呂秋燕++劉文斌++唐敏++申騰飛++程玲玲
摘 要 利用不動點定理,研究帶有p-Laplacian算子的分?jǐn)?shù)階微分方程多點邊值問題解的存在性,得到邊值問題至少存在一個解的充分條件.
關(guān)鍵詞 分?jǐn)?shù)階微分方程;p-Laplacian算子;存在性;不動點定理
中圖分類號 O175.8 文獻標(biāo)識碼 A 文章編號 10002537(2016)01008005
Exitence of Solutions for Fractions Multipoint
Boundary Value Problem with p-Laplacian Operator
LV Qiuyan1, LIU Wenbin2*, TANG Min2, SHEN Tengfei2, CHENG Lingling2
(1.Dongshan High School, Suzhou 215107, China;
2.College of Science, China University of Mining and Technology, Xuzhou 221116, China)
Abstract
This paper presents a study on the existence of solutions for the fractional multi-point boundary value problem with p-Laplacian operator. Making use of the fixed-point theorem, we obtained sufficient conditions to guarantee the existence of at least one solution for the boundary value problem.
Key words fractional differential equation; p-Laplacian operator; existence; fixed point theorem
顯然,問題(4)滿足定理2.1的假設(shè)條件.因此,至少存在一個解.
參考文獻:
[1] LAKSHMIKANTHM V. Theory of fraction functional differential equations[J]. Nonlinear Anal: TMA, 2008,69(10):3333733343.
[2] ABDELKADER B. Secondorder boundary value problems with integral boundary conditions[J]. Nonlinear Anal, 2009,70(1):364371.
[3] DELBOSCO D. Fractional calculus and function spaces[J]. J Fract Calc,1994,6:4553.
[4] LI C, LUO X, ZHOU Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Comput Math Appl, 2010,59(3):13631375.
[5] LEIBENSON L S. General problem of the movement of a compressible fluid in a porous medium[J]. Izvestiia Akademii Nauk Kirgizskoi SSR, 1945,9:710.
[6] SHEN T, LIU W, CHEN T, et al. Solvability of fractional m-point boundary value problems with p-Laplacian operator at resonance[J]. Electr J Diff Equ, 2014(58):110.
[7] JIANG W. Solvability of boundary value problem with p-Laplacian at resonance[J]. Bound Value Probl, 2014(1):36.
[8] 申騰飛,劉文斌,宋文耀.一類帶有p-Laplacian算子分?jǐn)?shù)階微分方程邊值問題正解的存在性[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報, 2012,35(5):914.
[9] BAI Z. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J Math Anal Appl, 2005,311(2):495505.
[10] GE W. The existence of solutions of m-point boundary value problems at resonance[J]. Acta Math Appl Sin, 2005,28(4):288295.
[11] CHENG L, LIU W, YE Q. Boundary value problem for a coupled system of fractional differential equations with p-Laplacian operator at resonance[J]. Electr J Diff Equ, 2014(60):112.
[12] BAI Z. On positive solutions of nonlocal fractional boundary value problem[J]. Nonlinear Anal: TMA, 2010,72(2):916924.
[13] CHEN T. An antiperiodic boundary value problem for the fractional differential equation with p-Laplacian operator[J]. Appl Math, 2012,25(11):16711675.
[14] BAI Z. Solvability for a class of fractional mpoint boundary value problems at resonance[J]. Comput Math Appl, 2012,62(3):12921302.
[15] 鐘成奎.非線性泛函分析引論[M].蘭州:蘭州大學(xué)出版社,1998.
(編輯 HWJ)