• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    極值問題

    2016-03-09 10:57:30姚宇萍彭岳建??
    關(guān)鍵詞:猜想

    姚宇萍++彭岳建??

    摘 要 設(shè)G=([t],E)是一個(gè)有m條邊的左壓的3一致超圖,其中(t-13)+(t-22)+1≤m≤(t3),并設(shè)[t-2](3)G.本文證明,如果按同余字典序排列Ect中最小元素是(t-p-i)(t-p)并且t≥(p-1)3(p-2)38(p-1)2-40+2p-1,則有λ(G)≤λ(C3,m).

    關(guān)鍵詞 拉格朗日;Frankl and Füredi 猜想;同余字典序

    For a set V and a positive integer r, let V(r) denote the family of all rsubsets of V. An runiform graph or rgraph G consists of a set V(G) of vertices and a set E(G)V(G)(r) of edges. An edge e={a1,a2,…,ar} will be simply denoted by a1a2…ar. An rgraph H is a subgraph of an rgraph G, denoted by HG if V(H)V(G) and E(H)E(G). The complement of an rgraph G is denoted by Gc. A complete rgraph on t vertices is also called a clique of order t. Let N be the set of all positive integers. For any integer n∈N, we denote the set {1, 2, 3, …,n} by [n]. Let [n](r) represent the complete runiform graph on the vertex set [n].

    Definition 1 For an runiform graph G with the vertex set [n], edge set E(G) and a vector.x=(x1,…,xn)∈Rn, define

    λ(G,x)=∑i1i2…ir∈E(G)xi1xi2…xir.

    Let S={x=(x1, x2,…,xn):∑ni=1xi=1,xi≥0 for i=1,2,…,n}. The Lagrangian of G, denote by λ(G), is defined as

    λ(G)=max{λ(G,x):x∈S}.

    A vector y∈S is called an optimal weighting for G if λ(G,y)=λ(G).

    In [1], Motzkin and Straus provided the following simple expression for the Lagrangian of a 2graph.

    Theorem 1(Motzkin and Straus[1]) If G is a 2graph in which a largest clique has order t then λ(G)=λ([t](2))=12(1-1t).

    The obvious generalization of Motzkin and Straus result to hypergraphs is false because there are many examples of hypergraphs that do not achieve their Lagrangian on any proper subhypergraph. Indeed, estimating the Lagrangian of a hypergraph is much difficult. Lagrangians of hypergraphs has been proved to be a useful tool in hypergraph extremal problems. In most applications, an upper bound of the Lagrangians of certain class of hypergraphs is needed. Frankl and Füredi [2] asked the following question. Given r≥3 and m∈N, how large can the Lagrangian of an rgraph with m edges be? For distinct A,B∈N(r) we say that A is less than B in the colex order if max(AΔB)∈B, where AΔB=(A\B)∪(B\A). Let Cr,m be the runiform hypergraph with m edges formed by taking the first m sets in the colex order of N(r). The following conjecture of Frankl and Füredi (if it is true) provides a solution to the question mentioned at the beginning.

    Conjecture 1 (Frankl and Füredi[2]) If G is a rgraph with m edges, then λ(G)≤λ(Cr,m).

    This conjecture is true when r=2 by Theorem 1. For the case r=3, Talbot in [3] first confirmed Frankl and Füredis conjecture for r=3 and (t-13)-2≤m≤(t-13)+(t-22)-(t-1). Later, Tang et.al. [46] extended Talbots result to (t-13)-7≤m≤(t-13)+(t-22)-t-22 for r=3. It seems to be very challenging to confirm this conjecture even for r=3.

    Definition 2 An rgraph G=([n],E) is leftcompressed if j1j2…jr∈E implies i1i2…ir∈E provided ip≤jp for every p,1≤p≤r.

    Talbot in [3] showed that to verify this conjecture for r=3, it is sufficient to show that for a leftcompressed 3graph G on the vertex set [t] with m edges, where (t-13)≤m≤(t3), the inequality λ(G)≤λ(C3,m) holds. Peng and Zhao[4] showed that a leftcompressed 3graph with t vertices and m edge, say G, where (t-13) ≤m<(t3) and the maximun clique is t-1, has λ(G)≤λ(C3,m) hold. Yao and Peng also proved if the triple with the minimum colex ordering in Gc is (t-p-i)(t-p)t and t≥(p-1)3(p-2)38(p-1)2-40+2p-1, then λ(G)≤λ(C3,m).

    For an rgraph G=(V,E), denote the (r-1)neighborhood of a vertex i∈V by Ei={A∈V(r-1): A∪{i}∈E}. Similarly, denote the (r-2)neighborhood of a pair of vertices i, j∈V by Eij={B∈V(r-2):B∪{i, j}∈E}. Denote the complement of Ei by Eci={A∈V(r-1):A∪{i}∈V (r)\E}. Also, denote the complement of Eij by Ecij={B∈V(r-2):B∪{i,j}∈V(r)\E}. Denote Ei\j=Ei∩Ecj .

    We are going to prove the following result.

    Theorem 2 Let G=([t],E) be a leftcompressed 3graph with m edges, where (t-13)+(t-22)+1≤m≤(t3). Let [t-2](3)G. If the triple with the minimum colex order in Ect, the complement of Et, is (t-p-i)(t-p) and t≥(p-1)3(p-2)38(p-1)2-40+2p-1, then λ(G)≤λ(C3,m).

    The remaining proof of this paper is organized as follows. In Section 1, we give some premilinary results. In Section 2, we give the proof of Theorem 2.

    1 Preliminaries

    We will impose one additional condition on any optimal weighting. x=(x1,x2,…,xn) for an rgraph G:

    |{i:xi>0}| is minimal, i.e. if y is a legal weighting for G satisfying |{i:yi>0}|<|{i:xi>0}|, then λ(G,y)<λ(G).(1)

    Remark 1 An rgraph G=([n],E) is leftcompressed if and only if Ej\i= for any 1≤i

    The following lemma gives some necessary conditions of an optimal weighting for G.

    Lemma 1(Frankl and Rdl [5]) Let G=(V,E) be an rgraph on the vertex set [n] and x=(x1,x2,…,xn) be an optimal weighting for G with k(≤n) nonzero weights x1,x2,…,xk satisfying condition (1). Then for every {i,j}∈[k](2), (I)λ(Ei,x)=λ(Ej,x)=rλ(G), (Ⅱ) there is an edge in E containing both i and j.

    Remark 2 Let G=(V,E) be an rgraph on the vertex set [n] and x=(x1,x2,…,xn) be an optimal weighting for G with k(≤n) nonzero weights x1,x2,…,xk satisfying condition (1).

    (a) In Lemma 1, part (Ⅰ) implies that

    xjλ(Eij,x)+λ(Ei\j,x)=xiλ(Eij,x)+λ(Ej\i,x).

    In particular, if G is leftcompressed, then

    (xi-xj)λ(Eij,x)=λ(Ei\j,x)

    for any i, j satisfying 1≤i

    (b) If G is leftcompressed, then for any i, j satisfying 1≤i

    xi-xj=λ(Ei\j,x)λ(Eij,x)(2)

    holds. If G is leftcompressed and Ei\j= for i, j satisfying 1≤i

    (c) By (2), if G is leftcompressed, then an optimal legal weighting x=(x1,x2,…,xn) for G must satisfy

    x1≥x2≥…≥xn≥0.(3)

    We will also give some useful results to apply the following results in the proof.

    Lemma 2(Tang et al[6]) Let m, i and t be positive integers satisfying (t-13)+(t-22)+1≤m≤(t3)-1. Let G=([t],E) be a leftcompressed 3graph with m edges and [t-1](3)G. If the triple with the minimum colex order in Gc is (t-2-i)(t-2)t, then λ(G)≤λ(C3,m).

    Lemma 3(Sun et al[7]) Let m, i and t be positive integers satisfying (t-13)+(t-22)+1≤m≤(t3)-1. Let G=([t],E) be a leftcompressed 3graph with m edges and [t-1](3)G. If the minimum colex order in Gc is (t-3-i)(t-3)t, then λ(G)≤λ(C3,m).

    Theorem 3(Sun et al) Let m, i and t be positive integers satisfying (t-13)+(t-22)+1≤m≤(t3)-1. Let G=([t],E) be a leftcompressed 3graph with m edges and [t-1](3)G. If |EΔE″|≤14, then λ(G)≤λ(C3,m).

    Sun et al. in [7] proved that λ(G)≤λ(C3,m) if |EΔE″|≤8. Later, Sun et al extended the results, which is Theorem 3.

    Theorem 4(Peng et al) Let m, i, p and t be positive integers satisfying (t-13)+(t-22)+1≤m≤(t3)-1. Let G=([t],E) be a leftcompressed 3graph with m edges and [t-1](3)G. If the triple with the minimum colex order in Gc is (t-p-i)(t-p)t and t≥(p-1)3(p-2)38(p-1)2-40+2p-1. Then λ(G)≤λ(C3,m).

    2 Proof of Theorem 2

    Proof of Theorem 2 Let G be the 3graph satisfying conditions of Theorem 5. If [t-1](3)G, then by Theorem 4, we have λ(G)≤λ(C3,m). Otherwise, we will prove the following lemmas which imply Theorem 2.

    Lemma 4 Let m, t, s and i be positive integers satisfying m=(t3)-s and s≤t-2. Let G=([t],E) be a leftcompressed 3graph with m edges. If the triple with the minimum colex order in Gc, the complement of G, is (t-2-i)(t-2)(t-1) and the triple with the minimum colex order in Ect is (t-2-j)(t-2), then λ(G)≤(C3,m).

    Lemma 5 Let m, t, s and i be positive integers satisfying m=(t3)-s and s≤t-2. Let G=([t],E) be a leftcompressed 3graph with m edges. If the triple with the minimum colex order in Gc is (t-2-i)(t-2)(t-1) and the triple with the minimum colex order in Ect is (t-p-j)(t-p), where p>2, and t≥(p-1)3(p-2)38(p-1)2-40+2p-1. Then we have λ(G)≤λ(C3,m).

    Lemma 6 Let m, t, s and i be positive integers satisfying m=(t3)-s and s≤t-2. Let G=([t],E) be a leftcompressed 3graph with m edges. If the triple with the minimum colex order in Gc is (t-3-i)(t-3)(t-1) and the triple with the minimum colex order in Ect is (t-p-j)(t-p), where p≥3, then we have λ(G)≤λ(C3,m) if t≥(p-1)3(p-2)38(p-1)2-40+2p-1.

    Lemma 7 Let m, t, s and i be positive integers satisfying m=(t3)-s and s≤t-2. Let G=([t],E) be a leftcompressed 3graph with m edges. If the triple with the minimum colex order in Gc is (t-p′-i)(t-p′)(t-1) and the triple with the minimum colex order in Ect is (t-p-j)(t-p), where p≥ p′>3, then we have λ(G)≤λ(C3,m) if t≥(p-1)3(p-2)38(p-1)2-40+2p-1.

    Next, we will give the proof of Lemma 47. In fact, the proofs of other three lemmas are similar to the proof of Lemma 4. We omit the details of the proof of other lemmas and will give only an outline of the proofs. In Section 2.1, we give the proof of Lemma 4. In Section 2.22.4, we give the outline of the proof of Lemma 47, respectively.

    2.1 Proof of Lemma 4

    Let G be a leftcompresseded 3graph with m edges and the triple with minimum colex order in Gc is (t-2-i)(t-2)(t-1). Let t-2-i-a=min{Ec(t-1)t}, where a≥0, and x=(x1,x2,…, xt) be an optimal weighting for G satisfying x1≥x2≥…≥xt≥0. By Remark 2, we have x1=x2=…=xt-2-i-a-1, and xt-2-i=…=xt-3. We first point out that

    λ(E1(t-2-i),x)-λ(E(t-2)t,x)≥(1-x1-xt-2-i)-(1-xt-xt-1-xt-2-…-xt-2-i)=

    xt+xt-1+xt-2+…+xt-2-i+1-x1≥0.(4)

    To verify (4), we have

    x1=xt-1+λ(E1\(t-1),x)λ(E1(t-1),x)=xt-1+(xt-2+…+xt-2-i-a)(xt-1+xt)x2+…+xt-2+xt≤2xt-1+xt.(5)

    So, (4) is true. This implies that λ(E1(t-2-i),x)≥λ(E(t-2)t,x).

    Let us continue our proof. We divide the proof into two cases: a=0 and a≥1.

    Case 1 a=0. In this case, G is a leftcompressed 3graph with m edges and the triple with minimum colex ordering in Gc is (t-2-i)(t-2)(t-1), where i≥1, and min{Ec(t-1)t}=t-2-i. Let x=(x1,x2,…,xt) be an optimal weighting for G satisfying x1≥x2≥…≥xt≥0. By Remark 2, we have x1=x2=…=xt-2-i-1, xt-2-i=…=xt-3 and xt-2=xt-1=xt. Next we prove λ(G)≤λ(C3,m). By Theorem 3, |EΔE″|≤8 have been solved, we can assume that i≥2. Let G″=G∪{(t-2-i)(t-2)(t-1),…, (t-3)(t-2)(t-1)}\{(t-2-i-1)(t-1)t,…,(t-2-2i)(t-1)t}. By Lemma 2, we have λ(C3,m)≥λ(G″). So we just need to prove λ(G″)≥λ(G). We make a number of complex proper adjustments to produce a better legal weghting, say z for G″ such that λ(G″,x)≥λ(G,x)=λ(G). We call this way to change edges and weights for Channel 1.

    By Remark 2,

    x1-xt-2-i=λ(E1\(t-2-i),x)λ(E1(t-2-i),x)=xt-1xt+xt-2xt+xt-1xt-2λ(E1(t-2-i),x)=

    3x2tλ(E1(t-2-i),x),(6)

    So

    λ(G′,x)-λ(G,x)=ixt-2-ixt-2xt-1-ix1xt-1xt=-3ix4tλ(E1(t-2-i),x).(7)

    Let 1≤k≤i. Consider a new weighting y(k)=(y(k)1,…,y(k)t), y(k)j=y(k-1)j, j≠t-2-2i+(k-1), t-2-i+(k-1), y(k)t-2-2i+(k-1) =y(k-1)t-2-2i+(k-1)-δk, y(k)t-2-i+(k-1)=y(k-1)t-2-i+(k-1)+δk. And let y(0)=x. Then

    λ(G′,y(k))-λ(G′,y(k-1))=δk[λ(E′t-2-i+(k-1),y(k-1))-λ(E′t-2-2i+(k-1),y(k-1))]-

    δ2kλ(E′(t-2-2i+(k-1))(t-2-i+(k-1)),y(k-1)=δk(xt-1xt+xt-1xt-2)-δ2kλ(E1(t-2-i),x).(8)

    Let δk=xt-1xt+xt-1xt-22λ(E1(t-2-i),x)≤xt-1=xt, then y(k)∈S. So

    λ(G′,y(k))-λ(G′,y(k-1))=(xt-1xt+xt-1xt-2)24λ(E1(t-2-i),x).(9)

    Then

    λ(G′,y(k))-λ(G′,y(0))=i(xt-1xt+xt-1xt-2)24λ(E1(t-2-i),x)=ix4tλ(E1(t-2-i),x) .(10)

    Consider a new weighting z=(z1,…,zt), zj=y(i)j, j≠t-2, t,zt-2=y(i)t-2-η, zt=y(i)t+η. Then

    λ(G′,z)-λ(G′,y(i))=η[λ(E′t,y(i))-λ(E′t-2,y(i))]-η2λ(E′(t-2)t,y(i))=

    -η(xt-2-i-1xt-1+…+xt-2-2ixt-1+xt-3xt-1+…+xt-2-ixt-1)-η2λ(E(t-2)t,x)-iδη=

    -η(ix1xt-1+ixt-2-ixt-1)-η2λ(E(t-2)t,x)-iδη.(11)

    Let η=-ix1xt-1+ixt-2-ixt-12λ(E(t-2)t,x). Since t≥3i+2, then we have η≥-xt. So z∈S. And

    λ(G′,z)-λ(G,x)=-3ix4tλ(E1(t-2-i),x)+ix4tλ(E1(t-2-i),x)+(ix1xt-1+ixt-2-ixt-1)24λ(E(t-2)t,x),(13)

    Since i≥3 and λ(E1(t-2-i),x)≥λ(E(t-2)t,x), then we have λ(C3,m)≥λ(G′)≥λ(G).

    Case 2 a≥1. We apply induction on the colex order of the triple with the minimum colex order in Gc. The base case is that G satisfies the condition of Theorem 1.4, then we have λ(C3,m)≥λ(G). Let G′=G∪{(t-2-i)(t-2)(t-1)}\ {(t-2-i-a-1)(t-1)t}. By the induction hypothesis, λ(C3,m)≥λ(G′). So we just need to prove λ(G′)≥λ(G). We make a number of complex proper adjustments to produce a better legal weghting, say z for G′ such that λ(G′,z)≥λ(G,x)=λ(G). We call this way to change edges and weights for Channel 2.

    Note that

    λ(G′,x)-λ(G,x)=xt-2-ixt-2xt-1-xt-2-i-a-1xt-1xt=

    λ(Et-2\t,x)λ(E(t-2)t,x)xt-2-ixt-1-λ(E1\t-2-i,x)λ(E1(t-2-i),x)xt-1xt,

    (14)

    where

    λ(Et-2\t,x)λ(E(t-2)t,x)=xt-2-i-a+…+xt-2-i-1λ(E(t-2)t,x)xt-1,(15)

    and

    λ(E1\t-2-i,x)λ(E1(t-2-i),x)=xt-1xt+xt-2xt+xt-1xt-2λ(E1(t-2-i),x)xt-1.(16)

    Consider a new weighting y=(y1,…,yt),yj=xj,j≠t-2-i-a-1,t-2-i,yt-2-i-a-1=xt-2-i-a-1-δ,yt-2-i=xt-2-i+δ,

    λ(G′,y)-λ(G′,x)=δ[λ(E′t-2-i,x)-λ(E′t-2-i-a-1,x)]-δ2λ(E′(t-2-i-a-1)(t-2-i),x)=

    δ(xt-1xt+xt-1xt-2)-δ2λ(E1(t-2-i),x).(17)

    Let δ=xt-1xt+xt-1xt-22λ(E1(t-2-i),x)≤xt-12≤xt. So y∈S. Then

    λ(G′,y)-λ(G′,x)=(xt-1xt+xt-1xt-2)24λ(E1(t-2-i),x).(18)

    Consider a new weighting z=(z1,…,zt),zj=yj,j≠t-2,t,zt-2=yt-2-η,zt=yt+η. Then

    λ(G′,z)-λ(G′,y)=η[λ(E′t,y)-λ(E′t-2,y)]-η2λ(E′(t-2)t,y)=

    η(-xt-2-ixt-1-xt-2-i-a-1xt-1)-η2λ(E(t-2)t,x)-ηδ(xt-2-xt)+δη2.(19)

    Let η=-xt-2-ixt-1+xt-2-i-a-1xt-12λ(E(t-2)t,x), then

    λ(G′,z)-λ(G′,y)≥(xt-2-ixt-1+xt-2-i-a-1xt-1)24λ(E(t-2)t,x).(20)

    By (4) (14), (18) and (20), we have

    λ(G′,z)-λ(G,x)≥λ(Et-2\t,x)λ(E(t-2)t,x)xt-2-ixt-1-λ(E1\t-2-i,x)λ(E(1(t-2-i)),x)xt-1xt+

    (xt-1xt+xt-1xt-2)24λ(E1(t-2-i),x)+(xt-2-ixt-1+xt-2-i-a-1xt-1)24λ(E(t-2)t,x)≥0.(21)

    Therefore, λ(C3,m)≥λ(G′)≥λ(G).

    2.2 Outline of the proof of Lemma 5

    Let t-p-j-a=min{Ec(t-1)t} and x=(x1,x2,…,xt) be an optimal weighting for G satisfying x1≥x2≥…≥xt≥0.

    We divide the prove into two parts: p=3 and p>3.

    Part Ⅰ p=3, then we have j+1≥i. We divide the prove into two cases: j≥2 and j=1.

    Case 1 j≥2. We apply induction on the colex order of the triple with minimum colex order in Gc. The base case is that G satisfies the condition of Theorem 4. To continue the proof, we construct an auxiliary graph G′=G∪{(t-2-i)(t-2)(t-1)}\{(t-3-j-a-1)(t-1)t}. By the induction hypothesis, λ(C3,m)≥λ(G′). So its sufficient to prove that λ(G′)≥λ(G). To do this, we apply Channel 2 similar to the proof of Case 2 in Lemma 4 and make a number of complex proper adjustments to produce a better legal weighting, say z for G′ such that λ(G′, z)≥λ(G, x)=λ(G).

    Case 2 j=1. Let t-4-a=min{Ec(t-1)t}, where a≥0. When a=0, since G is leftcompressed, then |EΔE″|=10. By Theorem 3, we have λ(C3,m)≥λ(G). So we can assume that a≥1. Let G′=G∪{(t-4)(t-3)t}\{(t-4-a-1)(t-1)t}. By Lemma 4, we have λ(C3,m)≥λ(G′). So its sufficient to prove λ(G′)≥λ(G). We make a number of complex proper adjustments to produce a better legal weighting, say z for G′ such that λ(G′, z)=(G, x)=λ(G).

    Part Ⅱ p>3. We apply induction on the colex order of the triple with the minimum colex order in Gc. The base case is that G satisfies the condition of Theorem 4. To continue the proof, we construct an auxiliary graph G′=G∪{(t-2-i)(t-2)(t-1)}\{(t-p-j-a-1)(t-1)t}. By the induction hypothesis, λ(C3,m)≥λ(G′). So we just need to prove λ(G′)≥λ(G). To do this, we apply Channel 2 and make a number of complex proper adjustments which is similar to the proof of Case 2 in Lemma 4 to produce a better legal weighting, say z for G′ such that λ(G′, z)≥λ(G, x)=λ(G).

    2.3 Outline of the Proof of Lemma 6

    Let x=(x1,x2,…,xt) be an optimal weighting for G satisfying x1≥x2≥…≥xt≥0. We divide the prove into three parts: p=3 and p≥4.

    Part Ⅰ p=3. We divide this prove into two cases: i=1 and i≥2.

    Case 1 i=1. Let min{Ec(t-2)t}=t-3-j-b and min{Ec(t-1)t}=t-3-j-a. If b=0, then |EΔE″|=12. By Theorem 3, we can get λ(C3,m)≥λ(G). So we can assume that b≥1. Since G is leftcompressed, a≥1. We apply induction on the colex order of the triple with the minimum colex order in Gc. The base case is that G satisfies the condition of Theorem 4. To continue our proof, we construct an auxiliary graph G′=G∪{(t-4)(t-3)(t-1)}\{(t-3-j-a)(t-1)t}. By the induction hypothesis, λ(C3,m)≥λ(G′). So its sufficient to prove λ(G′)≥λ(G). To do this, we apply Channel 2 and make a number of complex proper adjustments to produce a better legal weighting, say z for G′ such that λ(G′, z)≥λ(G, x)=λ(G).

    Case 2 i≥2. Obviously, j≥2. Let min{Ec(t-2)t}=t-3-j-b and min{Ec(t-1)t}=t-3-j-a. We divide the prove into next two subcases: a=0 and a≥1.

    Subcase 1 a=0. We apply induction on the colex order of the triple with the minimum colex order in Gc. The base case is that G satisfies the condition of Theorem 4, then λ(C3,m)≥λ(G). To continue our proof, we construct an auxiliary graph G′=G∪{(t-3-i)(t-3)(t-1),…, (t-4)(t-3)(t-1)}\{(t-3-j-1)(t-1)t,…,(t-3-j-i)(t-1)t}. By the induction hypothesis, λ(C3,m)≥λ(G′). So we just need to prove λ(G′)≥λ(G). To do this, we apply Channel 1 and make a number of complex proper adjustments to produce a better legal weighting, say z for G′ such that λ(G′, z) ≥λ(G, x)=λ(G).

    Subcase 2 a≥1. Let min{Ec(t-2)t}=t-3-j-b and min{Ec(t-1)t}=t-3-j-a. Again, we apply induction on the colex order of the triple with the minimum colex order in Gc. The base case is that G satisfies the condition of Theorem 4, then λ(C3,m)≥λ(G). To continue the proof, we construct an auxiliary graph G′=G∪{(t-3-i)(t-3)(t-1)}\{(t-3-j-a-1)(t-1)t}. By the induction hypothesis, λ(C3,m)≥λ(G′). So we just need to prove λ(G′)≥λ(G). To do this, we apply Channel 2 and make a number of complex proper adjustments to produce a better legal weighting, say z for G′ such that λ(G′, z)≥λ(G, x)=λ(G).

    Part Ⅱ p≥4. We divide our proof into two cases: p=4, a=0 and p≥5 or a≥1.

    Case 1 p=4, a=0. If j=1, then we have i=1 or i=2. We divide this prove into three subcases: j≥2; j=1, i=1; j=1, i=2.

    Subcase 1 and subcase 2 j≥2 or j=1, i=1. Again, we apply induction on the colex order of the triple with the minimum colex order in Gc. The base case is that G satisfies the condition of Theorem 4, then λ(C3,m)≥λ(G). To continue our proof, we construct an auxiliary graph G′=G∪{(t-3-i)(t-3)(t-1)}\{(t-4-j-1)(t-1)t}. By the induction hypothesis, λ(C3,m)≥λ(G′). So we just need to prove λ(G′)≥λ(G). To do this, we apply Channel 2 and make a number of complex proper adjustments to produce a better legal weighting, say z for G′ such that λ(G′, z)≥λ(G, x)=λ(G).

    Subcases 3 j=1, i=2. Again, we apply induction on the colex order of the triple with the minimum colex order in Gc. The base case is that G satisfies the condition of Theorem 4, then λ(C3,m)≥λ(G). To continue our proof, we construct an auxiliary graph G′=G∪{(t-4)(t-3)(t-1), (t-5)(t-3)(t-1)}\{(t-6)(t-1)t, (t-7)(t-1)t}. By the induction hypothesis, λ(C3,m)≥λ(G′). So we just need to prove λ(G′)≥λ(G). To do this, we apply Channel 1 and make a number of complex proper adjustments to produce a better legal weighting, say z for G′ such that λ(G′, z)≥λ(G, x)=λ(G).

    Case 2 p≥5 or a≥1. We apply induction on the minimum colexing ordering in Gc. The base case is that G satisfies the condition of Theorem 4, then λ(C3,m)≥λ(G). To continue our proof, we construct an auxiliary graph G′=G∪{(t-3-i)(t-3)(t-1)}\{(t-p-j-a-1)(t-1)t}. By the induction hypothesis, λ(C3,m)≥λ(G′). So we just need to prove λ(G′)≥λ(G). To do this, we apply Channel 2 and make a number of complex proper adjustments to produce a better legal weighting, say z for G′ such that λ(G′, z)≥λ(G, x)=λ(G).

    2.4 Outline of proof Lemma 7

    Let t-p-j-a=min{Ec(t-1)t} and x=(x1, x2, …, xt) be an optimal weighting for G satisfying x1≥x2≥…≥xt≥0. We divide the proof into two cases: j=1, p′≤p≤4 and t-p-j-a=t-p′-i; j≥2, p≥5 or t-p-j-a>t-p′-i.

    Case 1 j=1, p′=p=4 and t-p-j-a=t-p′-i. By Remark 2(b), we have x1=x2=…=xt-6, xt-5=…=xt-2, and xt-1=xt. We compare the Lagrangian of C3,m and G directly. To do this, we apply Channel 1 and make a number of complex proper adjustments which is similar to the proof of Case 1 in Lemma 4 to produce a better legal weighting, say z for C3,m such that λ(G′, z)≥λ(G, x)=λ(G).

    Case 2 j≥2, p≥5 or t-p-j-a

    References:

    [1] MOTZKIN T S, STRAUS E G. Maxima for graphs and a new proof of a theorem of Turán[J]. Canad J Math, 1965,17(1):533540.

    [2] FRANKL P, FREDI Z. Extremal problems whose solutions are the blowups of the small Wittdesigns [J]. J Combin Theor Ser A, 1989,52(5):129147.

    [3] TALBOT J. Lagrangians of hypergraphs [J]. Combin Probab Comput, 2002,11(2):199216.

    [4] PENG Y, ZHAO C. A MotzkinStraus type result for 3uniform hypergraphs [J]. J Graphs Comb, 2013,29(3):681694.

    [5] FRANKL P, RDL V. Hypergraphs do not jump [J]. Combinatory, 1989,4(23):149159.

    [6] TANG Q S, PENG Y, ZHANG X D, et al. Some results on lagrangians of hypergraphs[J]. Disc App Math, 2013,166(3):222238.

    [7] SUN Y P, TANG Q S, ZHAO C, et al. On the largest graphlagrangian of 3graphs with fixed number of edges [J]. J Optimiz Theor Appl, 2013,163(1):5779.

    (編輯 HWJ)

    猜你喜歡
    猜想
    重視初中學(xué)生直覺思維能力的培養(yǎng)
    考試周刊(2017年2期)2017-01-19 15:27:01
    繪本閱讀:學(xué)生言語智慧飛越的踏板
    數(shù)學(xué)課程中的創(chuàng)造教育淺議
    未來英才(2016年20期)2017-01-03 13:32:19
    合理猜想,有效驗(yàn)證
    培養(yǎng)數(shù)學(xué)意識(shí)增強(qiáng)學(xué)生自主探究能力研究
    成才之路(2016年34期)2016-12-20 20:29:27
    培養(yǎng)學(xué)生猜想能力 營(yíng)造高效物理課堂
    數(shù)學(xué)教學(xué)中提升學(xué)生自主探究能力研究
    成才之路(2016年36期)2016-12-12 13:56:32
    讓“演示實(shí)驗(yàn)”不僅僅止于演示
    小學(xué)生空間觀念培養(yǎng)微探
    “猜想與假設(shè)”在小學(xué)各年段有不同的要求
    考試周刊(2016年46期)2016-06-24 14:22:47
    午夜视频国产福利| 亚洲成人av在线免费| 伦理电影大哥的女人| 国产高清有码在线观看视频| 国产淫语在线视频| 亚洲综合精品二区| 欧美bdsm另类| 日韩电影二区| 精品久久久久久久末码| 亚洲精品亚洲一区二区| 精品久久久噜噜| 国产高清有码在线观看视频| 成人国产麻豆网| 人妻一区二区av| 99久国产av精品国产电影| 日韩中字成人| 看免费成人av毛片| 最后的刺客免费高清国语| 哪个播放器可以免费观看大片| 伊人久久精品亚洲午夜| 中文字幕亚洲精品专区| 亚洲精品乱久久久久久| av女优亚洲男人天堂| 九九爱精品视频在线观看| 在线观看av片永久免费下载| 亚洲精品456在线播放app| 又大又黄又爽视频免费| 国产伦在线观看视频一区| 久久国内精品自在自线图片| 国产精品综合久久久久久久免费| 中文字幕亚洲精品专区| 婷婷六月久久综合丁香| 九草在线视频观看| 大香蕉97超碰在线| 国产精品一区二区性色av| 蜜桃亚洲精品一区二区三区| 一级毛片电影观看| 大陆偷拍与自拍| 女的被弄到高潮叫床怎么办| av在线天堂中文字幕| av在线观看视频网站免费| av在线老鸭窝| 国产成人a∨麻豆精品| 国产精品福利在线免费观看| 国产精品人妻久久久久久| 啦啦啦啦在线视频资源| 欧美bdsm另类| 亚洲成人av在线免费| 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩卡通动漫| 亚洲av中文av极速乱| 国产探花在线观看一区二区| 嫩草影院新地址| 亚洲自拍偷在线| 熟妇人妻久久中文字幕3abv| 在现免费观看毛片| 亚洲一级一片aⅴ在线观看| 别揉我奶头 嗯啊视频| 欧美性猛交╳xxx乱大交人| 精品人妻偷拍中文字幕| 国产欧美日韩精品一区二区| 成年人午夜在线观看视频 | 又爽又黄a免费视频| 偷拍熟女少妇极品色| 91aial.com中文字幕在线观看| 国产在线男女| 啦啦啦啦在线视频资源| 女人十人毛片免费观看3o分钟| 免费播放大片免费观看视频在线观看| 网址你懂的国产日韩在线| 久久精品久久久久久久性| 在线观看美女被高潮喷水网站| 热99在线观看视频| 欧美人与善性xxx| 午夜福利成人在线免费观看| 国产高清国产精品国产三级 | 精品人妻视频免费看| 亚洲精品456在线播放app| 两个人视频免费观看高清| 亚洲怡红院男人天堂| 亚洲成人av在线免费| 国产综合懂色| 我要看日韩黄色一级片| 黄片无遮挡物在线观看| 九草在线视频观看| 国产综合懂色| 国产视频内射| 97热精品久久久久久| 午夜激情久久久久久久| 日本与韩国留学比较| 天天一区二区日本电影三级| 大香蕉97超碰在线| 久久久久久国产a免费观看| av在线观看视频网站免费| 色5月婷婷丁香| 日本av手机在线免费观看| 国产亚洲5aaaaa淫片| 国产高清不卡午夜福利| 午夜免费男女啪啪视频观看| 成人二区视频| 精品久久久久久电影网| 成人高潮视频无遮挡免费网站| 亚洲成人一二三区av| 午夜福利视频精品| 91av网一区二区| 欧美人与善性xxx| 国产精品蜜桃在线观看| 国产精品一区二区在线观看99 | 久久99热这里只频精品6学生| 亚洲美女视频黄频| 亚洲最大成人中文| 午夜激情欧美在线| 日韩强制内射视频| 日韩不卡一区二区三区视频在线| 国产高潮美女av| 熟妇人妻久久中文字幕3abv| 极品少妇高潮喷水抽搐| 免费看av在线观看网站| 一本一本综合久久| 亚洲最大成人av| 男人舔女人下体高潮全视频| 中文资源天堂在线| 国产在视频线在精品| 精品人妻熟女av久视频| 性插视频无遮挡在线免费观看| 97在线视频观看| 国产午夜精品久久久久久一区二区三区| h日本视频在线播放| 欧美潮喷喷水| 丝瓜视频免费看黄片| 两个人视频免费观看高清| 日韩不卡一区二区三区视频在线| 午夜福利网站1000一区二区三区| www.av在线官网国产| 啦啦啦韩国在线观看视频| 精品亚洲乱码少妇综合久久| 中文字幕制服av| 亚洲精品456在线播放app| 亚洲国产精品成人久久小说| videossex国产| 国产黄片视频在线免费观看| 青春草亚洲视频在线观看| 国产成人免费观看mmmm| 男人舔奶头视频| 欧美高清成人免费视频www| 国产视频内射| 少妇丰满av| 最近中文字幕2019免费版| 国产在线一区二区三区精| 能在线免费观看的黄片| 精品一区在线观看国产| 精品久久久久久久久亚洲| 人体艺术视频欧美日本| 免费黄网站久久成人精品| 欧美日韩国产mv在线观看视频 | 亚洲四区av| 日本猛色少妇xxxxx猛交久久| 亚洲欧美精品专区久久| 中国美白少妇内射xxxbb| 高清在线视频一区二区三区| av女优亚洲男人天堂| 国产精品一区二区三区四区久久| 哪个播放器可以免费观看大片| 熟妇人妻久久中文字幕3abv| 精品久久久久久久久久久久久| 少妇熟女欧美另类| 国产一区二区亚洲精品在线观看| 亚洲精品一二三| 国产高清有码在线观看视频| 高清av免费在线| ponron亚洲| kizo精华| 午夜免费男女啪啪视频观看| 最近中文字幕高清免费大全6| 亚洲欧美成人综合另类久久久| 精品人妻偷拍中文字幕| 波野结衣二区三区在线| 蜜桃久久精品国产亚洲av| 七月丁香在线播放| 熟妇人妻不卡中文字幕| 性插视频无遮挡在线免费观看| 麻豆国产97在线/欧美| 亚洲自偷自拍三级| 蜜臀久久99精品久久宅男| 国产熟女欧美一区二区| 欧美高清成人免费视频www| 亚洲精品成人av观看孕妇| 美女xxoo啪啪120秒动态图| 在线播放无遮挡| 一个人免费在线观看电影| 国产精品久久久久久精品电影| 久久久亚洲精品成人影院| 精品国产露脸久久av麻豆 | av在线观看视频网站免费| 午夜福利在线观看免费完整高清在| 97超碰精品成人国产| 国产探花在线观看一区二区| 精品少妇黑人巨大在线播放| 国产精品久久久久久久久免| 欧美xxxx性猛交bbbb| 日本一二三区视频观看| 搡老乐熟女国产| 丰满人妻一区二区三区视频av| 免费看a级黄色片| 高清午夜精品一区二区三区| 成人一区二区视频在线观看| 午夜久久久久精精品| 精品99又大又爽又粗少妇毛片| 国产精品一二三区在线看| 日本欧美国产在线视频| 国产精品综合久久久久久久免费| .国产精品久久| 国产精品一区www在线观看| 精华霜和精华液先用哪个| 中文天堂在线官网| 国产成人精品福利久久| 亚洲一区高清亚洲精品| 免费观看无遮挡的男女| 99久久中文字幕三级久久日本| 欧美人与善性xxx| 欧美变态另类bdsm刘玥| 日韩电影二区| 久久久久久久亚洲中文字幕| 亚洲一区高清亚洲精品| 成人漫画全彩无遮挡| 久久久久久伊人网av| 亚洲国产av新网站| 国产伦精品一区二区三区视频9| 国产精品福利在线免费观看| 在线天堂最新版资源| 一个人看的www免费观看视频| 亚洲,欧美,日韩| 久久久久国产网址| 国产色婷婷99| 久久久色成人| 一二三四中文在线观看免费高清| 亚洲av电影在线观看一区二区三区 | 天堂中文最新版在线下载 | 在线免费观看的www视频| 亚洲国产精品专区欧美| 美女国产视频在线观看| 亚洲欧美精品专区久久| 午夜福利网站1000一区二区三区| 色网站视频免费| 精品国产一区二区三区久久久樱花 | 国产精品一区二区在线观看99 | 亚洲最大成人中文| 免费av观看视频| 国产日韩欧美在线精品| 国产探花极品一区二区| 日本熟妇午夜| 高清在线视频一区二区三区| 国产在视频线在精品| 国产综合懂色| 午夜福利成人在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三卡| 亚洲丝袜综合中文字幕| 亚洲在线观看片| 亚洲丝袜综合中文字幕| 午夜免费男女啪啪视频观看| 成年女人在线观看亚洲视频 | 成人漫画全彩无遮挡| 一级毛片电影观看| av一本久久久久| 欧美性感艳星| 最近中文字幕高清免费大全6| 最近视频中文字幕2019在线8| 国产精品日韩av在线免费观看| 只有这里有精品99| 国产黄频视频在线观看| 人人妻人人澡欧美一区二区| 三级经典国产精品| 欧美最新免费一区二区三区| 伦理电影大哥的女人| 99久久九九国产精品国产免费| 免费av不卡在线播放| 天堂中文最新版在线下载 | 日本免费a在线| 嫩草影院新地址| 国产精品嫩草影院av在线观看| 亚洲婷婷狠狠爱综合网| 禁无遮挡网站| 国产在视频线精品| 三级毛片av免费| 久久久久性生活片| 麻豆av噜噜一区二区三区| 能在线免费观看的黄片| 人妻少妇偷人精品九色| 欧美丝袜亚洲另类| 极品教师在线视频| 熟妇人妻不卡中文字幕| 99热这里只有是精品50| 日韩视频在线欧美| av在线亚洲专区| 亚洲成人av在线免费| 身体一侧抽搐| 亚洲经典国产精华液单| 亚洲,欧美,日韩| 欧美日韩综合久久久久久| 看免费成人av毛片| 丝袜喷水一区| 最近最新中文字幕大全电影3| 国产免费一级a男人的天堂| eeuss影院久久| 免费av观看视频| 成人综合一区亚洲| 成人一区二区视频在线观看| 国产乱人偷精品视频| 国内精品宾馆在线| 成人av在线播放网站| 亚洲欧美日韩卡通动漫| 日日摸夜夜添夜夜爱| 美女国产视频在线观看| 日韩不卡一区二区三区视频在线| 97超视频在线观看视频| 最近最新中文字幕免费大全7| 亚州av有码| 午夜日本视频在线| 日韩av不卡免费在线播放| 国产一级毛片七仙女欲春2| 日韩人妻高清精品专区| 国产精品福利在线免费观看| 九九久久精品国产亚洲av麻豆| 床上黄色一级片| 国产黄色小视频在线观看| 一区二区三区免费毛片| 亚洲精品日本国产第一区| 韩国av在线不卡| 啦啦啦啦在线视频资源| 亚洲精品中文字幕在线视频 | xxx大片免费视频| 国产精品福利在线免费观看| 91av网一区二区| 我的女老师完整版在线观看| 欧美一区二区亚洲| 欧美日韩国产mv在线观看视频 | 成年人午夜在线观看视频 | 大香蕉久久网| 亚洲天堂国产精品一区在线| 在线观看人妻少妇| 国产伦精品一区二区三区四那| 精品一区二区三卡| 日日摸夜夜添夜夜添av毛片| 亚洲国产日韩欧美精品在线观看| 91狼人影院| 国产成人精品福利久久| 人体艺术视频欧美日本| 午夜日本视频在线| 成年女人看的毛片在线观看| 国产真实伦视频高清在线观看| 亚洲欧美成人综合另类久久久| 免费av毛片视频| 亚洲欧洲日产国产| 91在线精品国自产拍蜜月| 精品一区在线观看国产| 日韩av在线大香蕉| 麻豆精品久久久久久蜜桃| av黄色大香蕉| 中文字幕亚洲精品专区| 亚洲av中文字字幕乱码综合| 国产一区二区三区综合在线观看 | 天堂av国产一区二区熟女人妻| 伦精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 久久久亚洲精品成人影院| 欧美日韩精品成人综合77777| 亚洲精品乱久久久久久| 久久99热这里只频精品6学生| 男人爽女人下面视频在线观看| 久久久久久久国产电影| 午夜免费观看性视频| 一级毛片aaaaaa免费看小| 国产探花在线观看一区二区| 午夜视频国产福利| 在线天堂最新版资源| 97超视频在线观看视频| 男女边吃奶边做爰视频| 午夜激情久久久久久久| 99热网站在线观看| 91久久精品国产一区二区三区| 最后的刺客免费高清国语| 麻豆精品久久久久久蜜桃| 亚洲国产精品国产精品| 午夜免费男女啪啪视频观看| av.在线天堂| 亚洲精品成人久久久久久| 少妇人妻一区二区三区视频| 97超视频在线观看视频| 1000部很黄的大片| 国产女主播在线喷水免费视频网站 | 狠狠精品人妻久久久久久综合| 免费少妇av软件| 欧美最新免费一区二区三区| 亚洲成人精品中文字幕电影| 只有这里有精品99| 精品人妻偷拍中文字幕| 精品午夜福利在线看| 我要看日韩黄色一级片| 在线免费十八禁| 国产激情偷乱视频一区二区| 成年女人看的毛片在线观看| 亚洲怡红院男人天堂| 五月玫瑰六月丁香| 国产视频首页在线观看| 在线免费观看不下载黄p国产| 成人综合一区亚洲| 成年女人看的毛片在线观看| 亚洲欧美成人综合另类久久久| 久久人人爽人人爽人人片va| 成人漫画全彩无遮挡| 日韩亚洲欧美综合| 观看免费一级毛片| 欧美不卡视频在线免费观看| 2021天堂中文幕一二区在线观| 免费不卡的大黄色大毛片视频在线观看 | 2018国产大陆天天弄谢| 国精品久久久久久国模美| 99热这里只有是精品在线观看| 亚洲丝袜综合中文字幕| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 久久午夜福利片| 国产在线一区二区三区精| 黄色一级大片看看| 国产真实伦视频高清在线观看| 激情 狠狠 欧美| 国产精品久久久久久精品电影小说 | 精品人妻熟女av久视频| 亚洲国产精品国产精品| 日韩成人伦理影院| 亚洲激情五月婷婷啪啪| 一级a做视频免费观看| 99久久精品国产国产毛片| 高清在线视频一区二区三区| 女人久久www免费人成看片| 纵有疾风起免费观看全集完整版 | 91午夜精品亚洲一区二区三区| 精品不卡国产一区二区三区| 精品一区二区三区人妻视频| 自拍偷自拍亚洲精品老妇| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线a可以看的网站| 日韩av不卡免费在线播放| 国产永久视频网站| 国产国拍精品亚洲av在线观看| 午夜福利在线观看吧| 特大巨黑吊av在线直播| 国产激情偷乱视频一区二区| 身体一侧抽搐| 亚洲av免费在线观看| 久久6这里有精品| 成人鲁丝片一二三区免费| 中文字幕av在线有码专区| av网站免费在线观看视频 | 男人舔奶头视频| 久久久久久久久久黄片| 亚洲综合精品二区| 99久久人妻综合| h日本视频在线播放| 久久精品夜夜夜夜夜久久蜜豆| 七月丁香在线播放| 日韩欧美精品免费久久| 欧美日韩亚洲高清精品| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| 国产一区亚洲一区在线观看| 国内精品宾馆在线| 在现免费观看毛片| 99热这里只有是精品50| 99re6热这里在线精品视频| 黄色日韩在线| 91aial.com中文字幕在线观看| 国产成人福利小说| 国产亚洲av嫩草精品影院| 国产高清三级在线| 人妻一区二区av| 国产一级毛片七仙女欲春2| 亚洲国产精品专区欧美| 69人妻影院| 啦啦啦中文免费视频观看日本| 亚洲一区高清亚洲精品| 欧美丝袜亚洲另类| 免费人成在线观看视频色| 免费观看在线日韩| 欧美日韩精品成人综合77777| 国产av国产精品国产| 久久精品久久精品一区二区三区| 亚洲一区高清亚洲精品| 久久亚洲国产成人精品v| 亚洲欧美日韩无卡精品| 欧美另类一区| 国产黄色视频一区二区在线观看| 亚洲人成网站高清观看| www.av在线官网国产| 成人国产麻豆网| 插阴视频在线观看视频| 亚洲三级黄色毛片| 久久久亚洲精品成人影院| 国产黄a三级三级三级人| 亚洲欧美一区二区三区国产| 18+在线观看网站| 又大又黄又爽视频免费| 一本久久精品| 青春草视频在线免费观看| 亚洲精品亚洲一区二区| 丰满乱子伦码专区| 免费黄色在线免费观看| 亚洲欧美日韩东京热| 免费av毛片视频| 国模一区二区三区四区视频| 真实男女啪啪啪动态图| 日韩一本色道免费dvd| 国产综合精华液| 成人亚洲精品av一区二区| 插逼视频在线观看| 美女国产视频在线观看| 国产在视频线精品| 波多野结衣巨乳人妻| 国产高清不卡午夜福利| 国产精品一及| 最后的刺客免费高清国语| 国产色爽女视频免费观看| 黄色日韩在线| 亚洲av福利一区| 久久精品夜色国产| 亚洲国产日韩欧美精品在线观看| 国产午夜精品久久久久久一区二区三区| 国产视频首页在线观看| 国产精品伦人一区二区| av天堂中文字幕网| 国产精品久久久久久精品电影| 亚洲国产欧美在线一区| 亚洲欧美中文字幕日韩二区| 国产午夜精品一二区理论片| 男人舔奶头视频| 日韩成人av中文字幕在线观看| 高清在线视频一区二区三区| ponron亚洲| 欧美激情在线99| 成人综合一区亚洲| 99久久中文字幕三级久久日本| 在线 av 中文字幕| av黄色大香蕉| 91狼人影院| 成人国产麻豆网| 亚洲人与动物交配视频| 色网站视频免费| 一级毛片电影观看| 欧美日韩国产mv在线观看视频 | 久久久色成人| 欧美高清性xxxxhd video| 中文天堂在线官网| 久久97久久精品| 成人鲁丝片一二三区免费| 人体艺术视频欧美日本| 激情五月婷婷亚洲| 尤物成人国产欧美一区二区三区| 日日啪夜夜撸| 亚洲精品国产av成人精品| 色5月婷婷丁香| 国产精品人妻久久久影院| 99久国产av精品| 男的添女的下面高潮视频| 成人午夜高清在线视频| 日韩在线高清观看一区二区三区| a级毛片免费高清观看在线播放| 天堂av国产一区二区熟女人妻| 色哟哟·www| 亚洲av中文字字幕乱码综合| 国国产精品蜜臀av免费| 成人一区二区视频在线观看| 国产av不卡久久| 精品国内亚洲2022精品成人| 亚洲av成人av| 午夜免费观看性视频| 精品久久国产蜜桃| 亚洲精品一区蜜桃| 久久99蜜桃精品久久| 免费观看的影片在线观看| 国产成人一区二区在线| 日韩大片免费观看网站| 日本黄色片子视频| 一个人看的www免费观看视频| 久久精品国产自在天天线| 亚洲va在线va天堂va国产| 伦精品一区二区三区| 日韩不卡一区二区三区视频在线| 熟女人妻精品中文字幕| 在线a可以看的网站| 国产成人精品婷婷| 日韩 亚洲 欧美在线| 精品少妇黑人巨大在线播放| 丰满人妻一区二区三区视频av| 亚洲国产成人一精品久久久| 1000部很黄的大片| 免费观看无遮挡的男女| 99久久精品一区二区三区| 永久免费av网站大全| 久久6这里有精品| 99久久精品一区二区三区| 久久精品国产自在天天线| 久久久久精品性色| 伦理电影大哥的女人| 精品久久久久久电影网| 国产中年淑女户外野战色| 你懂的网址亚洲精品在线观看| 18禁在线播放成人免费| 亚洲精品第二区| 欧美最新免费一区二区三区| 亚洲精品色激情综合| 亚洲欧美清纯卡通| 十八禁网站网址无遮挡 | 91久久精品电影网| 一级毛片久久久久久久久女|