梁洺源,朱化彬,陳曉麗,郝海生,趙學(xué)明,秦 彤,王 棟*
(1.吉林農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,長(zhǎng)春 130118; 2.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部畜禽遺傳資源與利用重點(diǎn)開(kāi)放實(shí)驗(yàn)室,北京100193)
?
支持細(xì)胞調(diào)控精原干細(xì)胞增殖、分化和凋亡的研究進(jìn)展
梁洺源1,2,朱化彬2,陳曉麗2,郝海生2,趙學(xué)明2,秦彤2,王棟2*
(1.吉林農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,長(zhǎng)春 130118; 2.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部畜禽遺傳資源與利用重點(diǎn)開(kāi)放實(shí)驗(yàn)室,北京100193)
摘要:精原干細(xì)胞(Spermatogonial stem cells,SSCs)在支持細(xì)胞(Sertoli cells,SCs)調(diào)控下有序增殖、分化、凋亡,維持雄性動(dòng)物正常的精子發(fā)生。本文主要對(duì)SCs與SSCs的生理結(jié)構(gòu)關(guān)系及SCs通過(guò)GDNF、FGF2、RA、BMP4、SCF、FasL和SR-BI對(duì)SSCs增殖、分化與凋亡的調(diào)控進(jìn)行綜述。為精子發(fā)生機(jī)理的深入研究提供重要參考,將對(duì)提高雄性動(dòng)物繁殖效率具有重要意義,還為探索男性不育疾病的臨床治療方法提供有價(jià)值的參考。
關(guān)鍵詞:精原干細(xì)胞;支持細(xì)胞;增殖;分化;凋亡
精原干細(xì)胞(Spermatogonial stem cells,SSCs)是精子發(fā)生的源泉,在雄性動(dòng)物遺傳信息傳遞過(guò)程中發(fā)揮著重要作用。雄性動(dòng)物性成熟后,睪丸生精小管基膜上的SSCs不斷分化形成分化型的A1-4型精原細(xì)胞→B型精原細(xì)胞→精母細(xì)胞→精子細(xì)胞→精子,這一分化過(guò)程即為生精過(guò)程[1]。支持細(xì)胞(Sertoli cells,SCs)是動(dòng)物睪丸內(nèi)唯一與生精細(xì)胞緊密相連的體細(xì)胞,不僅在結(jié)構(gòu)上支撐整個(gè)生精過(guò)程,還分泌多種調(diào)控因子,促進(jìn)SSCs增殖和分化,同時(shí),SCs還接受機(jī)體信號(hào)調(diào)節(jié)生精細(xì)胞凋亡,保證機(jī)體內(nèi)產(chǎn)生精子數(shù)量的穩(wěn)定,在精子生成過(guò)程中具有不可或缺的重要地位。由于精子發(fā)生機(jī)理研究不但關(guān)系到家畜繁殖效率,而且還關(guān)系到人類(lèi)男性不孕不育問(wèn)題的解決[2],SCs對(duì)SSCs的增殖、分化和凋亡調(diào)控通路備受關(guān)注[3-6]。本文綜述了SCs對(duì)SSCs的支撐與調(diào)控作用,以期為提高雄性動(dòng)物繁殖效率和治療男性不育提供重要參考。
1支持細(xì)胞與精原干細(xì)胞的關(guān)系
SCs與SSCs是睪丸曲細(xì)精管中兩類(lèi)重要的功能細(xì)胞。SCs體積較大,位于睪丸生精小管生精上皮,呈不規(guī)則錐體形分布,細(xì)胞一端位于基底膜上,另一端延伸至曲精細(xì)管管腔內(nèi)。SSCs則體積較小,緊貼于生精上皮基膜內(nèi)側(cè)并與SCs相接[7],完全被SCs包圍,并與SCs形成緊密嵌合體,在這個(gè)穩(wěn)定的龕環(huán)境下,SSCs與周?chē)鶶Cs相互協(xié)作,依附曲精細(xì)管的形態(tài)結(jié)構(gòu),自我更新、增殖與分化,構(gòu)成雄性動(dòng)物整個(gè)生命周期中正常有序、周而復(fù)始的生精過(guò)程[8-9]。SCs質(zhì)膜間緊密結(jié)合,與曲細(xì)精管周?chē)啄ぜ蛹?xì)胞共同構(gòu)成血睪屏障,為SSCs自我更新及正常有序的精子發(fā)生提供免疫屏障和適宜的微環(huán)境,防止有害物質(zhì)干擾及損害精子發(fā)生[10]。對(duì)小鼠SSCs和SCs體外培養(yǎng)結(jié)果表明,兩種細(xì)胞通過(guò)細(xì)胞間的直接聯(lián)系及SCs旁分泌兩種途徑促進(jìn)SSCs自我更新、增殖[11]。不添加各種SSCs增殖因子時(shí),常規(guī)培養(yǎng)液下,以SCs為飼養(yǎng)層的SSCs培養(yǎng)效果明顯優(yōu)于常規(guī)培養(yǎng)液和SCs分泌液無(wú)飼養(yǎng)層培養(yǎng),SCs飼養(yǎng)層培養(yǎng)的SSCs貼壁率顯著高于其他兩種培養(yǎng)方式,SSCs可穩(wěn)定增殖,形成穩(wěn)定集落并維持約30 d,而另外兩組一周后SSCs數(shù)量明顯減少,說(shuō)明SSCs需通過(guò)與SCs直接接觸,才能適時(shí)觸發(fā)SCs分泌與SSCs增殖、分化特定階段相適應(yīng)的各種細(xì)胞因子,并使各種因子根據(jù)SSCs生長(zhǎng)需求達(dá)到一種動(dòng)態(tài)平衡,確保SSCs的正常更新、增殖。SCs分泌液雖可為SSCs生長(zhǎng)提供所需的部分細(xì)胞因子,但分泌液提供的靜態(tài)環(huán)境無(wú)法滿足SSCs持續(xù)生長(zhǎng)的動(dòng)態(tài)需要。SCs是生精細(xì)胞的“飼養(yǎng)細(xì)胞”,體內(nèi)與SSCs緊密結(jié)合,確保它能根據(jù)SSCs自我更新、增殖、分化需要適時(shí)分泌各種細(xì)胞因子,并通過(guò)維持SSCs龕環(huán)境的穩(wěn)定,確保雄性動(dòng)物精子發(fā)生的持續(xù)性和有序性。
2支持細(xì)胞對(duì)精原干細(xì)胞的調(diào)控作用
SSCs增殖分化生成精子是睪丸最重要的生命事件,SCs對(duì)保障SSCs正常功能發(fā)揮重要調(diào)控作用。研究表明,SCs可分泌多達(dá)14種因子參與SSCs的增殖、分化與凋亡調(diào)控,其中膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子(Glial cell line-derived neurotrophic factor,GDNF)、成纖維細(xì)胞生長(zhǎng)因子2(Fibroblast growth factor 2,F(xiàn)GF2)、干細(xì)胞因子(Stem cell factor,SCF)、視黃酸(Retinoic acid,RA)、骨形態(tài)生成蛋白4(Bone morphogenetic protein 4,BMP4)、Fas配體(FasL)和清道夫B類(lèi)I型(SR-BI)7種因子對(duì)SSCs的增殖、分化和凋亡具有重要調(diào)控作用[12](表1,圖1),根據(jù)生物學(xué)功能,這7種因子可分為3類(lèi),其中GDNF和FGF2參與SSCs的自我更新過(guò)程,是SSCs的增殖因子;SCF、RA和BMP4參與SSCs的分化調(diào)控,是SSCs的分化因子;FasL和SR-BI則參與精子的自發(fā)凋亡過(guò)程,是SSCs的凋亡因子。3類(lèi)細(xì)胞因子通過(guò)不同的調(diào)控通路,逐級(jí)作用于其下游通路因子和效應(yīng)因子,通過(guò)這些因子共同協(xié)作,SCs實(shí)現(xiàn)對(duì)SSCs的功能調(diào)控,維持SSCs的更新、增殖、分化及凋亡,確保生精過(guò)程的正常、有序[8,12]。
表1支持細(xì)胞分泌的調(diào)控精原干細(xì)胞增殖、分化的因子[12]
Table 1Factors produced by SCs regulate the self-renewal and differentiation of spermatogonia including SSCs[12]
2.1支持細(xì)胞對(duì)精原干細(xì)胞增殖的調(diào)控機(jī)制
對(duì)遺傳修飾小鼠的研究發(fā)現(xiàn),GDNF是促進(jìn)SSCs增殖的關(guān)鍵因子[13-14],使GDNF對(duì)SSCs增殖調(diào)控機(jī)理成為研究焦點(diǎn)[15-16]。隨著研究的不斷深入,GDNF的調(diào)控作用逐漸清晰。SCs中GDNF過(guò)表達(dá)會(huì)導(dǎo)致小鼠曲細(xì)精管內(nèi)未分化SSCs數(shù)量顯著增多,甚至?xí)霈F(xiàn)生殖細(xì)胞瘤[13];但敲除GDNF的成年雜合小鼠中GDNF表達(dá)量顯著下降,SSCs大量消亡,精子發(fā)生受阻,并最終導(dǎo)致小鼠不育[17]。GDNF與SSCs細(xì)胞膜上膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子受體α1(Glialcellline derived neurotrophic factor receptor alpha1,GFRα1)結(jié)合,介導(dǎo)磷酸化受體酪氨酸激酶RET激活肉瘤基因(Sarcoma gene,Src)家族激酶/癌基因Ras通路,刺激磷脂酰肌醇激酶(PI3K)活化,激活蛋白激酶B(Protein kinase B,稱(chēng)為AKT),促進(jìn)細(xì)胞增殖和抑制細(xì)胞凋亡。GDNF還可通過(guò)Src/Ras激活刺激絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)家族的三級(jí)激酶的級(jí)聯(lián)反應(yīng),將胞內(nèi)信號(hào)傳遞進(jìn)入核內(nèi),上調(diào)轉(zhuǎn)錄因子Ets差異基因5(Etv5),繼而上調(diào)序列特異性轉(zhuǎn)錄抑制因子(B cell CLL/lymphoma 6,member B,Bcl6b)、miRNA21和Brachyury的表達(dá)[18]。敲除Bcl6b基因,小鼠表現(xiàn)出局部SSCs缺失,說(shuō)明Bcl6b是一個(gè)重要的SSCs增殖調(diào)控因子[19]。由GDNF誘導(dǎo)表達(dá)的轉(zhuǎn)錄因子Etv5還可促使GDNF受體Ret合成[20],促進(jìn)GDNF胞外信號(hào)向胞內(nèi)傳遞。
FGF2是重要的精原干細(xì)胞增殖調(diào)控因子之一[21-22]。K.Ishii 等[23]發(fā)現(xiàn),向生殖干細(xì)胞(Germline stem cell,GS)體外培養(yǎng)體系添加FGF2因子,可促進(jìn)MAP2K1磷酸化,推動(dòng)GS細(xì)胞增殖;而采用抑制劑抑制MAP2K1后,GS細(xì)胞增殖速度下降;轉(zhuǎn)染活化型MAP2K1后,細(xì)胞增殖速度加快,Etv5和Bcl6b蛋白水平上升,說(shuō)明MAP2K1是FGF2的下游靶蛋白,Etv5和Bcl6b是MAP2K1的下游靶蛋白。FGF2可通過(guò)MAP2K1/Etv5/Bcl6b通路參與SSCs增殖調(diào)控。SCs分泌的FGF2與膜上成纖維細(xì)胞生長(zhǎng)因子受體(Fibroblast growth factor receptor,F(xiàn)GFR)結(jié)合,相繼激活Src/Ras/MEK通路各因子,磷酸化MAP2K1,上調(diào)下游靶蛋白Etv5的表達(dá)水平,進(jìn)而上調(diào)下游蛋白Bcl6b,促進(jìn)SSCs增殖。
2.2支持細(xì)胞對(duì)精原干細(xì)胞分化的調(diào)控機(jī)制
維生素A衍生物RA對(duì)SSCs分化起重要調(diào)控作用。受到精子生成生理因素的影響,SCs表達(dá)的RA與其受體RARα結(jié)合,抑制了SCs表達(dá)和分泌GDNF,并使SCs表達(dá)促進(jìn)SSCs分化的因子KL、BMP4,SCs分泌BMP4 與SSCs膜上受體Bmpr1a(又稱(chēng)ALK3)結(jié)合,促進(jìn)SSCs內(nèi)的RA與其受體RARγ結(jié)合,誘導(dǎo)未分化的SSCs表達(dá)酪氨酸激酶Kit(又稱(chēng)c-kit)和分化細(xì)胞特異基因Stra8,推動(dòng)SSCs分化[24]。SCs分泌的分化因子KL與分化型精原細(xì)胞膜上受體Kit結(jié)合,使Kit自我磷酸化,促進(jìn)分化型精原細(xì)胞進(jìn)一步分化(圖2)。無(wú)飼養(yǎng)層SSCs培養(yǎng)證明RA能直接誘導(dǎo)Stra8和Kit表達(dá),使SSCs過(guò)度成分化型精原細(xì)胞[25]。供體SSCs移植入KL或Kit基因突變鼠睪丸曲細(xì)精管,SSCs雖能增殖,但不能分化,精子發(fā)生因此受阻[26]。推測(cè)RA/KL/kit通路可能是精原細(xì)胞分化的開(kāi)關(guān)[27]。
BMP4為轉(zhuǎn)化生長(zhǎng)因子β(Transforming growth factor-β,TGF-β)家族成員。小鼠出生后7 d內(nèi),BMP4由SCs表達(dá),此后主要由精原細(xì)胞和精母細(xì)胞表達(dá)。BMP4可與SSCs表面受體Bmpr1a(又稱(chēng)Alk3)特異結(jié)合,將細(xì)胞分化信號(hào)傳導(dǎo)至SSCs胞內(nèi),誘導(dǎo)胞內(nèi)下游特異型蛋白Smad1/5/8磷酸化,磷酸化的Smad1/5/8可與公共調(diào)節(jié)型Smad4結(jié)合形成Smad復(fù)合物并轉(zhuǎn)運(yùn)到細(xì)胞核內(nèi),與靶基因結(jié)合,促進(jìn)黏附相關(guān)分子的轉(zhuǎn)錄與合成,尤其是E-鈣粘蛋白,調(diào)控細(xì)胞骨架蛋白-微絲、微管,保障細(xì)胞正常分裂、分化[28]。Smad復(fù)合物還作為轉(zhuǎn)錄因子,上調(diào)精卵發(fā)生堿性螺旋-環(huán)-螺旋蛋白轉(zhuǎn)錄因子2(Spermatogenesis-and oogenesis-specific basic helix-loop-helix (bHLH) transcription factor 2,Sohlh2)表達(dá),Sohlh2再促進(jìn)下游基因c-kit表達(dá)[5],推動(dòng)分化型精原細(xì)胞的形成,形成BMP4/BMPRIA/Smads/Sohlh2/c-kit SSCs分化調(diào)控通路。
c-kit是精原細(xì)胞分化標(biāo)志。SCs分泌的SCF能夠與c-kit特異結(jié)合,促進(jìn)精原細(xì)胞繼續(xù)分化并產(chǎn)生精子。敲除試驗(yàn)表明,SCF基因突變小鼠曲細(xì)精管內(nèi)僅存留未分化的A型精原細(xì)胞,精子發(fā)生受阻[29]。c-kit受體基因719位酪氨酸(Tyr)突變?yōu)楸奖彼?Phe)的組織學(xué)分析顯示,生后10 d,對(duì)照鼠曲細(xì)精管內(nèi)精原細(xì)胞增殖并開(kāi)始減數(shù)分裂,而突變鼠曲細(xì)精管內(nèi)可發(fā)現(xiàn)A1~A4型精原細(xì)胞,但從A型精原細(xì)胞~B型精原細(xì)胞、B型精原細(xì)胞形成精母細(xì)胞的分化過(guò)程受到阻礙,精原細(xì)胞分化減少,生精細(xì)胞凋亡比例上升。生后21 d,僅在曲細(xì)精管基底膜處存有小部分生精細(xì)胞,雄性動(dòng)物因此喪失生殖功能,表明c-kit突變導(dǎo)致精子發(fā)生在減數(shù)分裂前受到阻滯[30]。SCF/c-kit是調(diào)控精原細(xì)胞的分化及精原細(xì)胞分化至精母細(xì)胞的關(guān)鍵通路,是保證精子生成的重要途徑。
2.3支持細(xì)胞對(duì)精原干細(xì)胞凋亡的調(diào)控機(jī)制
生精細(xì)胞是曲細(xì)精管主要的細(xì)胞成分,具有無(wú)限增生潛能。但是其賴以生存的SCs數(shù)量較少,僅占成年睪丸細(xì)胞總數(shù)的3%,并且一個(gè)SCs大約僅能支撐30~50個(gè)生精細(xì)胞的正常活動(dòng)[31-32]。為維持睪丸正常的生精能力,SCs除分泌SSCs增殖和分化因子外,還分泌凋亡因子,促使大部分生精細(xì)胞走向凋亡。所以,僅約25%的A1型精原細(xì)胞分化生成初級(jí)精母細(xì)胞[33]。受到細(xì)胞凋亡信號(hào)刺激,SCs分泌腫瘤壞死因子家族(Tumor necrosis factor,TNF) 配體(如FasL)等促凋亡因子,啟動(dòng)凋亡程序。一方面,SCs分泌FasL與其SSCs受體Fas結(jié)合,將胞外信號(hào)傳遞到生精細(xì)胞內(nèi)。另一方面,細(xì)胞內(nèi)的DNA損傷等信號(hào)向線粒體內(nèi)傳遞,促使細(xì)胞色素C釋放。兩個(gè)通路均可造成Caspase家族激活,線粒體細(xì)胞色素C釋放,使細(xì)胞質(zhì)、核質(zhì)濃縮,核仁碎裂及DNA降解等[34-35],并使膜內(nèi)側(cè)磷脂酰絲氨酸(PS)外翻,PS標(biāo)記一旦被SCs檢測(cè)到,SCs上的清道夫B類(lèi)I型(Scavenger receptor class B type I,SR-BI)受體便立即與細(xì)胞內(nèi)吞噬銜接蛋白(Engulfment adapter protein,GULP)結(jié)合,觸發(fā)p38胞外信號(hào)調(diào)節(jié)激酶(p38 mitogen-activated protein kinase,p38MAPK)磷酸化水平,進(jìn)一步活化SCs細(xì)胞Rac1(信號(hào)傳導(dǎo)分子小 G 蛋白R(shí)ac亞家族),使肌動(dòng)蛋白微絲(Actin filaments)發(fā)生重排,吞噬凋亡細(xì)胞[36]。
2.3.1胞外信號(hào)通路Fas/FasL胞外途徑是哺乳動(dòng)物生精細(xì)胞凋亡主要途徑[37]。在凋亡信號(hào)調(diào)控下,生精細(xì)胞特異表達(dá)跨膜糖蛋白Fas,與SCs特異表達(dá)的配體FasL特異結(jié)合,使Fas形成帶有死亡結(jié)構(gòu)域的三聚化體,吸引生精細(xì)胞內(nèi)Fas相關(guān)的新死亡結(jié)構(gòu)域蛋白(Fas-associating protein with a novel death domain,F(xiàn)ADD)并與之結(jié)合,F(xiàn)ADD蛋白再與Caspase-8前體結(jié)合,形成死亡誘導(dǎo)信號(hào)復(fù)合物(Death-inducing signaling complex,DISC)[38]。在I型細(xì)胞中,Caspase-8自身激活,激活后的Caspase-8再激活Caspase-3和Caspase-7等凋亡效應(yīng)因子[39],對(duì)特定凋亡底物DNA修復(fù)酶PARP(Poly ADP-ribose polymerase)實(shí)施切割,使其失去正常功能,致使Ca2+/Mg2+依賴性核酸內(nèi)切酶活性增高,DNA裂解,細(xì)胞凋亡。I型細(xì)胞死亡過(guò)程,不依賴細(xì)胞內(nèi)凋亡通路。在II細(xì)胞中,X連鎖凋亡抑制蛋白(X-linked inhibitor of apoptosis,XIAP)可以直接抑制Caspase-3和Caspase-7,導(dǎo)致Caspase-8激活Bcl-2家族中凋亡誘導(dǎo)因子Bid,激活后的Bid移位至線粒體并激活凋亡誘導(dǎo)因子Bax,促進(jìn)線粒體釋放細(xì)胞色素C,進(jìn)入細(xì)胞內(nèi)凋亡通路[40]。
2.3.2胞內(nèi)信號(hào)通路胞內(nèi)凋亡途徑對(duì)生精細(xì)胞凋亡也至關(guān)重要,Bcl-2家族基因在該途徑中發(fā)揮著舉足輕重的作用,可分為Bax、Bid、p53基因上調(diào)凋亡調(diào)控因子(Thep53 upregulated modulator of apoptosis,PUMA)、Noxa和Bak等主要細(xì)胞凋亡誘導(dǎo)因子和Bcl-2、Bcl-x1等主要細(xì)胞凋亡抑制因子。其中,Bcl-2對(duì)細(xì)胞存活起關(guān)鍵作用,Bax對(duì)細(xì)胞死亡起關(guān)鍵作用,兩者的相對(duì)水平?jīng)Q定了細(xì)胞的生死[41]。研究表明,Bcl-2蛋白主要通過(guò)抑制細(xì)胞線粒體通透性轉(zhuǎn)換孔(Mitochondrial permeablity transition pore,mPTP)的開(kāi)放,保證線粒體滲透壓平衡,維持線粒體完整性,進(jìn)而保證細(xì)胞能量系統(tǒng)正常運(yùn)轉(zhuǎn)。同時(shí),Bcl-2還通過(guò)阻斷內(nèi)質(zhì)網(wǎng)Ca2+流出,降低依賴Ca2+的核酸內(nèi)切酶活性,抑制其對(duì)核DNA的切割損傷;Bcl-2還具有抗氧化作用,抑制氧自由基的產(chǎn)生,阻斷細(xì)胞凋亡[42]。相反,Bax則能促進(jìn)線粒體mPTP開(kāi)放,使線粒體膜通透性增強(qiáng),導(dǎo)致細(xì)胞質(zhì)流入線粒體,滲透壓失衡,使線粒體膜破裂,釋放細(xì)胞色素C。細(xì)胞色素C和凋亡酶激活因子(Apoptotic protease activating facter-1,APAF-1)結(jié)合形成復(fù)合體,激Caspase-9,進(jìn)而激活凋亡效應(yīng)因子Caspase-3、6、7等[43],引發(fā)細(xì)胞凋亡。
當(dāng)細(xì)胞暴露在輻射、化學(xué)毒物、氧化等非正常環(huán)境后,部分生精細(xì)胞的DNA會(huì)受到損傷,進(jìn)而啟動(dòng)細(xì)胞DNA修復(fù)或凋亡程序。p53感知DNA損傷,使細(xì)胞在G1期停滯,啟動(dòng)DNA修復(fù),p53在此通路中發(fā)揮至關(guān)重要的作用。一旦DNA無(wú)法修復(fù),p53則啟動(dòng)損傷細(xì)胞凋亡程序[44]。一方面核內(nèi)四聚化p53可作為反式作用因子,上調(diào)銜接蛋白ASK,刺激Bax、Bid、PUMA和Noxa等促凋亡靶基因表達(dá)水平上升[45],并定位于線粒體膜上,誘發(fā)線粒體膜通透性增加,釋放細(xì)胞色素C,誘發(fā)胞內(nèi)凋亡途徑。此外,p53還可促進(jìn)DNA損傷釋放的組蛋白H1.2向細(xì)胞質(zhì)遷移,通過(guò)Bak依賴方式,誘發(fā)線粒體釋放細(xì)胞色素C,推動(dòng)細(xì)胞走向凋亡[43];另一方面,胞質(zhì)中的p53可誘發(fā)異源二聚體Bax-Bcl-xl和Bax-Bcl-2等解聚釋放Bax,隨后Bax定位于線粒體膜上,促進(jìn)mPTP開(kāi)放,釋放細(xì)胞色素C。p53還可直接激活Bak,同樣誘發(fā)線粒體內(nèi)的細(xì)胞色素C流向細(xì)胞質(zhì),推動(dòng)細(xì)胞凋亡。敲除Bax/Bak凋亡誘導(dǎo)因子的小鼠可抵抗包括基因損傷在內(nèi)的各種凋亡刺激,說(shuō)明Bax/Bak在凋亡途徑起到死亡關(guān)卡作用[46]。
3小結(jié)
研究表明,SSCs增殖、分化、凋亡的主要調(diào)控機(jī)制已逐漸清晰,為精子發(fā)生機(jī)理研究奠定堅(jiān)實(shí)基礎(chǔ),但各個(gè)通路中的具體調(diào)控細(xì)節(jié)及各個(gè)通路間的調(diào)控關(guān)系還有待深入研究,隨著人類(lèi)文明的不斷進(jìn)步,人和動(dòng)物都將面臨越來(lái)越多的藥物殘留、電子輻射、生產(chǎn)生活壓力等,這些負(fù)效應(yīng)對(duì)雄性生殖機(jī)能的影響將越來(lái)越明顯[47-49],生精細(xì)胞抵抗白消安等藥物、放射性傷害和生產(chǎn)生活壓力等的具體機(jī)制及調(diào)控機(jī)理還有待深入研究。
參考文獻(xiàn)(References):
[1]DE ROOIJ D G.Proliferation and differentiation of spermatogonial stem cells[J].Reproduction,2001,121(3):347-354.
[2]YANG S,PING P,MA M,et al.Generation of haploid spermatids with fertilization and development capacity from human spermatogonial stem cells of cryptorchid patients[J].StemCellReports,2014,3(4):663-675.
[3]CHEN S R,LIU Y X.Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling[J].Reproduction,2015,149(4):R159-R167.
[4]GARCIA T X,F(xiàn)ARMAHA J K,KOW S,et al.RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche[J].Development,2014,141(23):4468-4478.
[5]LI Y,ZHANG Y,ZHANG X,et al.BMP4/Smad signaling pathway induces the differentiation of mouse spermatogonial stem cells via upregulation of Sohlh2[J].AnatRec(Hoboken),2014,297(4):749-757.
[6]MOHAMED R H,KARAM R A,HAGRASS H A,et al.Anti-apoptotic effect of spermatogonial stem cells on doxorubicin-induced testicular toxicity in rats[J].Gene,2015,561(1):107-114.
[7]HOFMANN M C.Gdnf signaling pathways within the mammalian spermatogonial stem cell niche[J].MolCellEndocrinol,2008,288(1-2):95-103.
[8]GRISWOLD M D.The central role of Sertoli cells in spermatogenesis[J].SeminCellDevBiol,1998,9(4):411-416.
[9]司蕾,張學(xué)明,岳占碰,等.睪丸支持細(xì)胞對(duì)精原干細(xì)胞發(fā)育的調(diào)節(jié)[J].細(xì)胞生物學(xué)雜志,2008,30(4):479-482.
SI L,ZHANG X M,YUE Z P,et al.Regulation of sertoli cell on the development of spermatogonial stem cell[J].ChineseJournalofCellBiology,2008,30(4):479-482.(in Chinese)
[10]PHILLIPS B T,GASSEI K,ORWIG K E.Spermatogonial stem cell regulation and spermatogenesis[J].PhilosTransRSocLondBBiolSci,2010,365(1546):1663-1678.
[11]熊濤,唐偉,劉世學(xué),等.支持細(xì)胞對(duì)體外培養(yǎng)精原干細(xì)胞的作用途徑研究[J].生殖與避孕,2010,30(12):793-799.
XIONG T,TANG W,LIU S X,et al.Both juxtacrine and paracrine signaling indispensable in spermatogonial stem cell cultures[J].Reproduction&Contraception,2010,30(12):793-799.(in Chinese)
[12]HAI Y,HOU J,LIU Y,et al.The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis[J].SeminCellDevBiol,2014,29:66-75.
[13]MENG X,LINDAHL M,HYV?NEN M E,et al.Regulation of cell fate decision of undifferentiated spermatogonia by GDNF[J].Science,2000,287(5457):1489-1493.
[14]EBATA K T,YEH J R,ZHANG X,et al.Soluble growth factors stimulate spermatogonial stem cell divisions that maintain a stem cell pool and produce progenitorsinvitro[J].ExpCellRes,2011,317(10):1319-1329.
[15]LEE J,KANATSU-SHINOHARA M,INOUE K,et al.Akt mediates self-renewal division of mouse spermatogonial stem cells[J].Development,2007,134(10):1853-1859.
[16]GUO Y,LIU L,SUN M,et al.Expansion and long-term culture of human spermatogonial stem cells via the activation of Smad3 and Akt pathways[J].ExpBiolMed(Maywood),2015,240(8):1112-1122.
[17]MOORE M W,KLEIN R D,F(xiàn)ARIAS I,et al.Renal and neuronal abnormalities in mice lacking GDNF[J].Nature,1996,382(6586):76-79.
[18]WU X,GOODYEAR S M,TOBIAS J W,et al.Spermatogonial stem cell self-renewal requires ETV5-mediated downstream activation of Brachyury in mice[J].BiolReprod,2011,85(6):1114-1123.
[19]OATLEY J M,AVARBOCK M R,TELARANTA A I,et al.Identifying genes important for spermatogonial stem cell self-renewal and survival[J].ProcNatlAcadSciUSA,2006,103(25):9524-9529.
[20]TYAGI G,CARNES K,MORROW C,et al.Loss of Etv5 decreases proliferation and RET levels in neonatal mouse testicular germ cells and causes an abnormal first wave of spermatogenesis[J].BiolReprod,2009,81(2):258-266.
[21]KADAM P H,KALA S,AGRAWAL H,et al.Effects of glial cell line-derived neurotrophic factor,fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells[J].ReprodFertilDev,2013,25(8):1149-1157.
[22]ZHANG Y,WANG S,WANG X,et al.Endogenously produced FGF2 is essential for the survival and proliferation of cultured mouse spermatogonial stem cells[J].CellRes,2012,22(4):773-776.
[23]ISHII K,KANATSU-SHINOHARA M,TOYOKUNI S,et al.FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation[J].Development,2012,139(10):1734-1743.
[24]BUSADA J T,CHAPPELL V A,NIEDENBERGER B A,et al.Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse[J].DevBiol,2015,397(1):140-149.
[25]ZHOU Q,NIE R,LI Y,et al.Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid:aninvivostudy in vitamin A-sufficient postnatal murine testes[J].BiolReprod,2008,79(1):35-42.
[26]OHTA H,YOMOGIDA K,DOHMAE K,et al.Regulation of proliferation and differentiation in spermatogonial stem cells:the role of c-kit and its ligand SCF[J].Development,2000,127(10):2125-2131.
[27]PELLEGRINI M,F(xiàn)ILIPPONI D,GORI M,et al.ATRA and KL promote differentiation toward the meiotic program of male germ cells[J].CellCycle,2008,7(24):3878-3888.
[28]CARLOMAGNO G,VAN BRAGT M P,KORVER C M,et al.BMP4-induced differentiation of a rat spermatogonial stem cell line causes changes in its cell adhesion properties[J].BiolReprod,2010,83(5):742-749.[29]DE ROOIJ D G,OKABE M,NISHIMUNE Y.Arrest of spermatogonial differentiation in jsd/jsd,Sl17H/Sl17H,and cryptorchid mice[J].BiolReprod,1999,61(3):842-847.
[30]KISSEL H,TIMOKHINA I,HARDY M P,et al.Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses[J].EMBOJ,2000,19(6):1312-1326.
[31]PRINT C G,LOVELAND K L.Germ cell suicide:new insights into apoptosis during spermatogenesis[J].Bioessays,2000,22(5):423-430.
[32]DE FRAN?A L R,HESS R A,COOKE P S,et al.Neonatal hypothyroidism causes delayed Sertoli cell maturation in rats treated with propylthiouracil:evidence that the Sertoli cell controls testis growth[J].AnatRec,1995,242(1):57-69.
[33]HUCKINS C.The morphology and kinetics of spermatogonial degeneration in normal adult rats:an analysis using a simplified classification of the germinal epithelium[J].AnatRec,1978,190(4):905-926.
[34]ORRENIUS S,NICOTERA P,ZHIVOTOVSKY B.Cell death mechanisms and their implications in toxicology[J].ToxicolSci,2011,119(1):3-19.
[35]SHAHA C,TRIPATHI R,MISHRA D P.Male germ cell apoptosis:regulation and biology[J].PhilosTransRSocLondBBiolSci,2010,365(1546):1501-1515.[36]OSADA Y,SUNATANI T,KIM I S,et al.Signalling pathway involving GULP,MAPK and Rac1 for SR-BI-induced phagocytosis of apoptotic cells[J].JBiochem,2009,145(3):387-394.
[37]TAKAHASHI T,TANAKA M,BRANNAN C I,et al.Generalized lymphoproliferative disease in mice,caused by a point mutation in the Fas ligand[J].Cell,1994,76(6):969-976.
[38]WANG L,YANG J K,KABALEESWARAN V,et al.The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations[J].NatStructMolBiol,2010,17(11):1324-1329.[39]GUPTA S,AGRAWAL A,AGRAWAL S,et al.A paradox of immunodeficiency and inflammation in human aging:lessons learned from apoptosis[J].ImmunAgeing,2006,3:5.
[40]KAUFMANN T,STRASSER A,JOST P J.Fas death receptor signalling:roles of Bid and XIAP[J].CellDeathDiffer,2012,19(1):42-50.
[41]XU C,WU A,ZHU H,et al.Melatonin is involved in the apoptosis and necrosis of pancreatic cancer cell line SW-1990 via modulating of Bcl-2/Bax balance[J].BiomedPharmacother,2013,67(2):133-139.
[42]周桔,羅榮保,湯長(zhǎng)發(fā),等.Bcl-2蛋白家族和p53 基因在細(xì)胞凋亡中的調(diào)控效應(yīng)[J].中國(guó)組織工程研究與臨床康復(fù),2007,11(10):1950-1952.
ZHOU J,LUO R B,TANG C F,et al.Effect of Bcl-2 protein family andp53 gene on regulating and controlling cell apoptosis[J].JournalofClinicalRehabilitativeTissueEngineeringResearch,2007,11(10):1950-1952.(in Chinese)
[43]RUIZ-VELA A,KORSMEYER S J.Proapoptotic histone H1.2 induces CASP-3 and-7 activation by forming a protein complex with CYT c,APAF-1 and CASP-9[J].FEBSLett,2007,581(18):3422-3428.
[44]CARVAJAL L A,MANFREDI J J.Another fork in the road-life or death decisions by the tumour suppressor p53[J].EMBORep,2013,14(5):414-421.
[45]ZHIVOTOVSKY B,KROEMER G.Apoptosis and genomic instability[J].NatRevMolCellBiol,2004,5(9):752-762.
[46]WEI M C,ZONG W X,CHENG E H,et al.Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death[J].Science,2001,292(5517):727-730.
[47]HIRAYANAGI Y,QU N,HIRAI S,et al.Busulfan pretreatment for transplantation of rat spermatogonia differentially affects immune and reproductive systems in male recipient mice[J].AnatSciInt,2015,90(4):264-274.
[48]PEAKE K,MANNING J,LEWIS C A,et al.Busulfan as a myelosuppressive agent for generating stable high-level bone marrow chimerism in mice[J].JVisExp,2015(98):e52553.
(編輯程金華)
The Study Progress of the Proliferation,Differentiation and Apoptosis of Spermatogonial Stem Cells under the Regulation of Sertoli Cells
LIANG Ming-yuan1,2,ZHU Hua-bin2,CHEN Xiao-li2,HAO Hai-sheng2,ZHAO Xue-ming2,QIN Tong2,WANG Dong2*
(1.CollegeofAnimalScienceandTechnology,JilinAgriculturalUniversity,Changchun130118,China;2.TheKeyLaboratoryforFarmAnimalGeneticandUtilizationofMinistryofAgricultureofChina,InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China)
Key words:spermatogonial stem cells;sertoli cells;proliferation;differentiation;apoptosis
Abstract:The proliferation,differentiation and apoptosis of spermatogonial stem cells (SSCs) are regulated orderly by sertoli cells (SCs) and maintain the spermatogenesis of male animals.This review focuses on the relationship of physical structure between SCs and SSCs,and the regulation for the proliferation,differentiation and apoptosis of SSCs by GDNF,F(xiàn)GF2,RA,BMP4,SCF,F(xiàn)asL and SR-BI which are SCs-derived factors.This information provides an important reference for the further studies of spermatogenesis and will have great significance to improve reproductive efficiency of male animals,and also provides a valuable reference to explore the clinical treatment of male infertility disease.
doi:10.11843/j.issn.0366-6964.2016.02.003
收稿日期:2015-07-08
基金項(xiàng)目:奶牛產(chǎn)業(yè)技術(shù)體系北京創(chuàng)新團(tuán)隊(duì)項(xiàng)目;中國(guó)農(nóng)業(yè)科學(xué)院家畜胚胎工程與繁殖創(chuàng)新團(tuán)隊(duì)項(xiàng)目(cxgc-ias-06);國(guó)家十二五科技支撐計(jì)劃課題資助項(xiàng)目(2011BAD19B02)
作者簡(jiǎn)介:梁洺源(1989-),女,河北燕郊人,碩士,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:mingyuanliang@163.com *通信作者:王棟,研究員,博導(dǎo),主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:dwangcn2002@vip.sina.com
中圖分類(lèi)號(hào):S814
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2016)02-0225-07