• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銀粉含量對(duì)印刷型聚合物發(fā)光器件的影響

    2016-02-23 07:19:10曾文進(jìn)趙春燕李詠華李冬梅

    曾文進(jìn),趙春燕,李詠華,李冬梅,李 雪,張 赤,

    彭俊彪2,賴文勇1,牛巧利1,閔永剛1

    1) 南京郵電大學(xué)材料學(xué)院,江蘇南京 210023;2)華南理工大學(xué)發(fā)光材料與器件教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510641

    ?

    Received:2015-06-14;Accepted:2015-11-13

    Foundation:National Natural Science Foundation of China (61504066); Natural Science Foundation of Jiangsu Higher Education Institutions of China (15KJB430024); Natural Science Foundation of Jiangsu Province (BK20150838)

    ? Corresponding author:Professor Min Yonggang. E-mail: iamygmin@njupt.edu.cn

    Citation:Zeng Wenjin, Zhao Chunyan, Li Yonghua, et al. Effect of Ag content on the performance of cathode-printed PLEDs[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(1): 18-24.

    【Chemistry and Chemical Engineering / 化學(xué)與化工】

    Effect of Ag content on the performance of

    cathode-printed PLEDs

    Zeng Wenjin1, Zhao Chunyan1, Li Yonghua1, Li Dongmei1, Li Xue1,

    Zhang Chi2, Peng Junbiao2, Lai Wenyong1,

    銀粉含量對(duì)印刷型聚合物發(fā)光器件的影響

    曾文進(jìn)1,趙春燕1,李詠華1,李冬梅1,李雪1,張赤2,

    彭俊彪2,賴文勇1,牛巧利1,閔永剛1

    1) 南京郵電大學(xué)材料學(xué)院,江蘇南京 210023;2)華南理工大學(xué)發(fā)光材料與器件教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510641

    摘要:研究銀粉含量和印刷陰極型聚合物發(fā)光二極管(polymer light-emitting diode,PLED)之間的構(gòu)-效關(guān)系.實(shí)驗(yàn)比較兩種不同銀粉含量的導(dǎo)電銀膠,通過(guò)刮涂法制備PLED的陰極.兩種銀膠的膠體基底相同,區(qū)別在于銀粉顆粒的含量不同.實(shí)驗(yàn)研究銀粉的分布狀態(tài)與器件性能之間的關(guān)系.結(jié)果表明,銀膠中的銀粉含量越高,器件的性能越好,主要體現(xiàn)在驅(qū)動(dòng)電壓更低、電流密度更大和量子效率更高.偏光顯微鏡圖片顯示,提高銀膠中銀粉的含量,可以優(yōu)化銀粉在印刷陰極/電子傳輸層之間的分布.通過(guò)銀粉覆蓋率的數(shù)據(jù)模擬也證明了這一點(diǎn).為確定銀粉覆蓋率的提高能夠優(yōu)化器件效率,在器件中通過(guò)蒸鍍添加薄銀層.結(jié)果表明,由于薄銀層的插入,器件的驅(qū)動(dòng)電壓隨之下降,器件性能也得到優(yōu)化.因此,在印刷型的PLED器件中,提高銀膠中銀粉的含量可以有效減低載流子的注入勢(shì)壘,達(dá)到器件優(yōu)化的效果.

    關(guān)鍵詞:化學(xué)物理學(xué);聚合物發(fā)光二極管;導(dǎo)電銀膠;刮涂工藝;印刷式電極;相界面電阻

    The polymer light-emitting diode (PLED) has attracted tremendous attention due to its superiorities in solution processability, low cost, richness of display colors and its potential applications in large-area display panels and solid state light source, etc. Moreover, PLED can be fabricated by the technique of full-printing[1-4]. Until now, the series of novel electroluminescent polymers, which are suitable for solution-processing, have been developed since electronic luminescence was reported from devices made of conjugated polymers[5-9].

    The cathode of PLED can also be printed from the metal pastes, such as silver, copper or gold pastes. However it should be noted that high efficiency required the balanced injection of charge carriers from both the electrodes (anode and cathode) before we applied the metal pastes on the cathode as mentioned above[10]. In addition, metals with low work function, such as Ca, Ba and Mg, are not suitable for printing due to their high chemical activities. Currently, Ag paste is considered as the most promising material for the cathode printing in full-printed PLED based on the following three reasons: ① Silver paste can be achieved with comparable conductivity to evaporated metal after curing at room or moderate temperature, unlike CNTs or graphene which need super high temperature to achieve considerable conductivity. ② Ag paste possesses strong adhesive strength which leads to its wide application in the field of electronic circuits. ③ Ag paste is applicable to most printing techniques such as blade-coating, inkjet printing, screen printing, etc[11].

    Due to the high work function of silver, generally an electron-transporting layer (ETL) is needed to match the energy levels of the polymer layer and the cathode. Amino-/ammonium-functionalized polyfluorene were synthesized ETL materials in the full-printed PLED by Cao and other groups[12-20].

    However, we still notice that the performance of PLED with printed cathode needs further improvement, which mainly reflects its higher driving voltage and lower current density. It is necessary to investigate the injection barriers of the silver particles at the interface between the polymer layer and the Ag-paste cathode. And the injection barriers of the silver particles may be greatly affected by the distribution of silver particles in the paste, which arises from the particles size, the silver content and contact resistance at the interface of the polymer/silver paste.

    In this study, PLED was fabricated with the cathode made from two kinds of Ag pastes, based on the same resin base but the different Ag contents. It was found that the Ag contents significantly influence the coverage of Ag particles at the polymer-cathode interface. The coverage of Ag particles is related to the interfacial resistance of the cathode. With the simulation of the polarized microscopic images by scientific image processing software, we can analyze the relationship between the distribution of Ag particles and the performance of the device.

    1Experiment

    1.1Materials

    Indium tin oxide (ITO) glass with a surface resistance of ca. 25 Ω/sq was purchased from China South Glass Co. Ltd. Poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) and poly[9, 9-bis(3′-(N, N-dimethylamino)propyl)-2,7-fluorene-alt-2,7-(9,9-dioctylfluorene)] (PFN) were synthesized as reported elsewhere[21-22]. Poly (3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT ∶PSS) (Baytron P 4083) was purchased from Bayer company and used without further purification. The conducting Ag pastes with a viscosity of ca. 18 Pa·s and a conductivity higher than 3 × 103s·cm-1were prepared in laboratory. Two kinds of Ag pastes with different Ag content were applied in this study. Paste KD-1 has a mass fraction of 75% for the Ag content, while paste KD-2 has a higher mass fraction of 95%.

    1.2Device fabrication

    ITO glass was cleaned ultrasonically by a solvent bath of acetone, detergent, deionized water and isopropyl alcohol in sequence. Surface treatment by O2plasma was performed on ITO surface to remove the organic residue and improve the work function as well. The layers of PEDOT∶PSS, P-PPV solution (5.5 mg/mL inp-xylene) and PFN solution (4 mg/mL in methanol) were formed on the clean ITO glass in sequence by spin-coating. The optimum thickness for each layer was found to be 40 nm of PEDOT∶PSS, 80 nm of P-PPV and 20 nm of PFN. For the devices with the cathode made of Ag paste, the Ag paste was patterned on top of the PFN layer by the method of blade coating in a glove box under an inert atmosphere. The shape and thickness of the Ag paste were controlled by a plastic mask. For the control device using Ag as a cathode, 150 nm Ag was thermal evaporated at a rate of 0.2 nm/s under high vacuum below 3 × 10-4Pa, with the metal thickness controlled by a calibrated crystal oscillator. The architecture of electron-only device was ITO/Sn(30 nm)/ P-PPV(80 nm)/PFN(20 nm)/cathode. The 30 nm layer of Sn was thermally evaporated under high vacuum below 3 × 10-4Pa. The subsequent deposition of P-PPV, PFN and the cathode was same as that of the standard devices.

    1.3Characterization

    The thickness of the polymer thin films was determined by a surface profiler (Tencor Alpha-Step 500). Current density-luminance-voltage (J-L-V) characteristic curves were collected on a semiconductor testing system consisting of a Keithley 236 source-meter and a calibrated silicon photodiode. The external quantum efficiency (QE) was calculated by measuring the light output in a calibrated integrated sphere (IS-080, Labsphere). The polarized microscopic images were collected on the polarized microscope (Nikon Eclips E600, Tokyo, Japan). The coverage of Ag particles was calculated using an image-processing software (Image J, a widely-used software to calculate the area of irregular shape).

    2Results and discussions

    The chemical structures of the polymers P-PPV and PFN are shown in Fig.1(a) and (b) respectively, in which the P-PPV acts as the emission layer (EML) and PFN as the electron-transporting layer (ETL). The amino group of PFN can induce dipoles under the applied electric filed, thus benefits the electron injection from the PLED cathode. As known, Ag is a noble metal with high work function, which is unfavorable for electron injection from the cathode. Therefore, the thin layer of PFN plays a very important role in the realization of using Ag metal as the cathode. Fig.1(c) indicates the device architecture has the optimum configuration of ITO/PEDOT∶PSS(40 nm)/P-PPV(80 nm)/PFN(20 nm)/Ag paste, which had been verified in previous study[18].

    Fig.1 Chemical structures of P-PPV, PFN, and the device architecture with the configuration of ITO/PEDOT∶PSS(40 nm)/P-PPV(80 nm)/PFN(20 nm)/Ag paste圖1 P-PPV和PFN的化學(xué)結(jié)構(gòu)式以及器件結(jié)構(gòu)

    In our previous study[15-16], it has been revealed that the thickness of PPV and PFN can affect device performance. The thickness of each film layer indicated in the structure has been optimized. For comparison, devices with evaporated Ag as cathodes were also fabricated in the same configuration as the control. For simplicity, devices with cathodes made of the above-mentioned materials were referred as device 1, device 2 and device 3, corresponding to evaporated Ag, Ag paste KD-1 and KD-2, respectively.

    Fig.2 Electronic properties of P-PPV devices with two different Ag pastes (KD-1 and KD-2) as device cathodes. Performance of control device with evaporated Ag is also shown for comparison.圖2 兩種不同銀膠(KD-1和KD-2)制備的P-PPV發(fā)光二極管的電學(xué)性能曲線圖

    It is expectable that there are differences between the electric properties of PLED with evaporated Ag and Ag paste as the cathode. Fig.2(a) and (b) respectively demonstrate the J-L-V characteristic curves and QE-Jcurves of P-PPV devices with different cathode materials. It can be seen that devices 1 and 3 have similar on-voltage, lower than that of device 2. However, when the luminance at a specified voltage is taken into account, device 1 possesses a higher value than device 2 and device 3. As a result, indicated in Fig.2(b), device 1 demonstrates the highest efficiency. More details are summarized in table 1. At a specific current density of 10 mA/cm2, device 1 achieves a luminance of 880 cd/m2at 7.9 V, with a QE of 3.8%, a QEmaxof 4.2% and a maximum luminance efficiency (LEmax) of 11.0 cd/A. For devices with two kinds of Ag paste as a cathode, such as device 2 and device 3, the latter has a much better performance, with a luminance of 740 cd/m2at 7.8 V, a QEmaxof 3.0% and a LEmaxof 7.8 cd/A.

    Table 1 Performance comparison between P-PPV devices with Ag paste KD-1 and KD-2 as the cathode

    Fig.3 In-situ polarized microscopic images collected from the ITO side to compare the distribution of Ag particles between the two Ag pastes圖3 兩種不同銀膠的偏光顯微鏡照片以及對(duì)應(yīng)的軟件模擬圖

    Despite the obvious results that device 1 has attained the best performance among the three types of devices, it would be more interesting to make clear the reason why device 3 possesses a superior performance over device 2 merely arising from the different Ag contents in the paste. It can be taken for granted that pastes of different Ag content have different resistance, which can influence device performance. However, to further understand the mechanism, silver distribution of Ag particles should be investigated, especially at the interface between the cathode and the polymer layer. Therefore, polarized microscopy was applied in-situ to observe the distribution of the Ag particles within the actual device. The polarized images of the two pastes are presented in Fig.3(a) and (b), in which the brighter spots represent the Ag particles directly contacting the polymer layer, while the darker background is the opaque paste resin. By comparing the two images, it is clear that Ag particles have a richer distribution in device 3. As known, Ag particles are the effective components making an Ag paste conductive. The enrichment of Ag particles can facilitate better formation of an ohmic contact[23-24]between the cathode and the polymer layer and would thus effectively benefit the transporting and injection of electrons. To quantitatively evaluate the enrichment of Ag particles, the value of Ag particles coverage was calculated using simulation software. The simulated images are demonstrated in Fig.3(c) and (d), which correspond to the polarized images in (a) and (b). The coverage of Ag particles in Fig.3(a) was calculated to be 27.6%, less than 65.0% in Fig.3(b). Direct contact of silver particles with the polymer layer can reduce the internal resistance of the device since the resin of the silver paste is usually isolated[25]. Therefore, it is reasonable to speculate that the lower coverage of Ag particles in paste KD-1 led to its poorer device performance.Electron-only devices were prepared with tin (Sn) as the anode. The injection barrier height of different cathode configurations can be calculated according to the Fowler-Nordheim (FN) tunneling mechanism. In the FN model, the injection current density (J) is related to the magnitude of electric field (F) by the following equation[26-27],

    where

    Here φ is the barrier height, m the effective mass of electrons in the active materials, q is the charge of an electron, and h is Planck’s constant. The barrier heights were calculated to be 0.40, 0.51 and 0.44 eV, respectively, for the cathode configurations of Ag, Ag paste KD-1 and Ag paste KD-2, as indicated in Fig.4. The results indicate that higher coverage of Ag particles can lower the injection carrier of the electrons injecting from the cathode.

    Fig.4 Characteristic curves of the injection current density related to the electric field圖4 不同電極材料的P-PPV器件的陰極注入勢(shì)壘計(jì)算曲線

    Fig.5 Electronic properties of P-PPV devices with a thin layer of evaporated Ag in different thickness inserted between polymer layer and Ag paste cathode KD-1圖5 插層蒸鍍Ag后的P-PPV器件電學(xué)性能曲線

    To further verify the speculation, a thin layer of Ag in a different thickness was thermally evaporated on top of the polymer layer before the coating of the Ag paste KD-1. With the thickness of the evaporated Ag increasing, the Ag particles can finally form a complete layer of Ag which can fully cover the polymer surface. The evaporated thin Ag film and the following coated Ag paste together constituted the device cathode. Therefore, the thermal evaporation of the inserted Ag film can be regarded as an analogous process in which the coverage of Ag particles in the paste can increase gradually with the growth of the evaporated Ag film. The J-V curves and L-V curves are shown in Fig.5(a) and (b). It can be seen that the electric behavior of the paste device, with the thickness of the evaporated Ag layer increasing from 0 to 30 nm, became more similar to that of the evaporated control one. And its performance also improves gradually towards that of the control device. Therefore, it is proved again that a low coverage of Ag particles in the paste is unfavorable to device performance. It is crucial to develop efficient methods to increase the coverage of Ag particles to achieve high-efficiency PLED with the cathode made of Ag paste.

    Conclusions

    In summary, we have undertaken an investigation on the relationship between the silver content in the paste and the device performance of the cathode-printed PLED. Our experiment results reveal that higher silver content in the paste facilitates better distribution of Ag at the interface of the cathode and the electron-transporting layer. According to the simulation results, higher coverage of Ag particles at the interface is favorable to the device performance, therefore it provides guidance to the further improvement of the printed PLED with Ag paste as cathode. As a result, the maximum QE of 3.0% are achieved for the devices with the cathode of higher silver contents.

    趙春燕(1990—),女,南京郵電大學(xué)碩士研究生.研究方向:有機(jī)光電器件. E-mail:1053179147@qq.com

    曾文進(jìn)、趙春燕為共同第一作者.

    引文:曾文進(jìn),趙春燕,李詠華,等.銀粉含量對(duì)印刷型聚合物發(fā)光器件的影響[J]. 深圳大學(xué)學(xué)報(bào)理工版,2016,33(1):18-24.(英文版)

    參考文獻(xiàn)/ References:

    [1] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers[J]. Nature, 1999, 397(6715): 121-128.

    [2] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539-541.

    [3] Braun D, Heeger A J. Visible light emission from semiconducting polymer diodes[J]. Applied Physics Letters, 1991, 58(18):1982-1984.

    [4] Wu Junbo, Becerril H A, Bao Zhenan, et al. Organic solar cells with solution-processed graphene transparent electrodes[J]. Applied Physics Letters, 2008, 92(26): 263302.

    [5] Zhong Chengmei, Duan Chunhui, Huang Fei, et al. Materials and devices toward fully solution processable organic light-emitting diodes[J]. Chemistry of Materials, 2011, 23(3): 326-340.

    [6] Zhang Lianjie, Hu Sujun, Chen Junwu, et al. A series of energy-transfer copolymers derived from fluorene and 4,7-dithienylbenzotriazole for high efficiency yellow, orange, and white light-emitting diodes[J]. Advanced Functional Materials, 2011, 21(19): 3760-3769.

    [7] Grimsdale A C, Chan K L, Martin R E, et al. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices[J]. Chemical Reviews, 2009, 109(3):897-1091.

    [8] Kamtekar K T, Monkman A P, Bryce M R, et al. Recent advances in white organic light-emitting materials and devices (WOLEDs)[J]. Advanced Materials, 2010, 22(5): 572-582.

    [9] Farinola G M, Ragnia R. Electroluminescent materials for white organic light emitting diodes[J]. Chemical Society Reviews, 2011, 40(7): 3467-3482.

    [10] Rozanski L J, Castaldelli E, Sam F L M, et al. Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes[J]. Journal of Materials Chemistry C, 2013, 13(7): 3347-3352.

    [11] Hu Liangbing, Kim H S, Lee J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4(5): 2955-2963.

    [12] Huang Fei,Cheng Yenju,Zhang Yong,et al.Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes[J]. Journal of Materials Chemistry, 2008, 18(38): 4495-4509.

    [13] Huang Fei, Wu Hongbin, Cao Yong, et al. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices[J]. Chemical Society Reviews, 2010, 39(7): 2500-2521.

    [14] Ma Wanli, Iyer P K, Gong Xiong, et al. Water/methanol soluble conjugated copolymer as an electron transport layer in polymer light-emitting diodes[J]. Advanced Materials, 2005, 17(3): 274-277.

    [15] Wu Hongbin, Huang Fei, Mo Yueqi, et al. Efficient elctron injection from a bilayer cathode consisting of aluminum and alchole-/water-soluble conjugated polymers[J]. Advanced Materials, 2004, 16(20): 1826-1830.

    [16] Hoven C V, Garcia A, Bazan G C, et al. Recent applications of conjugated polyelectrolytes in optoelectronic devices[J]. Advanced Materials, 2008, 20(20): 3793-3810.

    [17] Wu Hongbin, Huang Fei, Peng Junbiao, et al. High-efficiency electron injection cathode of Au for polymer light-emitting devices[J]. Organic Electronics, 2005, 6(3):118-128.

    [18] Zhong Chengmei, Liu Shengjian, Huang Fei, et al. Highly efficient electron injection from indium tin oxide/cross-linkable amino-functionalized polyfluorene interface in inverted organic light emitting devices[J]. Chemistry of Materials, 2011, 23(21):4870-4876.

    [19] Zeng Wenjin, Wu Hongbin, Zhang Chi, et al. Polymer light-emitting diodes with cathodes printed from conducting Ag paste[J]. Advanced Materials, 2007, 19(6): 810-814.

    [20] Zheng Hua, Zheng Yina, Liu Nanliu, et al. All-solution processed polymer light-emitting diode displays[J]. Nature Communications, 2013, 4(7): 1971-1978.

    [21] Mo Yueqi, Huang Jian, Jiang Jiaxin, et al. Influence of traces of water on the synthesis and electrolumi-nescence propties of poly(2-methoxy,5-(2′-ethylhexylo-xy)-1,4-phenylene vinylene)[J]. Chinese Journal of Polymer Science, 2002, 20(5): 461-465.

    [22] Huang Fei, Hou Lintao,Wu Hongbin, et al. High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors[J]. Journal of the American Chemical Society, 2004, 126(31): 9845-9853.

    [23] Vinod P N. Specific contact resistance and metallurgical process of the silver-based paste for making ohmic contact structure on the porous silicon/p-Si surface of the silicon solar cell[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(7): 730-736.

    [24] Kulushich G, Bazer-Bachi B, Takahashi T, et al. Contact formation on 100 Ω/sq emitter by screen printed silver paste[J]. Energy Procedia, 2012, 27: 485-490.

    [25] Strümpler R, Glatz-Reichenbach J. Conducting polymer composites[J]. Journal of Electroceramics, 1999, 3(4): 329-346.

    [26] Parker I D, Glatz-Reichenbach J. Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. Journal of Applied Physics, 1994, 75(3): 1656-1660.

    [27] Kumar A, Srivastava R, Tyagi P, et al. Effect of doping of 8-hydroxyquinolinatolithium on electron transport in tris(8-hydroxyquinolinato) aluminum[J]. Journal of Applied Physics, 2011, 109(11): 114511.

    【中文責(zé)編:方圓;英文責(zé)編:木南】

    Niu Qiaoli1, and Min Yonggang1?

    1) School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications,

    Nanjing 210023, Jiangsu Province, P.R.China

    2) State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640,

    Guangdong Province, P.R.China

    Abstract:The structure-activity relationship of the cathode-printed polymer light-emitting diodes (PLEDs) is investigated. Two kinds of Ag pastes on the same paste resin but with different content of Ag particles were applied to prepare the cathodes of PLEDs by the blade-coating. The relationship between the distribution of Ag particles and the performance of PLEDs was investigated. The results indicate that the paste with a higher silver content exhibites better performances, including a lower driving voltage, higher current density and quantum efficiency. In-situ polarized microscopic images reveal that a higher silver content in the paste could lead to a better distribution of Ag at the interface of the cathode and the electron-transporting layer (ETL), which can also be proved by the simulation of the coverage percentage. A thin layer of Ag was inserted by evaporation between the ETL and Ag-paste cathode, which is regarded as equivalent to the increase of Ag coverage at the interface. As expected, the driving voltage of the devices was reduced and the performance improved after the thin layer of thermally-deposited Ag was inserted. Therefore, large Ag contents at the interface benefits the performance of PLED due to the low injection barriers.

    Key words:chemical physics; polymer light-emitting diodes; Ag paste; blade-coating; printed cathode; interface resistance

    作者簡(jiǎn)介:曾文進(jìn)(1981—),男,南京郵電大學(xué)講師、博士.研究方向:有機(jī)光電器件.E-mail:iamwjzeng@njupt.edu.cn

    基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目 (61504066);江蘇省高校自然科學(xué)研究資助項(xiàng)目(15KJB430024);江蘇省自然科學(xué)基金資助項(xiàng)目 (BK20150838)

    doi:CLC number: O 472+.8Document code: A10.3724/SP.J.1249.2016.01018

    99久久精品一区二区三区| 精品久久国产蜜桃| 国产免费福利视频在线观看| 久久久久国产网址| 亚洲欧美成人精品一区二区| 国产色爽女视频免费观看| 国产69精品久久久久777片| 热99re8久久精品国产| 国产真实乱freesex| 免费搜索国产男女视频| 国产黄片视频在线免费观看| 美女xxoo啪啪120秒动态图| 亚洲内射少妇av| av免费在线看不卡| 亚洲国产精品sss在线观看| av播播在线观看一区| 又粗又爽又猛毛片免费看| 国产亚洲5aaaaa淫片| 又粗又爽又猛毛片免费看| 亚洲自拍偷在线| 黄片无遮挡物在线观看| 寂寞人妻少妇视频99o| 人人妻人人澡人人爽人人夜夜 | 村上凉子中文字幕在线| 国产熟女欧美一区二区| 人体艺术视频欧美日本| 看免费成人av毛片| 日本熟妇午夜| 岛国毛片在线播放| 少妇高潮的动态图| 不卡视频在线观看欧美| 久久久久久久久中文| 精品久久久久久久人妻蜜臀av| 国产在线男女| 中文字幕av在线有码专区| av专区在线播放| 波多野结衣巨乳人妻| 在线播放无遮挡| 中文资源天堂在线| 色5月婷婷丁香| 国产成人freesex在线| 亚洲欧美日韩东京热| 波野结衣二区三区在线| 免费av不卡在线播放| 亚洲电影在线观看av| 国产精品1区2区在线观看.| 色综合色国产| 国产白丝娇喘喷水9色精品| 色网站视频免费| 我的老师免费观看完整版| 边亲边吃奶的免费视频| 亚洲精品aⅴ在线观看| 我的老师免费观看完整版| 国内少妇人妻偷人精品xxx网站| 国产高潮美女av| 汤姆久久久久久久影院中文字幕 | 国产色婷婷99| 亚洲在线观看片| 成人一区二区视频在线观看| 国产午夜精品一二区理论片| 日韩国内少妇激情av| 久久久久久久久久久免费av| 中文亚洲av片在线观看爽| 亚洲欧美精品自产自拍| 成人毛片a级毛片在线播放| 天天躁夜夜躁狠狠久久av| 亚洲av中文av极速乱| av在线观看视频网站免费| 亚洲欧洲国产日韩| 日韩精品有码人妻一区| 日本wwww免费看| 国产精品一及| 色综合站精品国产| 日韩av在线大香蕉| 久久久色成人| 干丝袜人妻中文字幕| 九九爱精品视频在线观看| 国产亚洲av片在线观看秒播厂 | 非洲黑人性xxxx精品又粗又长| 久久精品国产99精品国产亚洲性色| 亚洲一区高清亚洲精品| 中文字幕制服av| 乱码一卡2卡4卡精品| 久久精品熟女亚洲av麻豆精品 | 老司机福利观看| 老女人水多毛片| 啦啦啦韩国在线观看视频| 欧美潮喷喷水| 国产成人一区二区在线| 不卡视频在线观看欧美| 伦理电影大哥的女人| 插逼视频在线观看| 久久久午夜欧美精品| 91av网一区二区| 国产精品久久久久久精品电影| 高清av免费在线| 日本爱情动作片www.在线观看| 午夜福利在线观看吧| 久久久国产成人免费| 成人二区视频| 久久人妻av系列| 欧美潮喷喷水| 精品酒店卫生间| 九九在线视频观看精品| 男女啪啪激烈高潮av片| 精品人妻视频免费看| 久久婷婷人人爽人人干人人爱| 欧美精品国产亚洲| 青青草视频在线视频观看| 亚洲国产精品成人综合色| 禁无遮挡网站| 建设人人有责人人尽责人人享有的 | 欧美激情久久久久久爽电影| 国产精品久久久久久久电影| 日韩av不卡免费在线播放| 午夜福利在线在线| 最新中文字幕久久久久| 亚洲精品国产成人久久av| av在线播放精品| 国内精品宾馆在线| 国产精品一二三区在线看| 精品久久久久久久久久久久久| 中文亚洲av片在线观看爽| 午夜福利高清视频| 精品久久久久久久久亚洲| 在线免费观看的www视频| 日韩强制内射视频| 欧美成人a在线观看| 精品一区二区三区视频在线| 韩国av在线不卡| 99热这里只有精品一区| 国产色婷婷99| 看十八女毛片水多多多| 人妻夜夜爽99麻豆av| av在线观看视频网站免费| 亚洲国产精品专区欧美| 久久久久久国产a免费观看| 免费观看性生交大片5| 日本一二三区视频观看| 久久久久性生活片| 内地一区二区视频在线| 中文在线观看免费www的网站| 国产激情偷乱视频一区二区| 一个人看视频在线观看www免费| 国产av码专区亚洲av| 神马国产精品三级电影在线观看| 亚洲av成人精品一二三区| 国国产精品蜜臀av免费| 卡戴珊不雅视频在线播放| 亚洲国产色片| 嘟嘟电影网在线观看| 日韩视频在线欧美| 免费看光身美女| 在线a可以看的网站| 男人舔奶头视频| 久久久成人免费电影| 99九九线精品视频在线观看视频| 能在线免费看毛片的网站| 国产精品一二三区在线看| 亚洲国产成人一精品久久久| 国产欧美日韩精品一区二区| 日韩,欧美,国产一区二区三区 | 免费观看性生交大片5| 国产片特级美女逼逼视频| 如何舔出高潮| 小蜜桃在线观看免费完整版高清| 夜夜看夜夜爽夜夜摸| 久久久午夜欧美精品| 日韩大片免费观看网站 | 一二三四中文在线观看免费高清| 熟女人妻精品中文字幕| 欧美极品一区二区三区四区| 国产欧美日韩精品一区二区| 亚洲成人av在线免费| 欧美日韩在线观看h| 九色成人免费人妻av| 美女内射精品一级片tv| 桃色一区二区三区在线观看| 丝袜喷水一区| 久久久久久久久久成人| 精品一区二区三区人妻视频| 婷婷色麻豆天堂久久 | 成年av动漫网址| 国产亚洲av片在线观看秒播厂 | a级毛色黄片| 精品久久久久久成人av| 尾随美女入室| 国产午夜福利久久久久久| 亚洲精品,欧美精品| 久久久久久伊人网av| 午夜亚洲福利在线播放| 国产精品嫩草影院av在线观看| 国产91av在线免费观看| 国产精品不卡视频一区二区| 黄色配什么色好看| 久久热精品热| 亚洲av.av天堂| 一级毛片久久久久久久久女| 免费观看的影片在线观看| 老司机福利观看| 麻豆一二三区av精品| 熟女电影av网| 欧美日本亚洲视频在线播放| АⅤ资源中文在线天堂| 欧美xxxx黑人xx丫x性爽| 久久精品久久久久久久性| 欧美97在线视频| 大香蕉久久网| 国产精品国产三级专区第一集| 国产精品一及| 深爱激情五月婷婷| 老司机影院成人| 久久久国产成人精品二区| 成人美女网站在线观看视频| 搞女人的毛片| 国产爱豆传媒在线观看| 在线观看一区二区三区| 嫩草影院精品99| 国产片特级美女逼逼视频| 久久久久久久久久久丰满| 特级一级黄色大片| 中文亚洲av片在线观看爽| 精品久久久久久久久亚洲| 有码 亚洲区| 亚洲综合精品二区| 女的被弄到高潮叫床怎么办| 日韩成人伦理影院| 日本黄大片高清| 亚洲综合色惰| 精品久久国产蜜桃| 国产男人的电影天堂91| 一区二区三区免费毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品永久免费网站| 国产一区有黄有色的免费视频 | 特大巨黑吊av在线直播| 青春草视频在线免费观看| 国产黄片美女视频| 美女大奶头视频| 听说在线观看完整版免费高清| 午夜激情欧美在线| 亚洲av中文字字幕乱码综合| 精品一区二区三区人妻视频| 在线免费观看的www视频| 好男人视频免费观看在线| 中文字幕制服av| 久久久久免费精品人妻一区二区| 91久久精品电影网| 久久精品影院6| 亚洲欧美清纯卡通| 在线播放国产精品三级| 少妇熟女aⅴ在线视频| 2022亚洲国产成人精品| 五月玫瑰六月丁香| 欧美成人一区二区免费高清观看| 国产精品久久久久久久久免| 欧美日韩国产亚洲二区| 精品一区二区三区人妻视频| 日韩欧美三级三区| 春色校园在线视频观看| 国产成人a区在线观看| .国产精品久久| eeuss影院久久| 国产亚洲最大av| 成人av在线播放网站| 丝袜喷水一区| 成人亚洲欧美一区二区av| 最新中文字幕久久久久| 国产高清有码在线观看视频| 午夜激情福利司机影院| 久久精品熟女亚洲av麻豆精品 | 精品国内亚洲2022精品成人| 国产免费福利视频在线观看| 久久久久久久久久黄片| 性插视频无遮挡在线免费观看| 蜜桃亚洲精品一区二区三区| 搞女人的毛片| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久av| 亚洲av免费高清在线观看| 国产亚洲av片在线观看秒播厂 | 成人美女网站在线观看视频| 99视频精品全部免费 在线| 搡女人真爽免费视频火全软件| 久久6这里有精品| 三级国产精品片| 久久久久久久久中文| 男女啪啪激烈高潮av片| 我要看日韩黄色一级片| 免费看av在线观看网站| 成人高潮视频无遮挡免费网站| 欧美日本亚洲视频在线播放| 综合色丁香网| 中文字幕亚洲精品专区| 两性午夜刺激爽爽歪歪视频在线观看| 男女下面进入的视频免费午夜| 校园人妻丝袜中文字幕| 日本黄色片子视频| 欧美+日韩+精品| 久久国产乱子免费精品| 观看美女的网站| 欧美另类亚洲清纯唯美| 国语自产精品视频在线第100页| 日本午夜av视频| 91在线精品国自产拍蜜月| 欧美极品一区二区三区四区| 黄色日韩在线| 亚洲18禁久久av| 一本久久精品| 国产精品久久电影中文字幕| 网址你懂的国产日韩在线| 九九久久精品国产亚洲av麻豆| 99国产精品一区二区蜜桃av| 国产v大片淫在线免费观看| 免费无遮挡裸体视频| 久久99热这里只有精品18| 91精品伊人久久大香线蕉| 欧美另类亚洲清纯唯美| 亚洲av二区三区四区| 国产私拍福利视频在线观看| 91久久精品国产一区二区成人| 精品久久久久久久久久久久久| 你懂的网址亚洲精品在线观看 | 亚洲精品456在线播放app| 久久亚洲国产成人精品v| 亚洲精品日韩av片在线观看| 国产高清有码在线观看视频| 在线播放国产精品三级| 成人亚洲欧美一区二区av| АⅤ资源中文在线天堂| 久久精品夜色国产| 看黄色毛片网站| 男人舔女人下体高潮全视频| 一区二区三区乱码不卡18| 午夜精品一区二区三区免费看| 久久精品人妻少妇| 日本av手机在线免费观看| 99久国产av精品| 老司机影院毛片| 天堂√8在线中文| a级毛色黄片| 99久久九九国产精品国产免费| 精品国产三级普通话版| 一本久久精品| 联通29元200g的流量卡| 天天躁夜夜躁狠狠久久av| 免费看美女性在线毛片视频| 极品教师在线视频| 国产高清不卡午夜福利| 在线免费观看的www视频| 国产麻豆成人av免费视频| 欧美人与善性xxx| 热99在线观看视频| 99视频精品全部免费 在线| 九九久久精品国产亚洲av麻豆| 大香蕉97超碰在线| 亚洲av中文字字幕乱码综合| 欧美又色又爽又黄视频| 嫩草影院新地址| 乱码一卡2卡4卡精品| 久久精品人妻少妇| 综合色丁香网| 国产在视频线在精品| 精品人妻偷拍中文字幕| 免费大片18禁| 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在| av又黄又爽大尺度在线免费看 | 一级毛片aaaaaa免费看小| 91午夜精品亚洲一区二区三区| 91在线精品国自产拍蜜月| 成年av动漫网址| 人妻夜夜爽99麻豆av| 免费观看人在逋| 级片在线观看| 亚洲av中文av极速乱| 69av精品久久久久久| 国产色爽女视频免费观看| 波多野结衣高清无吗| 少妇猛男粗大的猛烈进出视频 | 七月丁香在线播放| 亚洲四区av| 亚洲,欧美,日韩| 久久久成人免费电影| 国产精品久久久久久精品电影小说 | 人妻系列 视频| 亚洲成色77777| 国产成人福利小说| 中文字幕亚洲精品专区| 日本-黄色视频高清免费观看| 欧美一区二区国产精品久久精品| 极品教师在线视频| 国产熟女欧美一区二区| a级毛片免费高清观看在线播放| 欧美成人精品欧美一级黄| 国产免费一级a男人的天堂| 卡戴珊不雅视频在线播放| 免费观看精品视频网站| 自拍偷自拍亚洲精品老妇| 99国产精品一区二区蜜桃av| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 国产精品久久久久久精品电影小说 | 国产中年淑女户外野战色| 免费av不卡在线播放| 久久久精品94久久精品| 国产av一区在线观看免费| 日日啪夜夜撸| 色播亚洲综合网| 麻豆一二三区av精品| 日本色播在线视频| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添av毛片| 精品国产三级普通话版| 水蜜桃什么品种好| 成年版毛片免费区| 少妇的逼好多水| 成人性生交大片免费视频hd| 国产成人午夜福利电影在线观看| 亚洲美女视频黄频| 日本一二三区视频观看| 日韩国内少妇激情av| 久久久久久久久久黄片| 成人鲁丝片一二三区免费| 成人毛片60女人毛片免费| 岛国在线免费视频观看| 成人一区二区视频在线观看| 亚洲成人中文字幕在线播放| 久久久国产成人免费| 日韩,欧美,国产一区二区三区 | 观看免费一级毛片| 男女啪啪激烈高潮av片| 久久午夜福利片| 高清视频免费观看一区二区 | 久久99热这里只有精品18| 少妇人妻精品综合一区二区| 插逼视频在线观看| 日日干狠狠操夜夜爽| 波多野结衣巨乳人妻| 高清日韩中文字幕在线| 国产视频内射| 亚洲电影在线观看av| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 久久亚洲精品不卡| 国产老妇伦熟女老妇高清| 欧美+日韩+精品| 国产精品三级大全| 久久久久久久久久久丰满| 边亲边吃奶的免费视频| 国产免费视频播放在线视频 | 精品久久久噜噜| 亚洲欧美成人综合另类久久久 | 亚洲中文字幕一区二区三区有码在线看| 日本免费a在线| 久久久久久久亚洲中文字幕| 3wmmmm亚洲av在线观看| 99热6这里只有精品| 日本黄大片高清| 久久6这里有精品| 久久久久久久久中文| 国产高清视频在线观看网站| 亚洲国产精品久久男人天堂| 成人毛片a级毛片在线播放| 亚洲国产精品成人综合色| 波多野结衣巨乳人妻| av播播在线观看一区| 亚洲欧美日韩高清专用| 国产精品.久久久| 欧美一区二区亚洲| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| 99热这里只有是精品在线观看| 1000部很黄的大片| 午夜老司机福利剧场| 日韩国内少妇激情av| 色综合站精品国产| 欧美97在线视频| 我的女老师完整版在线观看| 亚洲人成网站在线播| 亚洲精品日韩在线中文字幕| 国内精品宾馆在线| av福利片在线观看| 三级毛片av免费| 永久免费av网站大全| 一本久久精品| 久久久久国产网址| 欧美一区二区亚洲| 国产日韩欧美在线精品| 精品人妻偷拍中文字幕| 国产在视频线精品| 高清视频免费观看一区二区 | 日韩中字成人| 精品无人区乱码1区二区| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 亚洲国产精品合色在线| 男女国产视频网站| 黄色欧美视频在线观看| 日日撸夜夜添| 欧美极品一区二区三区四区| 黄片无遮挡物在线观看| 精品人妻熟女av久视频| 中文天堂在线官网| 精品一区二区三区视频在线| 熟女电影av网| 亚洲精品影视一区二区三区av| 免费看光身美女| 中国国产av一级| 免费一级毛片在线播放高清视频| av免费在线看不卡| av黄色大香蕉| 国产伦精品一区二区三区视频9| 中文字幕亚洲精品专区| 久久国产乱子免费精品| 久久精品国产亚洲网站| 欧美一区二区精品小视频在线| 亚洲综合精品二区| 伦理电影大哥的女人| 天美传媒精品一区二区| 久久亚洲国产成人精品v| 久久久久久大精品| 久久精品熟女亚洲av麻豆精品 | 亚洲精品久久久久久婷婷小说 | 赤兔流量卡办理| 日本猛色少妇xxxxx猛交久久| 日本一本二区三区精品| 日韩大片免费观看网站 | 99视频精品全部免费 在线| 18禁在线无遮挡免费观看视频| 国产黄片美女视频| 性插视频无遮挡在线免费观看| 久久鲁丝午夜福利片| 日韩成人av中文字幕在线观看| 国产成人午夜福利电影在线观看| 亚洲欧洲日产国产| a级一级毛片免费在线观看| 一级毛片电影观看 | 国内少妇人妻偷人精品xxx网站| 人妻少妇偷人精品九色| 久久精品人妻少妇| 最近的中文字幕免费完整| 国内少妇人妻偷人精品xxx网站| 久久久久网色| 日本黄大片高清| 最近2019中文字幕mv第一页| 婷婷色麻豆天堂久久 | 久久精品人妻少妇| 久久精品夜色国产| 国产乱人视频| 99热全是精品| 2021天堂中文幕一二区在线观| 国产中年淑女户外野战色| 又粗又爽又猛毛片免费看| 午夜激情福利司机影院| 日产精品乱码卡一卡2卡三| 三级国产精品片| 亚洲自拍偷在线| 老司机福利观看| 精品久久久久久电影网 | 日韩制服骚丝袜av| 亚洲国产精品久久男人天堂| 亚洲av.av天堂| 国产高清三级在线| 久久精品影院6| 免费一级毛片在线播放高清视频| 97在线视频观看| 欧美日本视频| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 中国国产av一级| 伊人久久精品亚洲午夜| 嫩草影院入口| 全区人妻精品视频| 久久久久网色| 日韩一本色道免费dvd| 韩国高清视频一区二区三区| 国产 一区精品| 成年av动漫网址| 黑人高潮一二区| 可以在线观看毛片的网站| 中国国产av一级| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频 | 最近的中文字幕免费完整| 中文欧美无线码| 99热这里只有精品一区| 国产精品久久久久久精品电影| 国产乱人偷精品视频| 亚洲国产欧洲综合997久久,| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 在线播放无遮挡| 国产高清有码在线观看视频| 在线观看66精品国产| 1024手机看黄色片| 久久欧美精品欧美久久欧美| 又爽又黄无遮挡网站| 搡女人真爽免费视频火全软件| 午夜久久久久精精品| 爱豆传媒免费全集在线观看| 国产欧美日韩精品一区二区| 久久综合国产亚洲精品| 久久久欧美国产精品| 免费大片18禁| 一个人看视频在线观看www免费| 六月丁香七月| 国产极品精品免费视频能看的| 午夜爱爱视频在线播放| av播播在线观看一区| 色尼玛亚洲综合影院| 国产高清视频在线观看网站| 欧美高清成人免费视频www| 欧美激情在线99| 免费观看在线日韩|