• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Ag content on the performance of cathode-printed PLEDs

    2016-02-23 07:17:02ZengWenjinZhaoChunyanLiYonghuaLiDongmeiLiXue

    Zeng Wenjin, Zhao Chunyan, Li Yonghua, Li Dongmei, Li Xue,

    Zhang Chi2, Peng Junbiao2, Lai Wenyong1,

    Niu Qiaoli1, and Min Yonggang1?

    1) School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications,

    Nanjing 210023, Jiangsu Province, P.R.China

    2) State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640,

    Guangdong Province, P.R.China

    ?

    Received:2015-06-14;Accepted:2015-11-13

    Foundation:National Natural Science Foundation of China (61504066); Natural Science Foundation of Jiangsu Higher Education Institutions of China (15KJB430024); Natural Science Foundation of Jiangsu Province (BK20150838)

    ? Corresponding author:Professor Min Yonggang. E-mail: iamygmin@njupt.edu.cn

    Citation:Zeng Wenjin, Zhao Chunyan, Li Yonghua, et al. Effect of Ag content on the performance of cathode-printed PLEDs[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(1): 18-24.

    【Chemistry and Chemical Engineering / 化學(xué)與化工】

    Effect of Ag content on the performance of cathode-printed PLEDs

    Zeng Wenjin1, Zhao Chunyan1, Li Yonghua1, Li Dongmei1, Li Xue1,

    Zhang Chi2, Peng Junbiao2, Lai Wenyong1,

    Niu Qiaoli1, and Min Yonggang1?

    1) School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications,

    Nanjing 210023, Jiangsu Province, P.R.China

    2) State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640,

    Guangdong Province, P.R.China

    Abstract:The structure-activity relationship of the cathode-printed polymer light-emitting diodes (PLEDs) is investigated. Two kinds of Ag pastes on the same paste resin but with different content of Ag particles were applied to prepare the cathodes of PLEDs by the blade-coating. The relationship between the distribution of Ag particles and the performance of PLEDs was investigated. The results indicate that the paste with a higher silver content exhibites better performances, including a lower driving voltage, higher current density and quantum efficiency. In-situ polarized microscopic images reveal that a higher silver content in the paste could lead to a better distribution of Ag at the interface of the cathode and the electron-transporting layer (ETL), which can also be proved by the simulation of the coverage percentage. A thin layer of Ag was inserted by evaporation between the ETL and Ag-paste cathode, which is regarded as equivalent to the increase of Ag coverage at the interface. As expected, the driving voltage of the devices was reduced and the performance improved after the thin layer of thermally-deposited Ag was inserted. Therefore, large Ag contents at the interface benefits the performance of PLED due to the low injection barriers.

    Key words:chemical physics; polymer light-emitting diodes; Ag paste; blade-coating; printed cathode; interface resistance

    The polymer light-emitting diode (PLED) has attracted tremendous attention due to its superiorities in solution processability, low cost, richness of display colors and its potential applications in large-area display panels and solid state light source, etc. Moreover, PLED can be fabricated by the technique of full-printing[1-4]. Until now, the series of novel electroluminescent polymers, which are suitable for solution-processing, have been developed since electronic luminescence was reported from devices made of conjugated polymers[5-9].

    The cathode of PLED can also be printed from the metal pastes, such as silver, copper or gold pastes. However it should be noted that high efficiency required the balanced injection of charge carriers from both the electrodes (anode and cathode) before we applied the metal pastes on the cathode as mentioned above[10]. In addition, metals with low work function, such as Ca, Ba and Mg, are not suitable for printing due to their high chemical activities. Currently, Ag paste is considered as the most promising material for the cathode printing in full-printed PLED based on the following three reasons: ① Silver paste can be achieved with comparable conductivity to evaporated metal after curing at room or moderate temperature, unlike CNTs or graphene which need super high temperature to achieve considerable conductivity. ② Ag paste possesses strong adhesive strength which leads to its wide application in the field of electronic circuits. ③ Ag paste is applicable to most printing techniques such as blade-coating, inkjet printing, screen printing, etc[11].

    Due to the high work function of silver, generally an electron-transporting layer (ETL) is needed to match the energy levels of the polymer layer and the cathode. Amino-/ammonium-functionalized polyfluorene were synthesized ETL materials in the full-printed PLED by Cao and other groups[12-20].

    However, we still notice that the performance of PLED with printed cathode needs further improvement, which mainly reflects its higher driving voltage and lower current density. It is necessary to investigate the injection barriers of the silver particles at the interface between the polymer layer and the Ag-paste cathode. And the injection barriers of the silver particles may be greatly affected by the distribution of silver particles in the paste, which arises from the particles size, the silver content and contact resistance at the interface of the polymer/silver paste.

    In this study, PLED was fabricated with the cathode made from two kinds of Ag pastes, based on the same resin base but the different Ag contents. It was found that the Ag contents significantly influence the coverage of Ag particles at the polymer-cathode interface. The coverage of Ag particles is related to the interfacial resistance of the cathode. With the simulation of the polarized microscopic images by scientific image processing software, we can analyze the relationship between the distribution of Ag particles and the performance of the device.

    1Experiment

    1.1Materials

    Indium tin oxide (ITO) glass with a surface resistance of ca. 25 Ω/sq was purchased from China South Glass Co. Ltd. Poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) and poly[9, 9-bis(3′-(N, N-dimethylamino)propyl)-2,7-fluorene-alt-2,7-(9,9-dioctylfluorene)] (PFN) were synthesized as reported elsewhere[21-22]. Poly (3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT ∶PSS) (Baytron P 4083) was purchased from Bayer company and used without further purification. The conducting Ag pastes with a viscosity of ca. 18 Pa·s and a conductivity higher than 3 × 103s·cm-1were prepared in laboratory. Two kinds of Ag pastes with different Ag content were applied in this study. Paste KD-1 has a mass fraction of 75% for the Ag content, while paste KD-2 has a higher mass fraction of 95%.

    1.2Device fabrication

    ITO glass was cleaned ultrasonically by a solvent bath of acetone, detergent, deionized water and isopropyl alcohol in sequence. Surface treatment by O2plasma was performed on ITO surface to remove the organic residue and improve the work function as well. The layers of PEDOT∶PSS, P-PPV solution (5.5 mg/mL inp-xylene) and PFN solution (4 mg/mL in methanol) were formed on the clean ITO glass in sequence by spin-coating. The optimum thickness for each layer was found to be 40 nm of PEDOT∶PSS, 80 nm of P-PPV and 20 nm of PFN. For the devices with the cathode made of Ag paste, the Ag paste was patterned on top of the PFN layer by the method of blade coating in a glove box under an inert atmosphere. The shape and thickness of the Ag paste were controlled by a plastic mask. For the control device using Ag as a cathode, 150 nm Ag was thermal evaporated at a rate of 0.2 nm/s under high vacuum below 3 × 10-4Pa, with the metal thickness controlled by a calibrated crystal oscillator. The architecture of electron-only device was ITO/Sn(30 nm)/ P-PPV(80 nm)/PFN(20 nm)/cathode. The 30 nm layer of Sn was thermally evaporated under high vacuum below 3 × 10-4Pa. The subsequent deposition of P-PPV, PFN and the cathode was same as that of the standard devices.

    1.3Characterization

    The thickness of the polymer thin films was determined by a surface profiler (Tencor Alpha-Step 500). Current density-luminance-voltage (J-L-V) characteristic curves were collected on a semiconductor testing system consisting of a Keithley 236 source-meter and a calibrated silicon photodiode. The external quantum efficiency (QE) was calculated by measuring the light output in a calibrated integrated sphere (IS-080, Labsphere). The polarized microscopic images were collected on the polarized microscope (Nikon Eclips E600, Tokyo, Japan). The coverage of Ag particles was calculated using an image-processing software (Image J, a widely-used software to calculate the area of irregular shape).

    2Results and discussions

    The chemical structures of the polymers P-PPV and PFN are shown in Fig.1(a) and (b) respectively, in which the P-PPV acts as the emission layer (EML) and PFN as the electron-transporting layer (ETL). The amino group of PFN can induce dipoles under the applied electric filed, thus benefits the electron injection from the PLED cathode. As known, Ag is a noble metal with high work function, which is unfavorable for electron injection from the cathode. Therefore, the thin layer of PFN plays a very important role in the realization of using Ag metal as the cathode. Fig.1(c) indicates the device architecture has the optimum configuration of ITO/PEDOT∶PSS(40 nm)/P-PPV(80 nm)/PFN(20 nm)/Ag paste, which had been verified in previous study[18].

    Fig.1 Chemical structures of P-PPV, PFN, and the device architecture with the configuration of ITO/PEDOT∶PSS(40 nm)/P-PPV(80 nm)/PFN(20 nm)/Ag paste圖1 P-PPV和PFN的化學(xué)結(jié)構(gòu)式以及器件結(jié)構(gòu)

    In our previous study[15-16], it has been revealed that the thickness of PPV and PFN can affect device performance. The thickness of each film layer indicated in the structure has been optimized. For comparison, devices with evaporated Ag as cathodes were also fabricated in the same configuration as the control. For simplicity, devices with cathodes made of the above-mentioned materials were referred as device 1, device 2 and device 3, corresponding to evaporated Ag, Ag paste KD-1 and KD-2, respectively.

    Fig.2 Electronic properties of P-PPV devices with two different Ag pastes (KD-1 and KD-2) as device cathodes. Performance of control device with evaporated Ag is also shown for comparison.圖2 兩種不同銀膠(KD-1和KD-2)制備的P-PPV發(fā)光二極管的電學(xué)性能曲線圖

    It is expectable that there are differences between the electric properties of PLED with evaporated Ag and Ag paste as the cathode. Fig.2(a) and (b) respectively demonstrate the J-L-V characteristic curves and QE-Jcurves of P-PPV devices with different cathode materials. It can be seen that devices 1 and 3 have similar on-voltage, lower than that of device 2. However, when the luminance at a specified voltage is taken into account, device 1 possesses a higher value than device 2 and device 3. As a result, indicated in Fig.2(b), device 1 demonstrates the highest efficiency. More details are summarized in table 1. At a specific current density of 10 mA/cm2, device 1 achieves a luminance of 880 cd/m2at 7.9 V, with a QE of 3.8%, a QEmaxof 4.2% and a maximum luminance efficiency (LEmax) of 11.0 cd/A. For devices with two kinds of Ag paste as a cathode, such as device 2 and device 3, the latter has a much better performance, with a luminance of 740 cd/m2at 7.8 V, a QEmaxof 3.0% and a LEmaxof 7.8 cd/A.

    Table 1 Performance comparison between P-PPV devices with Ag paste KD-1 and KD-2 as the cathode

    Fig.3 In-situ polarized microscopic images collected from the ITO side to compare the distribution of Ag particles between the two Ag pastes圖3 兩種不同銀膠的偏光顯微鏡照片以及對應(yīng)的軟件模擬圖

    Despite the obvious results that device 1 has attained the best performance among the three types of devices, it would be more interesting to make clear the reason why device 3 possesses a superior performance over device 2 merely arising from the different Ag contents in the paste. It can be taken for granted that pastes of different Ag content have different resistance, which can influence device performance. However, to further understand the mechanism, silver distribution of Ag particles should be investigated, especially at the interface between the cathode and the polymer layer. Therefore, polarized microscopy was applied in-situ to observe the distribution of the Ag particles within the actual device. The polarized images of the two pastes are presented in Fig.3(a) and (b), in which the brighter spots represent the Ag particles directly contacting the polymer layer, while the darker background is the opaque paste resin. By comparing the two images, it is clear that Ag particles have a richer distribution in device 3. As known, Ag particles are the effective components making an Ag paste conductive. The enrichment of Ag particles can facilitate better formation of an ohmic contact[23-24]between the cathode and the polymer layer and would thus effectively benefit the transporting and injection of electrons. To quantitatively evaluate the enrichment of Ag particles, the value of Ag particles coverage was calculated using simulation software. The simulated images are demonstrated in Fig.3(c) and (d), which correspond to the polarized images in (a) and (b). The coverage of Ag particles in Fig.3(a) was calculated to be 27.6%, less than 65.0% in Fig.3(b). Direct contact of silver particles with the polymer layer can reduce the internal resistance of the device since the resin of the silver paste is usually isolated[25]. Therefore, it is reasonable to speculate that the lower coverage of Ag particles in paste KD-1 led to its poorer device performance.Electron-only devices were prepared with tin (Sn) as the anode. The injection barrier height of different cathode configurations can be calculated according to the Fowler-Nordheim (FN) tunneling mechanism. In the FN model, the injection current density (J) is related to the magnitude of electric field (F) by the following equation[26-27],

    where

    Here φ is the barrier height, m the effective mass of electrons in the active materials, q is the charge of an electron, and h is Planck’s constant. The barrier heights were calculated to be 0.40, 0.51 and 0.44 eV, respectively, for the cathode configurations of Ag, Ag paste KD-1 and Ag paste KD-2, as indicated in Fig.4. The results indicate that higher coverage of Ag particles can lower the injection carrier of the electrons injecting from the cathode.

    Fig.4 Characteristic curves of the injection current density related to the electric field圖4 不同電極材料的P-PPV器件的陰極注入勢壘計(jì)算曲線

    Fig.5 Electronic properties of P-PPV devices with a thin layer of evaporated Ag in different thickness inserted between polymer layer and Ag paste cathode KD-1圖5 插層蒸鍍Ag后的P-PPV器件電學(xué)性能曲線

    To further verify the speculation, a thin layer of Ag in a different thickness was thermally evaporated on top of the polymer layer before the coating of the Ag paste KD-1. With the thickness of the evaporated Ag increasing, the Ag particles can finally form a complete layer of Ag which can fully cover the polymer surface. The evaporated thin Ag film and the following coated Ag paste together constituted the device cathode. Therefore, the thermal evaporation of the inserted Ag film can be regarded as an analogous process in which the coverage of Ag particles in the paste can increase gradually with the growth of the evaporated Ag film. The J-V curves and L-V curves are shown in Fig.5(a) and (b). It can be seen that the electric behavior of the paste device, with the thickness of the evaporated Ag layer increasing from 0 to 30 nm, became more similar to that of the evaporated control one. And its performance also improves gradually towards that of the control device. Therefore, it is proved again that a low coverage of Ag particles in the paste is unfavorable to device performance. It is crucial to develop efficient methods to increase the coverage of Ag particles to achieve high-efficiency PLED with the cathode made of Ag paste.

    Conclusions

    In summary, we have undertaken an investigation on the relationship between the silver content in the paste and the device performance of the cathode-printed PLED. Our experiment results reveal that higher silver content in the paste facilitates better distribution of Ag at the interface of the cathode and the electron-transporting layer. According to the simulation results, higher coverage of Ag particles at the interface is favorable to the device performance, therefore it provides guidance to the further improvement of the printed PLED with Ag paste as cathode. As a result, the maximum QE of 3.0% are achieved for the devices with the cathode of higher silver contents.

    趙春燕(1990—),女,南京郵電大學(xué)碩士研究生.研究方向:有機(jī)光電器件. E-mail:1053179147@qq.com

    曾文進(jìn)、趙春燕為共同第一作者.

    引文:曾文進(jìn),趙春燕,李詠華,等.銀粉含量對印刷型聚合物發(fā)光器件的影響[J]. 深圳大學(xué)學(xué)報(bào)理工版,2016,33(1):18-24.(英文版)

    參考文獻(xiàn)/ References:

    [1] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers[J]. Nature, 1999, 397(6715): 121-128.

    [2] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539-541.

    [3] Braun D, Heeger A J. Visible light emission from semiconducting polymer diodes[J]. Applied Physics Letters, 1991, 58(18):1982-1984.

    [4] Wu Junbo, Becerril H A, Bao Zhenan, et al. Organic solar cells with solution-processed graphene transparent electrodes[J]. Applied Physics Letters, 2008, 92(26): 263302.

    [5] Zhong Chengmei, Duan Chunhui, Huang Fei, et al. Materials and devices toward fully solution processable organic light-emitting diodes[J]. Chemistry of Materials, 2011, 23(3): 326-340.

    [6] Zhang Lianjie, Hu Sujun, Chen Junwu, et al. A series of energy-transfer copolymers derived from fluorene and 4,7-dithienylbenzotriazole for high efficiency yellow, orange, and white light-emitting diodes[J]. Advanced Functional Materials, 2011, 21(19): 3760-3769.

    [7] Grimsdale A C, Chan K L, Martin R E, et al. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices[J]. Chemical Reviews, 2009, 109(3):897-1091.

    [8] Kamtekar K T, Monkman A P, Bryce M R, et al. Recent advances in white organic light-emitting materials and devices (WOLEDs)[J]. Advanced Materials, 2010, 22(5): 572-582.

    [9] Farinola G M, Ragnia R. Electroluminescent materials for white organic light emitting diodes[J]. Chemical Society Reviews, 2011, 40(7): 3467-3482.

    [10] Rozanski L J, Castaldelli E, Sam F L M, et al. Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes[J]. Journal of Materials Chemistry C, 2013, 13(7): 3347-3352.

    [11] Hu Liangbing, Kim H S, Lee J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4(5): 2955-2963.

    [12] Huang Fei,Cheng Yenju,Zhang Yong,et al.Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes[J]. Journal of Materials Chemistry, 2008, 18(38): 4495-4509.

    [13] Huang Fei, Wu Hongbin, Cao Yong, et al. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices[J]. Chemical Society Reviews, 2010, 39(7): 2500-2521.

    [14] Ma Wanli, Iyer P K, Gong Xiong, et al. Water/methanol soluble conjugated copolymer as an electron transport layer in polymer light-emitting diodes[J]. Advanced Materials, 2005, 17(3): 274-277.

    [15] Wu Hongbin, Huang Fei, Mo Yueqi, et al. Efficient elctron injection from a bilayer cathode consisting of aluminum and alchole-/water-soluble conjugated polymers[J]. Advanced Materials, 2004, 16(20): 1826-1830.

    [16] Hoven C V, Garcia A, Bazan G C, et al. Recent applications of conjugated polyelectrolytes in optoelectronic devices[J]. Advanced Materials, 2008, 20(20): 3793-3810.

    [17] Wu Hongbin, Huang Fei, Peng Junbiao, et al. High-efficiency electron injection cathode of Au for polymer light-emitting devices[J]. Organic Electronics, 2005, 6(3):118-128.

    [18] Zhong Chengmei, Liu Shengjian, Huang Fei, et al. Highly efficient electron injection from indium tin oxide/cross-linkable amino-functionalized polyfluorene interface in inverted organic light emitting devices[J]. Chemistry of Materials, 2011, 23(21):4870-4876.

    [19] Zeng Wenjin, Wu Hongbin, Zhang Chi, et al. Polymer light-emitting diodes with cathodes printed from conducting Ag paste[J]. Advanced Materials, 2007, 19(6): 810-814.

    [20] Zheng Hua, Zheng Yina, Liu Nanliu, et al. All-solution processed polymer light-emitting diode displays[J]. Nature Communications, 2013, 4(7): 1971-1978.

    [21] Mo Yueqi, Huang Jian, Jiang Jiaxin, et al. Influence of traces of water on the synthesis and electrolumi-nescence propties of poly(2-methoxy,5-(2′-ethylhexylo-xy)-1,4-phenylene vinylene)[J]. Chinese Journal of Polymer Science, 2002, 20(5): 461-465.

    [22] Huang Fei, Hou Lintao,Wu Hongbin, et al. High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors[J]. Journal of the American Chemical Society, 2004, 126(31): 9845-9853.

    [23] Vinod P N. Specific contact resistance and metallurgical process of the silver-based paste for making ohmic contact structure on the porous silicon/p-Si surface of the silicon solar cell[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(7): 730-736.

    [24] Kulushich G, Bazer-Bachi B, Takahashi T, et al. Contact formation on 100 Ω/sq emitter by screen printed silver paste[J]. Energy Procedia, 2012, 27: 485-490.

    [25] Strümpler R, Glatz-Reichenbach J. Conducting polymer composites[J]. Journal of Electroceramics, 1999, 3(4): 329-346.

    [26] Parker I D, Glatz-Reichenbach J. Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. Journal of Applied Physics, 1994, 75(3): 1656-1660.

    [27] Kumar A, Srivastava R, Tyagi P, et al. Effect of doping of 8-hydroxyquinolinatolithium on electron transport in tris(8-hydroxyquinolinato) aluminum[J]. Journal of Applied Physics, 2011, 109(11): 114511.

    【中文責(zé)編:方圓;英文責(zé)編:木南】

    銀粉含量對印刷型聚合物發(fā)光器件的影響

    曾文進(jìn)1,趙春燕1,李詠華1,李冬梅1,李雪1,張赤2,

    彭俊彪2,賴文勇1,牛巧利1,閔永剛1

    1) 南京郵電大學(xué)材料學(xué)院,江蘇南京 210023;2)華南理工大學(xué)發(fā)光材料與器件教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510641

    摘要:研究銀粉含量和印刷陰極型聚合物發(fā)光二極管(polymer light-emitting diode,PLED)之間的構(gòu)-效關(guān)系.實(shí)驗(yàn)比較兩種不同銀粉含量的導(dǎo)電銀膠,通過刮涂法制備PLED的陰極.兩種銀膠的膠體基底相同,區(qū)別在于銀粉顆粒的含量不同.實(shí)驗(yàn)研究銀粉的分布狀態(tài)與器件性能之間的關(guān)系.結(jié)果表明,銀膠中的銀粉含量越高,器件的性能越好,主要體現(xiàn)在驅(qū)動(dòng)電壓更低、電流密度更大和量子效率更高.偏光顯微鏡圖片顯示,提高銀膠中銀粉的含量,可以優(yōu)化銀粉在印刷陰極/電子傳輸層之間的分布.通過銀粉覆蓋率的數(shù)據(jù)模擬也證明了這一點(diǎn).為確定銀粉覆蓋率的提高能夠優(yōu)化器件效率,在器件中通過蒸鍍添加薄銀層.結(jié)果表明,由于薄銀層的插入,器件的驅(qū)動(dòng)電壓隨之下降,器件性能也得到優(yōu)化.因此,在印刷型的PLED器件中,提高銀膠中銀粉的含量可以有效減低載流子的注入勢壘,達(dá)到器件優(yōu)化的效果.

    關(guān)鍵詞:化學(xué)物理學(xué);聚合物發(fā)光二極管;導(dǎo)電銀膠;刮涂工藝;印刷式電極;相界面電阻

    作者簡介:曾文進(jìn)(1981—),男,南京郵電大學(xué)講師、博士.研究方向:有機(jī)光電器件.E-mail:iamwjzeng@njupt.edu.cn

    基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目 (61504066);江蘇省高校自然科學(xué)研究資助項(xiàng)目(15KJB430024);江蘇省自然科學(xué)基金資助項(xiàng)目 (BK20150838)

    doi:CLC number: O 472+.8Document code: A10.3724/SP.J.1249.2016.01018

    国产av精品麻豆| 久久99一区二区三区| av网站免费在线观看视频| 国产成人av教育| 成人18禁高潮啪啪吃奶动态图| 国产成+人综合+亚洲专区| 天天躁夜夜躁狠狠躁躁| 亚洲成人国产一区在线观看| 69av精品久久久久久| 夜夜夜夜夜久久久久| xxxhd国产人妻xxx| 超碰97精品在线观看| 久热这里只有精品99| 性色av乱码一区二区三区2| 国产成人一区二区三区免费视频网站| 亚洲中文日韩欧美视频| 午夜视频精品福利| 国产午夜精品久久久久久| 亚洲人成电影观看| 成人影院久久| 黄网站色视频无遮挡免费观看| 久久亚洲精品不卡| 国产成人影院久久av| 精品久久久久久成人av| 国产精品98久久久久久宅男小说| 午夜福利一区二区在线看| 亚洲精品中文字幕一二三四区| 桃色一区二区三区在线观看| 午夜福利影视在线免费观看| 美女大奶头视频| 极品教师在线免费播放| 精品久久蜜臀av无| 老司机深夜福利视频在线观看| 乱人伦中国视频| 亚洲精品国产精品久久久不卡| 欧美成狂野欧美在线观看| 亚洲欧洲精品一区二区精品久久久| a级毛片黄视频| 国产成人系列免费观看| 久久久久久久精品吃奶| 日本三级黄在线观看| 色老头精品视频在线观看| 巨乳人妻的诱惑在线观看| 国产精品av久久久久免费| 国产精品秋霞免费鲁丝片| 窝窝影院91人妻| 欧美亚洲日本最大视频资源| 国产一区二区激情短视频| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 亚洲精品在线美女| 黄片小视频在线播放| 在线观看午夜福利视频| 夜夜躁狠狠躁天天躁| 夜夜看夜夜爽夜夜摸 | 18禁黄网站禁片午夜丰满| 怎么达到女性高潮| 日韩精品青青久久久久久| 亚洲精品国产精品久久久不卡| 日韩有码中文字幕| 一本大道久久a久久精品| 女人高潮潮喷娇喘18禁视频| 日本a在线网址| 老司机午夜福利在线观看视频| 黑人操中国人逼视频| 日本免费一区二区三区高清不卡 | 99香蕉大伊视频| xxxhd国产人妻xxx| 村上凉子中文字幕在线| 交换朋友夫妻互换小说| 国产精品一区二区在线不卡| 黄色 视频免费看| 日本黄色日本黄色录像| 国产麻豆69| 色综合婷婷激情| 亚洲av成人不卡在线观看播放网| 日本免费a在线| 欧美中文日本在线观看视频| www日本在线高清视频| 在线观看一区二区三区激情| 久久天躁狠狠躁夜夜2o2o| √禁漫天堂资源中文www| 一级a爱视频在线免费观看| 80岁老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 日韩大尺度精品在线看网址 | 99在线人妻在线中文字幕| 一区在线观看完整版| 免费一级毛片在线播放高清视频 | 一个人免费在线观看的高清视频| 97超级碰碰碰精品色视频在线观看| 韩国av一区二区三区四区| 最好的美女福利视频网| 亚洲精品中文字幕一二三四区| 欧美另类亚洲清纯唯美| 美女国产高潮福利片在线看| 国产av一区二区精品久久| 亚洲一区二区三区欧美精品| 国产99久久九九免费精品| 欧美+亚洲+日韩+国产| 午夜福利在线免费观看网站| 欧美日韩亚洲国产一区二区在线观看| 日本黄色视频三级网站网址| 国产一区二区三区综合在线观看| 两人在一起打扑克的视频| 欧美乱色亚洲激情| 丰满的人妻完整版| 18禁黄网站禁片午夜丰满| 91九色精品人成在线观看| 免费少妇av软件| 大型av网站在线播放| 亚洲精品国产色婷婷电影| 国产视频一区二区在线看| 99热只有精品国产| 人人妻人人添人人爽欧美一区卜| 亚洲全国av大片| 精品久久久久久久毛片微露脸| 国产单亲对白刺激| 曰老女人黄片| 十八禁网站免费在线| 日韩有码中文字幕| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出 | 午夜福利欧美成人| 国产精品成人在线| 日日爽夜夜爽网站| 亚洲精品久久成人aⅴ小说| 视频在线观看一区二区三区| 人人澡人人妻人| 欧美一区二区精品小视频在线| 国产亚洲欧美在线一区二区| 女人被狂操c到高潮| 男男h啪啪无遮挡| 国产亚洲精品第一综合不卡| 免费看十八禁软件| 欧美大码av| 国产精品99久久99久久久不卡| 亚洲精品一二三| 一区在线观看完整版| 亚洲av成人一区二区三| 国产免费av片在线观看野外av| 大香蕉久久成人网| av电影中文网址| 久久狼人影院| 在线观看免费日韩欧美大片| 91九色精品人成在线观看| 国产又色又爽无遮挡免费看| 香蕉国产在线看| 国产激情欧美一区二区| 精品一品国产午夜福利视频| 精品熟女少妇八av免费久了| 日韩免费高清中文字幕av| 久久精品国产亚洲av香蕉五月| 国产精华一区二区三区| 成人精品一区二区免费| 婷婷六月久久综合丁香| 久久香蕉激情| 国产精品久久久久成人av| 日韩欧美一区视频在线观看| 女警被强在线播放| 亚洲精品一卡2卡三卡4卡5卡| 精品乱码久久久久久99久播| 热99re8久久精品国产| 亚洲自偷自拍图片 自拍| 免费av毛片视频| 一级作爱视频免费观看| 97人妻天天添夜夜摸| 国产精品一区二区三区四区久久 | 亚洲性夜色夜夜综合| 婷婷丁香在线五月| 大型黄色视频在线免费观看| 色精品久久人妻99蜜桃| netflix在线观看网站| 久久狼人影院| 久久香蕉激情| 久热爱精品视频在线9| 老汉色av国产亚洲站长工具| 精品欧美一区二区三区在线| 免费在线观看影片大全网站| 一级,二级,三级黄色视频| 人妻丰满熟妇av一区二区三区| 久久久久亚洲av毛片大全| 99国产精品一区二区蜜桃av| 国产1区2区3区精品| 成人三级黄色视频| 欧美日韩一级在线毛片| 九色亚洲精品在线播放| 精品久久久久久久毛片微露脸| 亚洲国产中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 真人一进一出gif抽搐免费| 欧美日韩国产mv在线观看视频| 精品一品国产午夜福利视频| 夜夜夜夜夜久久久久| 国产视频一区二区在线看| 一个人免费在线观看的高清视频| 精品一区二区三区av网在线观看| av天堂在线播放| 老鸭窝网址在线观看| xxx96com| av在线播放免费不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 777久久人妻少妇嫩草av网站| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看| 久久久久亚洲av毛片大全| 1024视频免费在线观看| 午夜福利影视在线免费观看| 女生性感内裤真人,穿戴方法视频| 一级片'在线观看视频| 不卡一级毛片| 免费看十八禁软件| 老司机亚洲免费影院| 91精品三级在线观看| 成年女人毛片免费观看观看9| 亚洲一区二区三区色噜噜 | 中文字幕av电影在线播放| 精品一品国产午夜福利视频| 最新在线观看一区二区三区| 国产亚洲精品久久久久久毛片| 国产精品自产拍在线观看55亚洲| 高清在线国产一区| 国产精品久久久av美女十八| 欧美日韩一级在线毛片| 亚洲三区欧美一区| 国产成人精品无人区| 国产精品电影一区二区三区| 黄片小视频在线播放| 久久久国产成人精品二区 | 久久久久久亚洲精品国产蜜桃av| 老司机靠b影院| 男女下面插进去视频免费观看| 亚洲精品av麻豆狂野| 男人舔女人下体高潮全视频| 日韩一卡2卡3卡4卡2021年| 亚洲欧美激情在线| 免费人成视频x8x8入口观看| 精品国产国语对白av| 国产精品免费一区二区三区在线| 欧美一级毛片孕妇| 波多野结衣高清无吗| 高清毛片免费观看视频网站 | 国产一区二区在线av高清观看| 婷婷丁香在线五月| 亚洲美女黄片视频| 18禁黄网站禁片午夜丰满| 亚洲精品成人av观看孕妇| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久精品吃奶| 女人爽到高潮嗷嗷叫在线视频| 99热只有精品国产| 成人18禁在线播放| 男人舔女人下体高潮全视频| 久久精品国产99精品国产亚洲性色 | 99国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 91麻豆av在线| 久久久国产欧美日韩av| 一进一出抽搐动态| 欧美日韩黄片免| 免费搜索国产男女视频| 一本大道久久a久久精品| 日韩三级视频一区二区三区| 黄色a级毛片大全视频| 精品国产一区二区三区四区第35| 一进一出抽搐动态| 精品国产亚洲在线| 色精品久久人妻99蜜桃| 国产免费男女视频| 国产有黄有色有爽视频| 亚洲av成人一区二区三| 成人免费观看视频高清| 黄色怎么调成土黄色| 男人舔女人下体高潮全视频| 亚洲第一欧美日韩一区二区三区| 久久人人97超碰香蕉20202| 视频在线观看一区二区三区| 欧美日韩av久久| av在线天堂中文字幕 | 国产免费av片在线观看野外av| 久久久久久亚洲精品国产蜜桃av| 日本五十路高清| 两性夫妻黄色片| 欧美日韩精品网址| 国产黄a三级三级三级人| 色尼玛亚洲综合影院| 国产野战对白在线观看| 美女 人体艺术 gogo| 亚洲欧美激情在线| 国产成人影院久久av| 热99国产精品久久久久久7| 国产精品日韩av在线免费观看 | 在线观看www视频免费| 亚洲av熟女| 色综合婷婷激情| 久久精品影院6| 成人影院久久| 欧美午夜高清在线| 日本三级黄在线观看| 搡老岳熟女国产| 很黄的视频免费| 午夜视频精品福利| 精品熟女少妇八av免费久了| 国产高清视频在线播放一区| 69精品国产乱码久久久| 亚洲国产欧美日韩在线播放| 国产精品成人在线| 精品国产超薄肉色丝袜足j| 欧美在线一区亚洲| 老熟妇乱子伦视频在线观看| 日韩av在线大香蕉| 亚洲va日本ⅴa欧美va伊人久久| 露出奶头的视频| 精品国产乱子伦一区二区三区| 91麻豆精品激情在线观看国产 | 啦啦啦 在线观看视频| 久久国产精品人妻蜜桃| 午夜免费观看网址| 久久人妻av系列| 男人舔女人下体高潮全视频| 亚洲男人的天堂狠狠| 亚洲国产精品sss在线观看 | 亚洲av成人不卡在线观看播放网| 无人区码免费观看不卡| 日韩欧美国产一区二区入口| 久久久国产成人免费| 亚洲精品在线美女| 后天国语完整版免费观看| 亚洲成人免费电影在线观看| 又大又爽又粗| 在线观看免费视频日本深夜| 黄片大片在线免费观看| 国产精品亚洲一级av第二区| 一边摸一边抽搐一进一小说| 亚洲熟女毛片儿| 母亲3免费完整高清在线观看| 不卡av一区二区三区| 日韩视频一区二区在线观看| 精品卡一卡二卡四卡免费| 国产三级黄色录像| 免费一级毛片在线播放高清视频 | 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 日韩中文字幕欧美一区二区| 成年人黄色毛片网站| 9热在线视频观看99| 亚洲av美国av| 欧美大码av| 男女做爰动态图高潮gif福利片 | 免费不卡黄色视频| 波多野结衣av一区二区av| e午夜精品久久久久久久| 成人国产一区最新在线观看| 久久这里只有精品19| 久久久久久人人人人人| 操出白浆在线播放| 亚洲伊人色综图| 美女 人体艺术 gogo| 嫩草影视91久久| 无人区码免费观看不卡| 新久久久久国产一级毛片| 日本vs欧美在线观看视频| 婷婷精品国产亚洲av在线| 精品久久久久久电影网| 亚洲少妇的诱惑av| 老司机午夜福利在线观看视频| 亚洲欧美日韩无卡精品| 成人亚洲精品av一区二区 | 国产在线精品亚洲第一网站| 国产欧美日韩精品亚洲av| 两个人看的免费小视频| 99在线人妻在线中文字幕| 日日夜夜操网爽| 国产欧美日韩精品亚洲av| 看免费av毛片| 90打野战视频偷拍视频| 午夜福利影视在线免费观看| 久久99一区二区三区| 色老头精品视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 99热国产这里只有精品6| 欧美亚洲日本最大视频资源| 视频区图区小说| 亚洲专区中文字幕在线| 日本wwww免费看| 精品人妻1区二区| 两人在一起打扑克的视频| 亚洲成人免费av在线播放| 狂野欧美激情性xxxx| 亚洲国产精品sss在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 色综合欧美亚洲国产小说| 男女下面进入的视频免费午夜 | 一级,二级,三级黄色视频| 在线观看66精品国产| 亚洲人成电影观看| 午夜视频精品福利| 免费不卡黄色视频| 国产真人三级小视频在线观看| 国产精品久久电影中文字幕| 一进一出好大好爽视频| 日韩大尺度精品在线看网址 | 美女 人体艺术 gogo| 亚洲少妇的诱惑av| 人妻久久中文字幕网| 国产又色又爽无遮挡免费看| 国产高清国产精品国产三级| 欧美黑人欧美精品刺激| 99国产精品99久久久久| 日本免费a在线| 欧美激情久久久久久爽电影 | 男女高潮啪啪啪动态图| 国产成年人精品一区二区 | 欧美成人性av电影在线观看| 麻豆成人av在线观看| 十八禁人妻一区二区| 成人特级黄色片久久久久久久| 欧美色视频一区免费| 久久久久久人人人人人| 亚洲免费av在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 成人18禁在线播放| 天堂√8在线中文| 可以在线观看毛片的网站| 免费高清在线观看日韩| 美女国产高潮福利片在线看| 亚洲五月婷婷丁香| 韩国精品一区二区三区| 欧美一级毛片孕妇| 91成年电影在线观看| 美女福利国产在线| 亚洲欧美一区二区三区黑人| 精品少妇一区二区三区视频日本电影| 国产精品成人在线| 国产深夜福利视频在线观看| 色综合欧美亚洲国产小说| 日韩欧美一区二区三区在线观看| 午夜免费鲁丝| 天堂中文最新版在线下载| 免费日韩欧美在线观看| www.www免费av| 亚洲成人久久性| 免费在线观看亚洲国产| 精品一品国产午夜福利视频| 精品一区二区三区av网在线观看| 亚洲狠狠婷婷综合久久图片| 热99国产精品久久久久久7| 国产精品久久视频播放| 久久婷婷成人综合色麻豆| 久久久精品国产亚洲av高清涩受| 美女午夜性视频免费| 成人18禁在线播放| 国产黄a三级三级三级人| 韩国av一区二区三区四区| 99国产精品一区二区蜜桃av| 亚洲精品在线美女| av片东京热男人的天堂| 婷婷六月久久综合丁香| 国产精品电影一区二区三区| 免费女性裸体啪啪无遮挡网站| 女性被躁到高潮视频| 18禁裸乳无遮挡免费网站照片 | 9色porny在线观看| 91成年电影在线观看| 色婷婷久久久亚洲欧美| 一区二区三区精品91| 亚洲 国产 在线| 久久久久国产一级毛片高清牌| 欧美午夜高清在线| 亚洲中文日韩欧美视频| av网站免费在线观看视频| 亚洲精品在线美女| 操美女的视频在线观看| 少妇被粗大的猛进出69影院| 日日摸夜夜添夜夜添小说| 国产精品av久久久久免费| 欧美精品亚洲一区二区| 真人一进一出gif抽搐免费| 亚洲精品一区av在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品二区激情视频| 亚洲一区二区三区不卡视频| 日韩高清综合在线| 久久久久亚洲av毛片大全| 欧美另类亚洲清纯唯美| 99在线人妻在线中文字幕| 国产伦一二天堂av在线观看| 最近最新免费中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 欧美丝袜亚洲另类 | 午夜免费激情av| 黑人巨大精品欧美一区二区蜜桃| 亚洲男人的天堂狠狠| 十八禁网站免费在线| 午夜福利影视在线免费观看| 久久久久九九精品影院| 日本五十路高清| 久久伊人香网站| 国产一区二区在线av高清观看| 超碰成人久久| 嫁个100分男人电影在线观看| 亚洲专区中文字幕在线| 国产精品久久电影中文字幕| 欧美激情极品国产一区二区三区| 久久久久国产精品人妻aⅴ院| 桃红色精品国产亚洲av| 午夜影院日韩av| 亚洲欧洲精品一区二区精品久久久| 女性生殖器流出的白浆| 欧美激情久久久久久爽电影 | 国产激情欧美一区二区| 高清黄色对白视频在线免费看| 色哟哟哟哟哟哟| 久久精品国产99精品国产亚洲性色 | 亚洲国产毛片av蜜桃av| 丰满迷人的少妇在线观看| 亚洲性夜色夜夜综合| 亚洲欧美日韩另类电影网站| 精品久久久久久电影网| 91麻豆精品激情在线观看国产 | 中亚洲国语对白在线视频| 精品电影一区二区在线| 美女扒开内裤让男人捅视频| 19禁男女啪啪无遮挡网站| 欧美性长视频在线观看| 麻豆国产av国片精品| 日本欧美视频一区| 50天的宝宝边吃奶边哭怎么回事| 18禁美女被吸乳视频| 身体一侧抽搐| 十分钟在线观看高清视频www| 亚洲第一青青草原| 在线观看舔阴道视频| 亚洲人成电影观看| 村上凉子中文字幕在线| 久久人人爽av亚洲精品天堂| 久久人妻熟女aⅴ| 美女国产高潮福利片在线看| 午夜福利在线观看吧| 日本黄色视频三级网站网址| 亚洲成国产人片在线观看| 另类亚洲欧美激情| 人人澡人人妻人| 久久香蕉国产精品| www日本在线高清视频| 欧美人与性动交α欧美精品济南到| 国产xxxxx性猛交| 日日夜夜操网爽| 一个人观看的视频www高清免费观看 | 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| 欧美老熟妇乱子伦牲交| 亚洲自偷自拍图片 自拍| 波多野结衣一区麻豆| 午夜福利欧美成人| 一级毛片高清免费大全| 又大又爽又粗| 久久国产乱子伦精品免费另类| 我的亚洲天堂| 久久精品国产亚洲av高清一级| 女人被躁到高潮嗷嗷叫费观| av网站在线播放免费| 女性生殖器流出的白浆| 在线观看免费视频日本深夜| 女人被狂操c到高潮| 亚洲av成人av| 又黄又爽又免费观看的视频| bbb黄色大片| 午夜免费观看网址| 无限看片的www在线观看| 欧美色视频一区免费| 亚洲精品久久成人aⅴ小说| 色播在线永久视频| 91国产中文字幕| 亚洲国产精品sss在线观看 | 精品乱码久久久久久99久播| 亚洲va日本ⅴa欧美va伊人久久| 别揉我奶头~嗯~啊~动态视频| 一a级毛片在线观看| 午夜日韩欧美国产| 又大又爽又粗| 搡老岳熟女国产| 国产成人免费无遮挡视频| 免费看十八禁软件| 亚洲国产精品999在线| 可以在线观看毛片的网站| 一级,二级,三级黄色视频| 午夜影院日韩av| 久久青草综合色| av超薄肉色丝袜交足视频| 男女午夜视频在线观看| 一级毛片女人18水好多| 日韩av在线大香蕉| 午夜免费成人在线视频| 人妻丰满熟妇av一区二区三区| 母亲3免费完整高清在线观看| 免费看a级黄色片| 黄色a级毛片大全视频| 母亲3免费完整高清在线观看| 亚洲精品一区av在线观看| 人妻丰满熟妇av一区二区三区| av超薄肉色丝袜交足视频| 久久人人精品亚洲av| 高潮久久久久久久久久久不卡| 亚洲精华国产精华精| 久久久国产欧美日韩av| 中文字幕av电影在线播放| a在线观看视频网站| 精品一区二区三卡| 精品高清国产在线一区| 久久九九热精品免费| 久久狼人影院| 香蕉久久夜色| 在线观看日韩欧美|