毛北行,王戰(zhàn)偉
鄭州航空工業(yè)管理學院數(shù)理系,河南鄭州 450015
?
Received:2015-05-17;Accepted:2015-09-23
Foundation:National Natural Science Foundation of China(11404291); Key Scientific Research Project of Colleges and Universities of Henan Province(15B110011)
? Corresponding author:Associate professor Mao Beixing. E-mail: bxmao329@163.com
Citation:Mao Beixing, Wang Zhanwei. Finite-time synchronization control of a class of fractional-order complex network systems[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(1): 96-101.(in Chinese)
【應(yīng)用數(shù)學 / Applied Mathematics】
一類分數(shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)的有限時間同步控制
毛北行,王戰(zhàn)偉
鄭州航空工業(yè)管理學院數(shù)理系,河南鄭州 450015
摘要:研究一類分數(shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)的有限時間混沌同步問題,基于Lyapunov穩(wěn)定性理論和分數(shù)階微積分的相關(guān)理論,給出控制律的設(shè)計,得到了系統(tǒng)取得有限時間同步的充分條件,估算了系統(tǒng)取得同步所需的時間.研究結(jié)果表明,一定條件下分數(shù)階復(fù)雜網(wǎng)絡(luò)混沌系統(tǒng)是有限時間同步的,仿真結(jié)果驗證了方法的可行性.
關(guān)鍵詞:分數(shù)階系統(tǒng);有限時間;混沌同步;復(fù)雜網(wǎng)絡(luò);誤差系統(tǒng);控制
自Pecora提出驅(qū)動—響應(yīng)同步方法以來,混沌控制與混沌同步及其應(yīng)用已逐漸成為研究熱點[1-5].在實際應(yīng)用中,有時希望同步過程在有限時間內(nèi)完成,達到所謂“有限時間同步”[6-8].采用不同的控制方法可達到混沌系統(tǒng)的有限時間同步.文獻[9]研究Lurie混沌系統(tǒng)的有限時間同步,給出系統(tǒng)實現(xiàn)快速同步的充分條件;文獻[10]研究一類分數(shù)階不確定系統(tǒng)的有限時間魯棒混沌同步,給出控制律的設(shè)計和實現(xiàn)快速同步的條件.本文研究一類分數(shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)的有限時間混沌同步問題,基于Lyapunov穩(wěn)定性理論及分數(shù)階微積分的相關(guān)理論,給出實現(xiàn)有限時間同步的充分條件,仿真結(jié)果驗證該方法是可行的.
1預(yù)備知識
定義1[11]Caputo分數(shù)階導(dǎo)數(shù)定義為
n-1<α 考慮如下分數(shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng) (1) 其中, i表示系統(tǒng)節(jié)點, 1≤i≤N, N為網(wǎng)絡(luò)的節(jié)點連接個數(shù); j表示系統(tǒng)連接節(jié)點; f(·)是連續(xù)可微的非線性函數(shù); xi(t)=[xi1(t),xi2(t),…,xin(t)]T∈Rn是節(jié)點i的狀態(tài)變量; xi1(t),xi2(t),…,xin(t)是狀態(tài)變量 xi(t)的各個分量, n為狀態(tài)變量的維數(shù); C=(cij)N×N為N×N階的耦合配置矩陣, cij為耦合配置矩陣的耦合矩陣元素; A為內(nèi)部耦合矩陣,反映了網(wǎng)絡(luò)的拓撲結(jié)構(gòu)和節(jié)點的耦合強度. 以系統(tǒng)(1)作為驅(qū)動系統(tǒng),設(shè)計響應(yīng)系統(tǒng)為 Dαyi(t)=f(yi(t))+ (2) 其中, yi和yj為響應(yīng)系統(tǒng)狀態(tài)變量;ui(t)為控制器. 定義系統(tǒng)誤差ei(t)=yi(t)-xi(t), 上述兩式相減得誤差系統(tǒng)方程為 Dαei(t)=f(yi)-f(xi)+ (3) 2主要結(jié)果 根據(jù)引理1得 (4) 其中, ρ=min{ki(i=1,2,…,n)}, v=min{li(i=1,2,…,n)}. 根據(jù)不等式(4)得 因此 (5) 對式(5)兩邊從0到T積分, e(T)=0, T=max{ti(i=1,2,…,n)}, 得 考慮如下分數(shù)階不確定復(fù)雜網(wǎng)絡(luò)系統(tǒng) Dαxi(t)=f(xi(t))+Δf(xi(t))+ (6) 其中,Δf(xi(t))表示來自驅(qū)動系統(tǒng)的不確定項. 以系統(tǒng)(5)作為驅(qū)動系統(tǒng),設(shè)計響應(yīng)系統(tǒng) Dαyi(t)=f(yi(t))+Δf(yi(t))+ (7) 其中,Δf(yi(t))表示來自響應(yīng)系統(tǒng)的不確定項. 定義系統(tǒng)誤差ei=yi-xi, 則得到誤差系統(tǒng)為 Dαei(t)=f(yi)-f(xi)+Δf(yi)-Δf(xi)+ (8) 定理2選取系統(tǒng)的控制器為 Dα-1[kiei(t)+(γ+ Δf(yi(t))-Δf(xi(t))+ 根據(jù)引理1得 以下證明同定理1,在此從略. 3數(shù)值仿真 為方便,取含3個節(jié)點的網(wǎng)絡(luò)進行仿真. 選取分數(shù)階Lorenz系統(tǒng)為例,驅(qū)動系統(tǒng)描述為 響應(yīng)系統(tǒng)設(shè)計為 誤差系統(tǒng)為 其中, a、b和c為系統(tǒng)參數(shù).當α=0.93, a=10, b=28, c=8/3時系統(tǒng)處于混沌狀態(tài). 為了方便,取含3個節(jié)點的網(wǎng)絡(luò)進行仿真. 定理1中選取控制器 其中, A=I3; li=1; ki=1; γ=0.5; μ=0.95. 系統(tǒng)初始值(x1(0), x2(0), x3(0))=(1,2,-1), 選取步長為0.01 s,所得誤差曲線如圖1.可見,當T>0.043 s后,系統(tǒng)取得同步. 圖1 定理1的系統(tǒng)誤差曲線(N=3)Fig.1 The system error curves of theorem 1 (N=3) 定理2以下述系統(tǒng)為例: 其誤差系統(tǒng)為 Δf(x1)+u1(t) Δf2(y2)-Δf2(x2)+u2(t) Δf3(y3)-Δf3(x3)+u3(t) 其中,Δf1=-0.1sin(4t)x1;Δf2=0.1sin(3t)x2; Δf3=0.15sin(t)x3; A=I3; li=1; ki=1; γ=0.5; μ=0.95. 系統(tǒng)初始值(x1(0), x2(0), x3(0))=(1,1,-1), 選取步長為0.01 s,誤差曲線如圖2.可見,當T>0.046 s后,系統(tǒng)取得同步. 圖2 定理2的系統(tǒng)誤差曲線(N=3)Fig.2 The system error curves of theorem 2 (N=3) 增加結(jié)點的數(shù)量,當N=6時,系統(tǒng)誤差曲線如圖3.可見,當T>0.056 s以后,系統(tǒng)取得同步,表明隨著結(jié)點的增加,要求系統(tǒng)取得同步所需時間更長. 以下考慮系統(tǒng)有不同結(jié)點情形,以N=3為例,單個結(jié)點為分數(shù)階Liu系統(tǒng): Dαy1=-y1-y22 Dαy2=2.5y2-4y1y3 Dαy3=-5y3+4y1y2 網(wǎng)絡(luò)節(jié)點為分數(shù)階Chen系統(tǒng): Dαx1=35(x2-x1) Dαx2=-7x1-x1x2+28x2 Dαx3=-3x3+x1x2 圖3 N=6時的系統(tǒng)誤差曲線Fig.3 The system error curves with N=6 圖4 不同結(jié)點系統(tǒng)的誤差曲線(N=3)Fig.4 The error curves of systems with different nodes (N=3) 圖5 選取不同Lyapunov函數(shù)時的誤差曲線Fig.5 The error curves for different Lyapunov functions 結(jié)語 基于Lyapunov穩(wěn)定性理論和分數(shù)階微積分的相關(guān)理論,研究一類分數(shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)的有限時間混沌同步問題,給出控制器的設(shè)計,并估計系統(tǒng)取得同步所需的時間,使系統(tǒng)能夠在有限時間內(nèi)實現(xiàn)快速同步. 引文:毛北行,王戰(zhàn)偉. 一類分數(shù)階復(fù)雜網(wǎng)絡(luò)系統(tǒng)的有限時間同步控制[J]. 深圳大學學報理工版,2016,33(1):96-101. 參考文獻/ References: [1] 余明哲,張友安. 一類不確定分數(shù)階混沌系統(tǒng)的滑模自適應(yīng)同步[J]. 北京航空航天大學學報,2014,40(9):1276-1280. Yu Mingzhe,Zhang You’an. Sliding mode adaptive synchronization for a class of fractional-order chaotic systems with uncertainties[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1276-1280.(in Chinese) [2] 嚴勝利,張昭晗. 一類不確定分數(shù)階混沌系統(tǒng)的同步控制[J]. 系統(tǒng)仿真技術(shù),2013,9(4):366-370. Yan Shengli, Zhang Zhaohan. Synchronization control of a class of uncertain fractional-order chaotic systems[J]. System Simulation Technology, 2013, 9(4):366-370.(in Chinese) [3] 潘光,魏靜. 一種分數(shù)階混沌系統(tǒng)同步的只適應(yīng)滑??刂破髟O(shè)計[J]. 物理學報,2015,64(4):5051-5057. Pan Guang, Wei Jing. Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems[J]. Acta Physica Sinica, 2015, 64(4):5051-5057.(in Chinese) [4] 徐瑞萍,高存臣. 基于線性控制的一類金融系統(tǒng)的混沌同步[J]. 控制工程,2014,21(1):18-22. Xu Ruiping, Gao Cunchen. Chaos synchronization of a financial systems based on linear control[J]. Control Engineering of China, 2014, 21(1):18-22.(in Chinese) [5] 張云雷,吳超然. 基于反饋控制的分數(shù)階時滯神經(jīng)網(wǎng)絡(luò)的同步[J]. 重慶工商大學學報自然科學版,2014,31(12):49-53. Zhang Yunlei, Wu Chaoran. Synchronization of fractional-order neural network with delay based on feedback control[J]. Journal of Chongqing Technology and Business University Natural Science Edition, 2014, 31(12): 49-53.(in Chinese) [6] 辛道義,劉允剛. 非線性系統(tǒng)有限時間穩(wěn)定性分析與控制設(shè)計[J]. 山東大學學報工學版,2011,41(2):119-125. Xin Daoyi, Liu Yungang. Analysis of finite-time stability and design of control of nonlinear systems[J]. Journal of Shandong University Engineering Science, 2011, 41(2): 119-125.(in Chinese) [7] 楊仁明,王玉振. 一類非線性時滯系統(tǒng)的有限時間穩(wěn)定性[J]. 山東大學學報工學版,2012,42(2):36-43. Yang Renming, Wang Yuzhen. The finite-time stability of a class of time-delay systems[J]. Journal of Shandong University Engineering Edition, 2012, 42(2):36-43.(in Chinese) [8] Mei Jun, Jiang Minghui, Wang Jun. Finite-time structure identification and synchronization of drive-response systems with uncertain parameter[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4): 999-1015. [9] 毛北行,李巧利. Lurie混沌系統(tǒng)的有限時間同步問題[J]. 四川師范大學學報自然科學版,2014,37(4):497-500. Mao Beixing, Li Qiaoli The finite-time synchronization of Lurie chaos systems[J]. Journal of Sichuan Normal University Natural Science, 2014, 37(4): 497-500.(in Chinese) [10] Mohammad P A. Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory[J]. Journal of Computation and Nonlinear Dynamics, 2012, 7(2): 021010. 【中文責編:方圓;英文責編:木南】 Finite-time synchronization control of a class of fractional-order complex network systems Mao Beixing?and Wang Zhanwei Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, Henan Province, P.R.China Abstract:Based on the Lyapunov stability theory and fractional order system theory, we investigate the finite-time chaos synchronization problem of a class of fractional order complex network systems, propose a control law and the sufficient conditions for the synchronization of systems, and estimate the time for the synchronization of systems. It is shown that the fractional order complex network systems are finite-time synchronized under a certain condition. Numerical simulations are performed to verify the effectiveness of the proposed method. Key words:fractional order systems; finite-time; chaos synchronization; complex network; error system; control 作者簡介:毛北行 (1976—),男,鄭州航空工業(yè)管理學院副教授. 研究方向:復(fù)雜網(wǎng)絡(luò)與混沌同步. E-mail: bxmao329@163.com 基金項目:國家自然科學基金資助項目(11404291);河南省高等學校重點科研資助項目(15B110011) 中圖分類號:O 482.4 文獻標志碼:A doi:10.3724/SP.J.1249.2016.01096