閆坤,胡莎莎,楊品,蔣常琴,雷軍強(qiáng)
磁共振擴(kuò)散峰度成像在腫瘤中的研究進(jìn)展
閆坤,胡莎莎,楊品,蔣常琴,雷軍強(qiáng)*
擴(kuò)散峰度成像(diffusional kurtosis imaging, DKI)是一種新興的基于非高斯分布模型的磁共振技術(shù),創(chuàng)新拓展于擴(kuò)散加權(quán)成像(diffusional weight imaging,DWI)技術(shù)與擴(kuò)散張量成像(diffusional tensor imaging, DTI)基礎(chǔ)之上,可定量描述細(xì)胞內(nèi)外水分子非高斯擴(kuò)散特點(diǎn),能夠較DWI、DTI技術(shù)提供更豐富、真實(shí)、準(zhǔn)確的組織微觀結(jié)構(gòu)信息。近年來(lái),DKI逐漸應(yīng)用于各系統(tǒng)疾病研究,尤其在腦、前列腺等腫瘤中取得了初步成果,展現(xiàn)出良好的臨床價(jià)值。本文就DKI成像原理、在腫瘤中的應(yīng)用進(jìn)展予以綜述。
擴(kuò)散峰度成像;擴(kuò)散加權(quán)成像;擴(kuò)散張量成像;腫瘤
在人體組織中,水分子擴(kuò)散情況因組織結(jié)構(gòu)的不同而產(chǎn)生差異。若水分子在各個(gè)方向上擴(kuò)散程度相同,則表現(xiàn)為高斯分布,稱為各向同性擴(kuò)散;若水分子在各個(gè)方向上擴(kuò)散程度不同,則表現(xiàn)為非高斯分布,也稱各向異性擴(kuò)散。擴(kuò)散加權(quán)成像(diffusional weight imaging, DWI)與擴(kuò)散張量成像(diffusional tensor imaging, DTI)技術(shù)的理論基礎(chǔ)是假定水分子擴(kuò)散符合高斯分布模型[1],然而在人體大多數(shù)復(fù)雜的組織結(jié)構(gòu)中,由于細(xì)胞中、細(xì)胞周圍復(fù)雜微環(huán)境等因素不同程度改變水分子的擴(kuò)散,導(dǎo)致其分布表現(xiàn)為非高斯特征[2-5]。擴(kuò)散峰度成像(diffusional kurtosis imaging, DKI)以非高斯分布模型為基礎(chǔ)[2],相比DWI及DTI,能更加真實(shí)、準(zhǔn)確地把握人體組織微觀結(jié)構(gòu)信息,為臨床提供更豐富的診斷信息[6-10]。
DKI技術(shù)由Jensen等[2]于2005年首次發(fā)表,其主要公式為:
Ln[S(b)]=ln[S(0)]-bDapp+1/6b2D2appKapp+0(b3)(1)
Sb/S0=exp(-bD+1/6b2D2K) (2)
公式(1)中S(b)為不同回波時(shí)間的信號(hào)強(qiáng)度;0(b3)為 b 的三階無(wú)窮小項(xiàng);Kapp與Dapp分別表示某個(gè)擴(kuò)散敏感梯度方向的峰度系數(shù)與擴(kuò)散系數(shù),前者描述水分子在生物組織內(nèi)受限擴(kuò)散的程度,后者描述擴(kuò)散加權(quán)成像中不同水分子擴(kuò)散運(yùn)動(dòng)的速度[2]。公式(2)中K代表無(wú)單位參數(shù),可定量分析水分子擴(kuò)散偏離理想高斯分布的程度,描述水分子擴(kuò)散受阻程度與擴(kuò)散的不均質(zhì)性。當(dāng)K=0時(shí),表示水分子擴(kuò)散為高斯分布;K 值越大,則偏離高斯分布越顯著,微細(xì)結(jié)構(gòu)越復(fù)雜。D代表經(jīng)非高斯分布校正過(guò)的表觀擴(kuò)散系數(shù)(apparent diffusion coefficient, ADC)值。與DWI相比,DKI對(duì)水分子擴(kuò)散受限更加敏感[11]。DKI可定量分析真實(shí)水分子擴(kuò)散受限程度與非均勻性,進(jìn)而評(píng)估生物組織細(xì)微結(jié)構(gòu)的復(fù)雜程度[2]。
與DWI序列相比,DKI序列以DWI序列為基礎(chǔ),采用高b值(通常b >1000 s/mm2),且至少需要15個(gè)彌散方向以及3個(gè)b值[1]。
DKI技術(shù)可獲得的主要參數(shù)包括平均峰度(mean kurtosis, MK)、峰度各向異性(kurtosis anisotropy, KA)、軸向峰度(axial kurtosis, AK)、徑向峰度(radial kurtosis, RK),不僅如此,它還可獲取擴(kuò)散張量成像常用參數(shù),如平均擴(kuò)散率(mean diffusion, MD)、軸向擴(kuò)散率(axial diffusion, AD)和徑向擴(kuò)散率(radial diffusion, RD)、各向異性分?jǐn)?shù)(fractional anisotropy, FA),為臨床提供更多信息。
2.1 平均峰度(MK)
MK是DKI技術(shù)最關(guān)鍵的參數(shù),代表空間各梯度方向的擴(kuò)散峰度平均值[12],是衡量組織結(jié)構(gòu)復(fù)雜程度的指標(biāo)[13]。MK值與組織復(fù)雜程度呈正比,結(jié)構(gòu)越復(fù)雜(如癌細(xì)胞分化程度越低、細(xì)胞密度越大),水分子運(yùn)動(dòng)阻礙則越顯著,MK值越大[14]。
2.2 峰度各項(xiàng)異性(KA)
KA在一定程度類似于FA,根據(jù)峰度標(biāo)準(zhǔn)差演變而來(lái)。KA值代表水分子趨向于各向異性性擴(kuò)散的程度,即數(shù)值越大,趨向程度越明顯。
2.3 徑向峰度(RK)及軸向峰度(AK)
AK和RK指與擴(kuò)散張量平行及垂直方向上擴(kuò)散峰度的平均值,其大小量化了此方向水分子彌散受阻程度[15-16]。
2015年中國(guó)預(yù)計(jì)有429.2萬(wàn)新發(fā)腫瘤患者和281.4萬(wàn)死亡病例,腫瘤發(fā)病率總體表現(xiàn)為增長(zhǎng)趨勢(shì)[17]。準(zhǔn)確診斷是治療的前提,DKI對(duì)組織細(xì)微結(jié)構(gòu)變化更易觀察,可提供豐富的量化參數(shù)[18],為臨床醫(yī)師對(duì)患者的診治提供更多有價(jià)值的信息。近年來(lái),DKI研究的開(kāi)展逐漸深入于人體各部位腫瘤診治的預(yù)測(cè)和效果評(píng)價(jià),并獲得相應(yīng)成果。
3.1 中樞神經(jīng)系統(tǒng)
腦膠質(zhì)瘤是顱內(nèi)最常見(jiàn)的腫瘤,約占神經(jīng)系統(tǒng)腫瘤的36%,接近顱內(nèi)腫瘤的一半之多[19]。腦膠質(zhì)瘤的術(shù)前正確診斷及精確分級(jí)對(duì)治療方案的制定與預(yù)后評(píng)價(jià)非常關(guān)鍵。膠質(zhì)瘤級(jí)別的確定是根據(jù)腫瘤內(nèi)侵襲性最高的區(qū)域,但腫瘤高度不均質(zhì),因此影像學(xué)對(duì)膠質(zhì)瘤的初步分級(jí)具有重要意義,傳統(tǒng)評(píng)價(jià)有腫瘤灌注增強(qiáng)特征、FA值,但FA值受組織特征影響較明顯,敏感性及特異性不高,所以DTI在此領(lǐng)域的價(jià)值一直具有爭(zhēng)議。DKI技術(shù)可對(duì)組織細(xì)微結(jié)構(gòu)的復(fù)雜程度進(jìn)行評(píng)價(jià),并能提供相應(yīng)的指標(biāo),在膠質(zhì)瘤的診斷及分級(jí)上,DKI能對(duì)量化組織細(xì)微結(jié)構(gòu)的復(fù)雜程度進(jìn)行分析,并提供更多參數(shù),是對(duì)傳統(tǒng)擴(kuò)散成像技術(shù)的良好補(bǔ)充。Raab等[20]首先將 DKI運(yùn)用在星形細(xì)胞瘤,對(duì)34例患者感興趣區(qū)(region of interest,ROI)MK、ADC及FA值進(jìn)行分析,結(jié)果表明MK值與腫瘤惡性程度呈正相關(guān),ADC 值與腫瘤惡性程度呈負(fù)相關(guān)性,而FA 值與腫瘤惡性程度無(wú)相關(guān)性。Ⅱ、Ⅲ、Ⅳ級(jí)星形細(xì)胞瘤兩兩對(duì)比MK值差異明顯。最終得出MK 對(duì)膠質(zhì)瘤的高、低級(jí)鑒別能力最佳[曲線下面積(area under the curve,AUC)=0.972]的結(jié)論。該結(jié)果顯示出DKI在膠質(zhì)瘤分級(jí)中具有優(yōu)勢(shì)。Van等[21]對(duì)36例膠質(zhì)瘤感興趣區(qū)MK、ADC及FA值進(jìn)行分析得出了相似的結(jié)論。Bai等[22]對(duì)69例膠質(zhì)瘤研究后認(rèn)為,MK值相比于傳統(tǒng)彌散參數(shù),能提供更多的信息,更準(zhǔn)確地對(duì)膠質(zhì)瘤進(jìn)行分級(jí)。Jiang等[23]對(duì)膠質(zhì)瘤與DKI參數(shù)之間的相關(guān)性進(jìn)行了更為全面的研究,結(jié)果表明,DKI在對(duì)膠質(zhì)瘤分級(jí)的鑒別診斷、預(yù)測(cè)腫瘤增值程度均較傳統(tǒng)彌散成像有明顯優(yōu)勢(shì)。Tan等[24]采用DKI技術(shù)對(duì)31例高級(jí)別膠質(zhì)瘤與20例單發(fā)腦轉(zhuǎn)移瘤進(jìn)行定量分析,發(fā)現(xiàn)瘤周水腫區(qū)MK、KA、RK值高級(jí)別膠質(zhì)瘤明顯高于腦轉(zhuǎn)移瘤,MD值腦轉(zhuǎn)移瘤明顯高于高級(jí)別膠質(zhì)瘤,瘤周水腫區(qū)FA值兩者差異無(wú)統(tǒng)計(jì)學(xué)意義。接受者操作特性曲線(receiver operating characteristic curve, ROC曲線)分析顯示,KA、MK、RK值A(chǔ)UC(1.000、0.889、0.880)顯著高于MD、FA 值(0.793、0.472)。表明在鑒別高級(jí)別膠質(zhì)瘤與單發(fā)腦轉(zhuǎn)移瘤方面,峰度參數(shù)比傳統(tǒng)彌散參數(shù)更具有優(yōu)勢(shì)。
DKI在對(duì)膠質(zhì)瘤分級(jí)的鑒別診斷、預(yù)測(cè)腫瘤增值程度以及鑒別膠質(zhì)瘤與轉(zhuǎn)移瘤均比DWI有明顯優(yōu)勢(shì),有較好的診斷效能。目前DKI技術(shù)應(yīng)用于中樞神經(jīng)系統(tǒng)腫瘤的研究表明,相比于DWI,DKI擁有巨大優(yōu)勢(shì),具有很大應(yīng)用前景,隨著DKI技術(shù)的不斷發(fā)展及在臨床應(yīng)用的推廣,其將成為腦腫瘤評(píng)估不可或缺的工具。
3.2 頭頸部:鼻咽
鼻咽癌(nasopharyngeal carcinoma, NPC)是頭頸部最常見(jiàn)的惡性腫瘤之一,在新確診為鼻咽癌的病例中,約有60%~70%為Ⅲ-Ⅳb期,單純放射治療療效并不理想[25-26]。近期研究表明,新輔助化療在晚期鼻咽癌患者中耐受性良好,能增加總體生存率,減少遠(yuǎn)處轉(zhuǎn)移[27-29]。
早期預(yù)測(cè)新輔助化療患者的治療反應(yīng)有助于臨床醫(yī)師擬定針對(duì)性治療方案以及避免全身毒性反應(yīng)。Chen等[30]對(duì)59例Ⅲ-Ⅳb鼻咽癌分別于新輔助化療前、化療第4、21、42天行DKI及DWI掃描,測(cè)量并分析新輔助化療有效組及無(wú)效組D值(校正擴(kuò)散系數(shù))、K值(超額峰度系數(shù))及ADC值。結(jié)果顯示,新輔助化療有效組化療前D值顯著低于無(wú)效組,所有參數(shù)內(nèi),化療第4天ADC值與ΔD(day4)[ΔD(dayX)= D(dayX)-D(pre)]值區(qū)別有效組與無(wú)效組價(jià)值最大,當(dāng)ADC(day4)>1.063×10-3mm2/s、ΔD(day4)>0.036×10-3mm2/s曲線下面積分別為0.761、0.895,ΔD(day 4)值預(yù)測(cè)新輔助化療療效較化療第4天ADC值更加敏感。DKI與傳統(tǒng)DWI均可預(yù)測(cè)新輔助化療療效,DKI在預(yù)測(cè)局限性晚期鼻咽癌新輔助早期化療療效優(yōu)于DWI。
3.3 乳腺
乳腺病變行磁共振檢查時(shí),加掃DWI序列可避免假陽(yáng)性結(jié)果,還可以行磁共振引導(dǎo)下的穿刺活檢[31]。相比于DWI,DKI以非高斯模型為基礎(chǔ),DKI可更加真實(shí)準(zhǔn)確的反映人體微環(huán)境變化。
Nogueira等[32]對(duì)36例女性乳腺病人進(jìn)行DKI與DWI掃描,依據(jù)病灶良惡性、病理類型進(jìn)行分組,測(cè)量各組平均ADC、MD和 MK值,分析各組間差異與相關(guān)性。結(jié)果表明惡性病灶MK數(shù)值較良性大,良性病變ADC與 MD數(shù)值較惡性小。纖維腺瘤的MK、ADC、MD值與浸潤(rùn)性導(dǎo)管癌進(jìn)行對(duì)比,均顯示出顯著區(qū)別(P<0.05)。纖維腺瘤和纖維囊性改變僅MK值具有差異(P=0.016)。該研究認(rèn)為擴(kuò)散在乳腺疾病中符合非高斯分布。初步研究認(rèn)為MK值在浸潤(rùn)性導(dǎo)管癌、纖維腺瘤和纖維囊性的區(qū)分上具有優(yōu)秀的鑒別能力,對(duì)更進(jìn)一步了解乳腺細(xì)小組成部分的變化有幫助,但還需更大樣本量的研究進(jìn)一步證實(shí)。
Wu等[33]對(duì)103例病人行DKI掃描,分別測(cè)量良性病灶及惡性病灶的MK及MD值,結(jié)果表明MK值在惡性病灶顯著高于良性病灶,MD值在良性病灶顯著高于惡性病灶,當(dāng)閾值取MD/MK 1.58 (10-3mm2/s)/0.69,MD/MK敏感性與特異性為79.3%/84.2%與92.9%/92.9%。MD/MK AUC為0.86/0.92。表明DKI技術(shù)能提供有價(jià)值的腫瘤微環(huán)境的擴(kuò)散信息,增加乳腺腫瘤的診斷信心。
Sun等[34]回顧性分析97例乳腺癌病人DKI參數(shù)(峰度系數(shù)與擴(kuò)散系數(shù))與DWI參數(shù)(ADC)。結(jié)果顯示峰度系數(shù)在惡性病灶顯著高于良性病灶,擴(kuò)散系數(shù)與表觀彌散系數(shù)在惡性病灶明顯低于良性病灶;相比于表觀彌散系數(shù),峰度系數(shù)和擴(kuò)散系數(shù)具有與前者相同的敏感性(95%),但卻有更高的特異性(83%、83% vs 76%)。在浸潤(rùn)性乳腺癌患者中,峰度系數(shù)、腫瘤病理分級(jí)同KI-67蛋白表達(dá)存在顯著正相關(guān)性;擴(kuò)散系數(shù)與腫瘤病理分級(jí)、KI-67蛋白表達(dá)無(wú)明顯相關(guān)性。他們認(rèn)為,與DWI相比,DKI鑒別乳腺病變良惡性具有更高特異性,III級(jí)乳腺癌伴隨KI-67高表達(dá)表現(xiàn)為高峰度系數(shù)和低擴(kuò)散系數(shù);然而,這些結(jié)論仍需更多探索來(lái)加以證實(shí)。
3.4 腹部
3.4.1 肝臟
在肝內(nèi)原發(fā)性惡性腫瘤中,肝細(xì)胞癌最為常見(jiàn)[35]。影像學(xué)方法在肝細(xì)胞癌療效評(píng)估(腫瘤的壞死、殘留、進(jìn)展及復(fù)發(fā)情況)及進(jìn)一步治療方案的制定起著重要作用。Goshima等[36]對(duì)62例(112個(gè)病灶)富血供肝細(xì)胞癌患者行DKI及DWI掃描,測(cè)量并分析所有病灶中有活性組及無(wú)活性組的MK及ADC值。結(jié)果顯示MK值在有活性組明顯高于無(wú)活性組,ADC值在有活性組顯著低于無(wú)活性組。評(píng)價(jià)干細(xì)胞癌活性的敏感性、特異性及AUC值,MK(85.7%, 98.0%, 0.95)均優(yōu)于ADC(79.6%, 68.3%,0.77)。因此DKI可成為新型肝細(xì)胞癌療效評(píng)估方法。
3.4.2 膽管
肝外膽管癌術(shù)前準(zhǔn)確分級(jí)對(duì)治療方案的適當(dāng)擬定、患者預(yù)后的合理評(píng)估影響重大。徐蒙萊等[37]對(duì)35例(高分化組11例,中分化組11例,低分化組13例)肝外膽管癌患者行DKI掃描,對(duì)比不同分化程度肝外膽管癌的D、K值發(fā)現(xiàn),各組間D、K值均具有顯著統(tǒng)計(jì)學(xué)差異,且K值與癌組織分化程度相關(guān)性高,展現(xiàn)出DKI在肝外膽管癌分級(jí)的良好應(yīng)用價(jià)值。
3.5 盆腔
3.5.1 前列腺
前列腺癌發(fā)病率居男性惡性腫瘤第二位[38],常用篩查方法為血清前列腺特異性抗原(prostate specific antigen, PSA)檢查以及直腸指檢,但早期難以檢出,尤其無(wú)法有效區(qū)分前列腺癌與良性前列腺增生[39]。相比于DWI,DKI能提供更多參數(shù),反映更豐富組織信息。Rosenkrantz等[40]回顧性分析47例前列腺癌 DK圖(非高斯擴(kuò)散)、ADC圖(高斯擴(kuò)散)、補(bǔ)償非高斯分布的校正圖并測(cè)量ROI的K、D和ADC值,結(jié)果表明DKI在前列腺癌與前列腺增生以及前列腺癌高低級(jí)別的鑒別診斷價(jià)值顯著優(yōu)于DWI。Roethke等[41]對(duì)55例外周型前列腺癌患者行DKI及DWI掃描,分別測(cè)量腫瘤發(fā)病區(qū)域及對(duì)側(cè)正常組織的擴(kuò)散系數(shù)(Dapp)、峰度系數(shù)(Kapp)及ADC值,結(jié)果顯示病變區(qū)Dapp值顯著小于對(duì)側(cè)正常組織,Kapp值病變區(qū)顯著大于對(duì)側(cè)正常組織。Dapp值病變區(qū)及對(duì)側(cè)正常區(qū)都明顯高于ADC值。DKI參數(shù)(Dapp、Kapp)與DWI參數(shù)(ADC)均能很好地區(qū)分癌組織與正常組織、高低級(jí)別前列腺癌,但二者診斷效能無(wú)明顯差異。
目前研究認(rèn)為DKI在前列腺癌、前列腺增生、前列腺炎、正常前列腺與前列腺癌分級(jí)的鑒別診斷方面具有良好的敏感度與特異度,較DWI具有優(yōu)勢(shì),然而相關(guān)研究還較少,其應(yīng)用價(jià)值仍需更多大樣本量研究進(jìn)一步證實(shí)。
3.5.2 膀胱
膀胱癌病理分級(jí)與其生物學(xué)行為密切關(guān)聯(lián),對(duì)治療方案選擇及預(yù)后評(píng)價(jià)具有重要指導(dǎo)意義。Suo等[42]對(duì)21例膀胱癌患者(高分化12例,低分化9例)與17例正常成人行DKI及常規(guī)DWI掃描,測(cè)量并分析ADC、Dapp及Kapp值。結(jié)果顯示膀胱癌ADC與Dapp值均明顯低于正常組,Kapp值明顯高于正常組。高級(jí)別組Kapp值顯著高于低級(jí)別組。與其他參數(shù)值相比,Kapp值在鑒別高級(jí)別膀胱癌方面具有最佳鑒別診斷效能。膀胱癌擴(kuò)散特點(diǎn)符合高斯分布,Kapp值可成為膀胱癌分級(jí)的一個(gè)新的評(píng)價(jià)指標(biāo)。
綜上所述,相對(duì)比傳統(tǒng)彌散序列(DWI、DTI),DKI以更接近人體真實(shí)環(huán)境的非高斯模型為基礎(chǔ),并能采集更多參數(shù),因此能較傳統(tǒng)彌散序列提供更多、更真實(shí)、準(zhǔn)確的組織結(jié)構(gòu)的細(xì)微變化,為臨床提供更加有價(jià)值的信息。DKI在腫瘤良惡性評(píng)價(jià)、鑒別診斷、療效評(píng)估等方面具備巨大應(yīng)用潛力。
目前,DKI在腫瘤中的研究尚處于初級(jí)階段,很多部位尚未涉及,其相關(guān)價(jià)值尚待進(jìn)一步證實(shí)。DKI在實(shí)際運(yùn)用中亦面臨諸多問(wèn)題,如不同部位合適的b值的選擇、彌散方向數(shù)目的確定、掃描時(shí)間較長(zhǎng)等。隨著磁共振技術(shù)的進(jìn)步以及研究的不斷深入,這些問(wèn)題都可能得到解決,DKI在腫瘤中的應(yīng)用將會(huì)更加廣泛。
[1] Hui ES, Cheung MM, Qi L, et al. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuro image, 2008, 42(1): 122-134.
[2] Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantifcation of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6):1432-1440.
[3] Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis.NMR Biomed, 2010, 23(7): 698-710.
[4] Mariko Y, Masaaki H, Yokoyama K, et al. Diffusional kurtosis imaging of normal-appearing white matter in multiple sclerosis:preliminary clinical experience. Jpn J Radiol, 2013, 31(1): 50-55.
[5] Rostoker G, Griuncelli M, Loridon C, et al. Reassessment of iron biomarkers for prediction of dialysis iron overload: An MRI study.PLo SOne, 2015, 10 (7):e132006.
[6] Li X, Yang J, Gao J, et al. A robust post-processing workflow for data-sets with motion artifacts in diffusion kurtosis imaging. PLo SOne, 2014, 9(4): e94592.
[7] Nilsson M, Wirestam R, Stahlberg F, et al. Regional values of diffusional kurtosis imaging estimates in the healthy brain. J MagnReson Imaging, 2013, 37(3): 610-618.
[8] Yoshida M, Hori M, Yokoyama K, et al. Diffusional kurtosis imaging of normal-appearing white matter in multiple sclerosis: Preliminary clinical experience. Jpn J Radiol, 2013, 31(1): 50-55.
[9] Dang YX, Wang XM. Present research situation of diffusion kurtosis imaging and intravoxel incoherent motion of the brain. Chin J Magn Reson Imaging, 2015, 6(2): 145-150.黨玉雪, 王曉明. 磁共振新技術(shù)DKI和IVIM在中樞神經(jīng)系統(tǒng)的研究現(xiàn)狀. 磁共振成像, 2015, 6(2): 145-150.
[10] Wang K, Pan T, Zhou X, et al. The application of nongaussion DWI model in body diseases. Chin J Magn Reson Imaging, 2016, 7(1):71-76.王科, 潘婷, 周欣, 等. 基于非高斯分布模型的擴(kuò)散加權(quán)成像在體部疾病中的應(yīng)用. 磁共振成像, 2016, 7(1): 71-76.
[11] Lazar M, Jensen JH, Xuan L, et al. Estimation of the orientation distribution function from diffusional kurtosis imaging. Magn Reson Med, 2008, 60(4): 774-781.
[12] Hui ES, Cheung MM, Qi L, et al. Advanced MR diffusion characterization of neural tissue using directional diffusion kurtosis analysis. Conf Proc IEEE Eng Med Biol Soc, 2008, 2008: 3941-3944.
[13] Shao HY. Investigating the effect of aging on the microstructure of brain with novel diffusion imaging techniques. Chin J Magn Reson Imaging, 2016, 7(3): 218-225.邵涵釬. 利用新型擴(kuò)散成像技術(shù)研究年老對(duì)大腦微觀結(jié)構(gòu)的影響.磁共振成像, 2016, 7(3): 218-225.
[14] Raab P, Hattingen E, Franz K, et al. Cerebral gliomas:diffusional kurtosis imaging analysis of microstructural differences. Radiology,2010, 254(3): 876-881.
[15] Jensen JH, Falangola MF, Hu C, et al. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebra infarction. NMR Biomed, 2011, 24(5): 452-457.
[16] Poot DH, Dekker AJ, Achten E, et al. Optimal experimental design for diffusion kurtosis imaging. IEEE Trans Med Imaging, 2010,29(3): 819-829.
[17] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
[18] Blockx I, De Groof G, Verhoye M. Microstructural changes observed with DKI in a transgenic Huntington rat model: evidence for abnormal neurodevelopment. Neuroimage, 2012, 59(2): 957-967.
[19] Dolecek TA, Propp JM, Stroup NE, et al. CBTRUS Statistical report:primary brain tumors and central nervous system tumors diagnosed in the united states in 2005-2009. Neuro Oncol, 2012, 14(5): 21-49.
[20] Raab P, Hattingen E, Franz K, et al. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology,2010, 254(3): 876-881.
[21] Van CS, De KF, Sima DM, et al. Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI,and short echo time chemical shift imaging for grading gliomas. Neuro-Oncology, 2014, 16(7): 1010-1021.
[22] Bai Y, Lin YS, Tian J. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology, 2016,278(2): 496-504.
[23] Jiang RF, Jiang JJ, Zhao LY. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation. Oncotarget, 2015, 6(39): 42380-42393.
[24] Tan Y, Wang XC, Zhang H. Differentiation of high-gradeastrocytomas from solitary-brain-metastases: comparing diffusion kurtosis imaging and diffusion tensor imaging. Eur J Radiol, 2015,84(12): 2618-2624.
[25] Mao YP, Xie FY, Liu LZ, et al. Re-evaluation of 6th edition of AJCC staging system for nasopharyngeal carcinoma and proposed improvement based on magnetic resonance imaging. Int J Radiat Oncol Biol Phys, 2009, 73(5): 1326-1334.
[26] Lee AW, Tung SY, Chua DT, et al. Randomized trial of radiotherapy plus concurrent-adjuvant chemotherapy vs. radiotherapy alone for regionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst,2010, 102(15): 1188-1198.
[27] Buehrlen M, Zwaan CM, Granzen B, et al. Multimodal treatment,including interferon beta, of nasopharyngeal carcinoma in children and young adults: preliminary results from the prospective,multicenter study NPC-2003-GPOH/DCOG. Cancer, 2012, 118(19):4892-4900.
[28] Kong L, Hu C, Niu X, et al. Neoadjuvant chemotherapy followed by concurrent chemoradiation for locoregionally advanced nasopharyngeal carcinoma: interim results from 2 prospective phase 2 clinical trials. Cancer, 2013, 119(23): 4111-4118.
[29] OuYang PY, Xie C, Mao YP, et al. Significant efficacies of neoadjuvant and adjuvant chemotherapy for nasopharyngeal carcinoma by meta-analysis of published literature-based randomized, controlled trials. Ann Oncol, 2013, 24(8): 2136-2146.
[30] Chen Y, Ren W, Zheng D. Diffusion kurtosis imaging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients. J Magn Reson Imaging, 2015,42(5): 1354-1361.
[31] Spick C, Pinker-Domenig K, Rudas M, et al. MRI-only lesions:application of diffusion-weighted imaging obviates unnecessary MR-guide breast biopsies. Eur Radiol, 2014, 24(6): 1204-1210.
[32] Nogueira L, Brandao S, Matos E, et al. Application of the diffusion kurtosis model for the study of breast lesions. Eur Radiol, 2014,24(6): 1197-203.
[33] Wu D, Li G, Zhang J, et al. Characterization of breast tumors using diffusion kurtosis imaging (DKI). PLoS One, 2014, 9(11): e113240.
[34] Sun K, Chen X, Chai W, et al. Breast cancer: diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors. Radiology, 2015, 277(1): 46-55.
[35] Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA: a cancer journal for clinicians, 2011, 61(2): 69-90.
[36] Goshima S, Kanematsu M, Noda Y. Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma. AJR Am J Roentgenol, 2015, 204(5): 543-549.
[37] Xu ML, Xing CH, Chen HW, et al. Application value of DKI in grading of extrahepatic cholangiocarcinoma. Chin J Magn Reson Imaging, 2016, 7(1): 34-39.徐蒙萊, 邢春華, 陳宏偉, 等. DKI技術(shù)在肝外膽管癌分級(jí)中的應(yīng)用價(jià)值. 磁共振成像, 2016, 7(1): 34-39.
[38] Jemal A, Center MM, Desantis C, et al. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev, 2010, 19(8): 1893-1907.
[39] Heidenreich A, Bellmunt J, Bolla M, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localized disease. Eur Urol, 2014, 65(1): 124-137.
[40] Rosenkrantz AB, Sigmund EE, Johnson G, et al. Prostate cancer:feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology, 2012, 264(1): 126-135.
[41] Roethke MC, Kuder TA, Kuru TH, et al. Evaluation of diffusion kurtosis imaging versus standard diffusion imaging for detection and grading of peripheral zone prostate cancer. Invest Radiol, 2015,50(8): 483-489.
[42] Suo S, Chen X, Ji X. Investigation of the non-Gaussian water diffusion properties in bladder cancer using diffusion kurtosis imaging: a preliminary study. J Comput Assist Tomogr, 2015, 39(2):281-285.
Research progess of diffusional kurtosis imaging in tumour
YAN kun, HU Sha-sha, YANG Pin, JIANG Chang-qin, LEI Jun-qiang*
Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000,China
*
Diffusional kurtosis imaging (DKI) was an emerging magnetic resonance imaging technology which was base on the model of non-Gaussian distribution, it was also the extension of diffusional weight imaging(DWI) and diffusional tensor imaging(DTI). DKI could describe the non-Gaussian distribution characteristic of hydrone of intracellular and extracellular through quantitative analysis, which can offer more plentiful, real and accurate microstructure information of tissue than DWI and DTI. In recent years, DKI gradually apply to diseases of different systems, had achieved some initial results especially in tumours of brain and prostate, which displayed excellent clinical value. This article proposed to summary the technic principles and aplication advances in tumours for DKI.
Diffusional kurtosis imaging; Diffusional weight imaging; Diffusional tensor imaging; Tumor
蘭州大學(xué)第一醫(yī)院放射科,蘭州730000
雷軍強(qiáng),E-mail:leijq1990@163.com
2016-03-28接受日期:2016-05-11
R445.2;R730
A
10.12015/issn.1674-8034.2016.08.016
閆坤, 胡莎莎, 楊品, 等. 擴(kuò)散峰度成像在腫瘤中的研究進(jìn)展. 磁共振成像,2016, 7(8): 635-640.