的是,小鼠脾來源CD8α+DC及人外周血單核細胞來源的CD123+CCR6+DC 2種DC亞群能大量分泌IDO,通過抑制T細胞增殖及介導(dǎo)T細胞凋亡,誘導(dǎo)Treg產(chǎn)生,在外周誘導(dǎo)和維持T細胞耐受[34]。
IDO是色氨酸分解代謝的限速酶,在外周免疫耐受中有重要作用,其在妊娠、器官移植及腫瘤免疫耐受的作用已成為近年研究熱點,目前在對肺部真菌感染發(fā)現(xiàn),IDO及其代謝產(chǎn)物犬尿酸可以促進叉頭狀螺旋轉(zhuǎn)錄調(diào)節(jié)因子(FOXP3+)基因轉(zhuǎn)錄誘導(dǎo)Treg生成,而同時抑制RORγt 基因而抑制Th17細胞產(chǎn)生,從而導(dǎo)致Th17/Treg分化失衡而使氣道對真菌發(fā)生耐受使氣道炎癥遷延不愈[35]。Bettelli 等[10]在《Nature》雜志上發(fā)表文章認為小鼠體內(nèi)Th17和iTreg產(chǎn)生于同一前體細胞-CD4+Foxp3+的T細胞,當加入TGF-β時,此細胞轉(zhuǎn)化為Foxp3+的Treg細胞;但是當加人TGF-β和IL-6時,此CD4+Foxp3-的T細胞轉(zhuǎn)化為Th17細胞,表明IL-6作為關(guān)鍵細胞因子決定CD4+Foxp3+T細胞是轉(zhuǎn)化為Treg還是Th17細胞。有趣的是,Baban等[36]報道在IL-6基因敲出的大鼠靜脈注射IDO誘導(dǎo)劑免疫刺激序列寡脫氧核苷酸(ISS-ODN)后,發(fā)現(xiàn)在脾臟Treg增多,而皮下注射IDO抑制劑1-甲基色氨酸(1-MT)后可使脾臟pDC表達IL-6,從而使Treg向Th17細胞轉(zhuǎn)化。因此在一定條件下IDO可作為Th17細胞向Treg轉(zhuǎn)換的分子“開關(guān)”,這為防治中性粒細胞哮喘帶來新的思路。An等[37]已證實轉(zhuǎn)IDO基因的未成熟DC可減輕致敏氣道的過敏性炎癥反應(yīng)。
IDO+pDC是一種體內(nèi)數(shù)量較少的具有分泌表達IDO能力的pDC亞群(IDO-competent pDCs)。目前有關(guān)IDO+pDC研究多集中在大鼠的肝、脾、淋巴結(jié)引流區(qū)中的DC。Kahler等[38]發(fā)現(xiàn)IDO+pDC除了高表達CD11c及B細胞特征性標志CD19,并且在抗原刺激下通過分泌表達IDO介導(dǎo)Th細胞抑制及Treg活化。Shao等[39]在大鼠氣道炎癥模型證實,用Flt3配基處理肺部DC后發(fā)現(xiàn):氣道高表達CD11c的CD11c高CD11b低DC亞群具有耐受原性可抑制Th2細胞產(chǎn)生,從而抑制氣道高反應(yīng)性。Taher等[40]在變應(yīng)原特異性免疫治療模型中證實用IDO抑制劑1-MT腹膜注射后可使氣道中的嗜酸性細胞減少及Th2類細胞因子增高,表明IDO及代謝產(chǎn)物可增強變應(yīng)原特異性免疫治療作用。氣道IDO主要表達在淋巴區(qū)域的巨噬細胞及DC上,同時DC是氣道最有效的抗原呈遞細胞(APC),因此在哮喘發(fā)生時,機體除了與抗原攝入的種類及量,環(huán)境及個體差異有關(guān)外,還與體內(nèi)(特別是氣道)是否缺乏IDO+pDC亞群有關(guān)。以至于在中性粒細胞哮喘形成過程中,T淋巴細胞發(fā)生免疫應(yīng)答時,由于缺乏IDO,使TH0細胞向TH17細胞分化,而不向Treg分化,或者Th17細胞不能向Treg轉(zhuǎn)換,從而導(dǎo)致氣道以中性粒細胞炎癥為主。而目前關(guān)于這種IDO+pDC亞群與前述氣道CD11c高CD11b低DC亞群是否為同一DC亞群,有何關(guān)系,目前均不甚清楚。
綜上所述,Th17細胞與中性粒細胞性哮喘密切相關(guān),中性粒細胞哮喘存在Treg/Th17失衡,IDO在一定條件下是Th17細胞向Treg轉(zhuǎn)換的分子“開關(guān)”,IDO+pDC是體內(nèi)數(shù)量較少的一種具有分泌表達IDO能力的pDC亞群。闡明IDO(包括IDO+pDC亞群)、Treg/Th17分化與中性粒細胞性哮喘三者的關(guān)系對于研究中性粒細胞哮喘的發(fā)生機制及哮喘防治有重要意義。
[1]Simpson JL,Scott R,Boyle MJ,et al.Inflammatory subtypes in asthma:Assessment and identification using induced sputum[J].Respirology,2006,11(1):54-61.
[2]Chung KF,Wenzel SE,Brozek JL,et al.International ERS/ATS guidelines on definition,evaluation and treatment of severe asthma[J].Eur Respir J,2014,43(2):343-373.
[3]Hastie AT,Moore WC,Meyers DA,et al.Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes[J].J Allergy Clin Immunol,2010,125(5):1028-1036.
[4]Moore WC,Hastie AT,Li XN,et al.Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis[J].J Allergy Clin Immunol,2014,133(6):1557.
[5]Maazi H,Shirinbak S,Willart M,et al.Contribution of regulatory T cells to alleviation of experimental allergic asthma after specific immunotherapy[J].Clin Exp Allergy,2012,42(10):1519-1528.
[6]Chesne J,Braza F,Mahay G,et al.IL-17 in severe asthma where do we stand?[J].Am J Respir Crit Care Med,2014,190(10):1094-1101.
[7]Vroman H,Van den blink B,Kool M.Mode of dendritic cell activation:the decisive hand in Th2/Th17 cell differentiation.implications in asthma severity[J].Immunobiology,2015,220(2):254-261.
[8]Irvin C,Zafar I,Good J,et al.Increased frequency of dual-positive T(H)2/T(H)17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma[J].J Allergy Clin Immunol,2014,134(5):1175.
[9]Nyirenda MH,Sanvito L,Darlington PJ,et al.TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-Like phenotype with reduced suppressive function[J].J Immunol,2011,187(5):2278-2290.
[10]Bettelli E,Carrier Y,Gao W,et al.Reciprocal developmental pathways for the Generation of pathogenic effector TH17 and regulatory T cells[J].Nature,2006,441(790):235-238.
[11]Morishima Y,Ano S,Ishii Y,et al.Th17-associated cytokines as a therapeutic target for steroid-insensitive asthma[J].Clin Dev Immunol,2013:609395.
[12]Choy DF,Hart KM,Borthwick LA,et al.T(H)2 and T(H)17 inflammatory pathways are reciprocally regulated in asthma[J].Sci Transl Med,2015,7(31):301.
[13]Cosmi L,Liotta F,Maggi E,et al.Th17 cells:new players in asthma pathogenesis[J].Allergy,2011,66(8):989-998.
[14]Ji NF,Xie YC,Zhang MS,et al.Ligustrazine corrects Th1/Th2 and Treg/Th17 imbalance in a mouse asthma model[J].Int Immunopharmacol,2014,21(1):76-81.
[15]Shi YH,Shi GC,Wan HY,et al.Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with allergic asthma[J].Chin Med J (Engl),2011,124(13):1951-1956.
[16]Stelmaszczyk-Emmel A.Regulatory T cells in children with allergy and asthma:It is time to act[J].Respir Physiol Neurobiol,2015,209(Suppl 1):59-63.
[17]Langier S,Sade K,Kivity S.Regulatory T cells in allergic asthma[J].Isr Med Assoc J,2012,14(3):180-183.
[18]Palomares O,Yaman G,Azkur AK,et al.Role of Treg in immune regulation of allergic diseases[J].Eur J Immunol,2010,40(5):1232-1240.
[19]Choi IS.Immune tolerance by induced regulatory T cells in asthma[J].Allergy Asthma Immunol Res,2012,4(3):113-115.
[20]Nair P,Afia Aziz-Ur-Rehman A,Radford K.therapeutic implications of′neutrophilic asthma[J].Curr Opin Pulm Med,2015,21(1):33-38.
[21]Newcomb DC,Peebles J.Th17-mediated inflammation in asthma[J].Curr Opin Immunol,2013,25(6):755-760.
[22]Durrant DM,Metzger DW.Emerging roles of T helper subsets in the pathogenesis of asthma[J].Immunol Invest,2010,39(4/5):526-549.
[23]Nakagome K,Imamura M,Okada HA,et al.Dopamine D1-Like receptor antagonist attenuates Th17-Mediated immune response and ovalbumin Antigen-Induced neutrophilic airway inflammation[J].J Immunol,2011,186(10):5975-5982.
[24]Al-Ramli W,Préfontaine D,Chouiali F,et al.TH17-associated cytokines (IL-17A and IL-17F) in severe asthma[J].J Allergy Clin Immunol,2009,123(5):1185-1187.
[25]Kerzel S,Dehne J,Rogosch T,et al.T(H)17 cell frequency in peripheral blood from children with allergic asthma correlates with the level of asthma control[J].J Pediatr,2012,161(6):1172-1174.
[26]Aujla SJ,Alcorn JF.Th17 cells in asthma and inflammation[J].Biochem Biophys Acta,2011,1810(11):1066-1079.
[27]Hallstrand TS,Lai Y,Altemeier WA,et al.Regulation and function of epithelial secreted phospholipase a(2) group X in asthma[J].Am J Respir Crit Care Med,2013,188(1):42-50.
[28]Bellini A,Marini MA,Bianchetti L,et al.Interleukin (IL)-4,IL-13,and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients[J].Mucosal Immunol,2012,5(2):140-149.
[29]Zhao J,Lloyd CM,Noble A.Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling[J].Mucosal Immunol,2013,6(2):335-346.
[30]Chang Y,Al-Alwan L,Risse PA,et al.T(H)17 cytokines induce human airway smooth muscle cell migration[J].J Allergy Clin Immunol,2011,127(4):U311-1046.
[31]Busse WW,Holgate S,Kerwin E,et al.Randomized,Double-Blind,placebo-controlled study of brodalumab,a human Anti-IL-17 receptor monoclonal antibody,in moderate to severe asthma[J].Am J Respir Crit Care Med,2013,188(11):1294-1302.
[32]Iezzi G,Sonderegger I,Ampenberger FA,et al.CD40-CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4(+) T cells[J].Proc Natl Acad Sci USA,2009,106(3):876-881.
[33]Huang G,Wang Y,Chi H.Regulation of Th17 cell diferentiation by innate immune signals[J].Cell Mol Immunol,2012,9(4):287-295.
[34]Fallarino F,Vacca C,Orabona C,et al.Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells[J].Int Immunol,2002,14(1):65-68.
[35]Romani L,Zelante T,De Luca AA,et al.IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi[J].J Immunol,2008,180(8):5157-5162.
[36]Baban B,Chandler PR,Sharma MD,et al.IDO activates regulatory T cells and blocks their conversion into Th17-Like T cells[J].J Immunol,2009,183(4):2475-2483.
[37]An XJ,Bai CX,Xia JB,et al.IDO-expressing immature DCs suppress ovalbumin-induced allergic airway inflammation in mice[J].J Investig Allergol Clin Immunol,2011,21(3):185-192.
[38]Kahler DJ,Mellor AL.T cell regulatory plasmacytoid dendritic cells expressing indoleamine 2,3 dioxygenase[J].Handb Exp Pharmacol,2009(188):165-196.
[39]Shao ZF,Bharadwaj AS,Mcgee HS,et al.Fms-like tyrosine kinase 3 ligand increases a lung DC subset with regulatory properties in allergic airway inflammation[J].J Allergy Clin Immunol,2009,123(4):917-924.
[40]Taher YA,Piavaux BJ,Gras R,et al.Indoleamine 2,3-dioxygenase-dependent tryptophan metabolites contribute to tolerance induction during allergen immunotherapy in a mouse model[J].J Allergy Clin Immunol,2008,121(4):983-991.
10.3969/j.issn.1671-8348.2016.34.032
國家自然科學(xué)基金資助項目(81170034;81570022);重慶市科委基礎(chǔ)與前沿研究項目(cstc2013jcyiA1021)。 作者簡介:胡琦(1977-),主治醫(yī)師,碩士,主要從事小兒哮喘及新生兒的研究?!?/p>
,E-mail:liaowei01@163.com。
R725.6
A
1671-8348(2016)34-4852-03
2016-05-21
2016-08-09)