崔丹丹,王曉良,彭 英
(中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院藥物研究所,北京 100050)
·創(chuàng)刊30年??幚韺W(xué)研究·
帕金森病腦脊液和血液生物標(biāo)志物的研究進(jìn)展
崔丹丹,王曉良,彭 英
(中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院藥物研究所,北京 100050)
王曉良,研究員,政府特殊津貼專家,現(xiàn)任中國醫(yī)學(xué)科學(xué)院藥物研究院副院長,博士生導(dǎo)師;中國藥學(xué)會(huì)副理事長,亞洲藥學(xué)家聯(lián)盟副理事長。長期從事心腦血管和神經(jīng)藥理學(xué)研究及創(chuàng)新藥物臨床前評(píng)價(jià)和作用機(jī)制研究。在國內(nèi)率先建立了離子通道綜合性研究平臺(tái),并領(lǐng)導(dǎo)建立了科技部支持的國家藥效評(píng)價(jià)研究、新藥篩選和開發(fā)平臺(tái)。領(lǐng)導(dǎo)開發(fā)了多個(gè)抗腦缺血和老年癡呆的一類新藥,發(fā)表論文200余篇,申請(qǐng)授權(quán)國內(nèi)外發(fā)明專利近20項(xiàng)。
帕金森病(PD)是一種慢性神經(jīng)退行性疾病。目前PD的診斷主要依據(jù)臨床癥狀和體征及對(duì)抗PD藥物的治療反應(yīng),早期診斷的準(zhǔn)確度不高,而靈敏度、特異度較高的生物標(biāo)志物為疾病早期診斷和新藥研發(fā)提供了途徑。本文從PD的病理機(jī)制對(duì)腦脊液和血液來源的生物標(biāo)志物研究現(xiàn)狀進(jìn)行總結(jié),多巴胺代謝產(chǎn)物二羥苯乙酸、路易小體內(nèi)的α-突觸核蛋白及其相關(guān)蛋白、氧化應(yīng)激產(chǎn)物8-羥基脫氧鳥苷和抗氧化劑尿酸、炎癥免疫反應(yīng)因子白細(xì)胞介素和神經(jīng)營養(yǎng)因子等候選生物標(biāo)志物涉及到PD不同發(fā)展階段。為提高PD早期診斷和藥物療效評(píng)估的準(zhǔn)確度,建議采用組合生物標(biāo)志物,即不同機(jī)制的生化標(biāo)志物、影像學(xué)和臨床癥狀等手段進(jìn)行綜合評(píng)價(jià)。
帕金森病;生物標(biāo)志物;腦脊液;血液
帕金森?。≒arkinson disease,PD)是一種慢性神經(jīng)退行性疾病,發(fā)病率僅次于阿爾茨海默?。ˋlzheimer disease,AD),也是老年人最常見的錐體外系疾病。PD由英國醫(yī)生James Parkinson于1817年首次報(bào)道。臨床上以靜止性震顫、姿勢(shì)步態(tài)異常、肌強(qiáng)直和運(yùn)動(dòng)遲緩為主要特征。美國流行病學(xué)調(diào)查顯示,散發(fā)性PD的發(fā)病率隨年齡增長而升高,65歲以上老人患病率為1%~2%,85歲以上升高至3%~5%[1]。中國人群PD發(fā)病率在2/10萬~ 797/10萬之間,高于部分發(fā)達(dá)國家[2]。
PD診斷主要依賴于病史和臨床癥狀,因與其他運(yùn)動(dòng)失調(diào)疾病癥狀相似,易被誤診。Adler等[3]采用臨床神經(jīng)病理作為PD診斷的金標(biāo)準(zhǔn),發(fā)現(xiàn)病程>5年的PD患者診斷正確率達(dá)88%,但是發(fā)病<5年的PD患者首次臨床診斷的正確率僅為53%。研究發(fā)現(xiàn),當(dāng)患者出現(xiàn)震顫等臨床運(yùn)動(dòng)癥狀時(shí),意味著多巴胺能神經(jīng)元丟失至少達(dá)50%以上,紋狀體多巴胺遞質(zhì)含量減少80%以上[4],此時(shí)PD患者已錯(cuò)過早期干預(yù)時(shí)機(jī)。因此,亟需尋找生物學(xué)標(biāo)志物用于PD臨床前期和前驅(qū)期的早期診斷,鑒別診斷PD和其他PD綜合征,提高PD診斷的準(zhǔn)確性。
目前,PD生物標(biāo)志物分為臨床標(biāo)志物、功能神經(jīng)影像學(xué)標(biāo)志物和生物化學(xué)標(biāo)志物三大類。其中臨床生物標(biāo)志物分為非運(yùn)動(dòng)癥狀和運(yùn)動(dòng)癥狀評(píng)價(jià),但臨床癥狀表現(xiàn)存在波動(dòng),影響疾病的正確識(shí)別和評(píng)估,存在一定的誤診率。功能神經(jīng)影像學(xué)包括大腦PET代謝成像、經(jīng)顱超聲成像和磁共振成像(magnetic resonance imaging,MRI)等技術(shù),操作方便但特異性不高。而隨著蛋白質(zhì)組學(xué)、基因組學(xué)、代謝組學(xué)等平臺(tái)的成熟和抗體芯片、高內(nèi)涵篩選等技術(shù)的應(yīng)用,涌現(xiàn)出越來越多的生物化學(xué)標(biāo)志物。氧化應(yīng)激、神經(jīng)炎癥、線粒體功能障礙、激酶途徑和鈣調(diào)節(jié)異常等機(jī)制參與了PD的發(fā)生發(fā)展。因此,在藥物靶點(diǎn)和生物化學(xué)標(biāo)志物間建立聯(lián)系是尋找理想生物標(biāo)志物的捷徑。體液生物標(biāo)志物主要來自腦脊液、血液、尿液和唾液等,其中腦脊液和血液生物標(biāo)志物的研究相對(duì)成熟。本文就腦脊液和血液來源的潛在PD生物標(biāo)志物進(jìn)行綜述。
PD患者黑質(zhì)致密部多巴胺能神經(jīng)元退化,紋狀體區(qū)多巴胺含量減少,多巴胺代謝產(chǎn)物二羥苯乙酸(dihydroxyphenylacetic acid,DOPAC)和高香草酸的含量下降,因此理論上根據(jù)神經(jīng)遞質(zhì)的水平可直接、便捷地進(jìn)行PD診斷。但是腦脊液多巴胺的含量并不能精確指示中樞神經(jīng)系統(tǒng)多巴胺的缺失,主要是因?yàn)槎喟桶纺苌窠?jīng)元損傷時(shí),多巴胺通過其他通路補(bǔ)償性運(yùn)輸?shù)浇K端,而且腦脊液中多巴胺含量低于常規(guī)的檢測(cè)限。而紋狀體中高香草酸變化與多巴胺含量并不完全一致。DOPAC是多巴胺的主要代謝產(chǎn)物,相比于多巴胺和高香草酸,腦脊液中DOPAC更適合作為PD診斷指標(biāo)[5]。研究表明,和正常人相比,PD患者、多系統(tǒng)萎縮癥(Mul?tiple system atrophy,MSA)患者腦脊液中的DOPAC含量均明顯降低。PD綜合征患者和正常人之間DOPAC指標(biāo)的敏感度達(dá)100%,特異度達(dá)89%[6]。紋狀體PET(18F-DOPA)掃描結(jié)果為陽性的散發(fā)性PD患者,其腦脊液中DOPAC的含量也是降低的。因此,腦脊液中的DOPAC可靈敏分辨PD患者,有望成為PD生物標(biāo)志物。
原發(fā)性PD患者黑質(zhì)區(qū)殘存的多巴胺能神經(jīng)元胞漿內(nèi)形成嗜酸性包涵體即路易小體。路易小體的特征蛋白質(zhì)α-突觸核蛋白(α-synuclein,α-Syn)是最早被發(fā)現(xiàn)的PD蛋白。研究顯示,酪氨酸羥化酶、β-淀粉樣蛋白(β-amyloid protein,Aβ)、微管相關(guān)蛋白tau、泛素羧基末端水解酶L1(ubiquitin carboxy-terminal hydrolase L1,UCH-L1)及G蛋白偶聯(lián)受體激酶等α-Syn相關(guān)蛋白質(zhì)同α-Syn共定位于路易小體內(nèi)[7]。
2.1 α-突觸核蛋白
α-Syn主要定位于突觸前神經(jīng)末梢,具有調(diào)節(jié)突觸可塑性、促進(jìn)突觸囊泡形成、調(diào)節(jié)突觸處多巴胺含量等生物學(xué)功能。遺傳性PD家系中發(fā)現(xiàn)了α-Syn基因的A53T,A30P和E46K單核苷酸突變。α-Syn磷酸化、糖化、硝基化等異常翻譯后修飾和錯(cuò)誤折疊加速寡聚體形成,之后聚集成不溶性的纖維結(jié)構(gòu),構(gòu)成路易小體的組織結(jié)構(gòu)單元。α-Syn分布廣泛,表達(dá)于腦組織、心臟、骨骼肌、腦脊液、唾液、血液、尿液以及胃腸道等[8]。有假說認(rèn)為,α-Syn以類似阮病毒的形式在細(xì)胞間傳遞[9]。
2.1.1 總 α-突觸核蛋白
一些研究表明,PD患者和正常人腦脊液中總α-Syn的含量沒有差異[10-12]。但多個(gè)研究發(fā)現(xiàn),PD腦脊液總α-Syn水平降低[13-14],可能是由于a-Syn在腦組織中纖維化聚集,可進(jìn)入體液循環(huán)的總α-Syn減少,導(dǎo)致腦脊液總α-Syn含量下降[15]。Shi等[16]發(fā)現(xiàn),PD患者腦脊液α-Syn濃度明顯低于正常人,診斷的敏感度和特異度分別達(dá)76.8%和53.5%。但有研究表明,腦脊液總α-Syn水平和疾病的嚴(yán)重程度沒有相關(guān)性[17-18]。目前關(guān)于PD患者血漿中α-Syn的研究結(jié)果存在較大分歧[19-20],可能是因?yàn)楹哓S度α-Syn的紅細(xì)胞破裂,造成血樣污染,干擾了實(shí)驗(yàn)結(jié)果。
2.1.2 α-突觸核蛋白寡聚體
PD患者腦脊液α-Syn寡聚體水平顯著高于進(jìn)行性核上性麻痹(progressive supranuclear palsy,PSP)患者、AD患者以及正常人[22],并且PD患者腦脊液α-Syn寡聚體與總α-Syn的比值高于正常人[23-24]。ELISA方法檢測(cè)血漿中的α-Syn寡聚體,發(fā)現(xiàn)PD患者的α-Syn寡聚體水平同樣高于正常人,診斷PD的敏感度為52.9% ,特異度為85.2%[25]。
2.1.3 磷酸化 α-突觸核蛋白
正常生理狀況下,α-Syn的Ser129位點(diǎn)的磷酸化水平比較低;但PD病理狀態(tài)下,Ser129位點(diǎn)幾乎全部處于磷酸化修飾狀態(tài)。磷酸化α-Syn可能參與黑質(zhì)多巴胺能神經(jīng)元的保護(hù)[26]。但α-Syn的過度磷酸化誘導(dǎo)異常纖維形成,協(xié)同α-Syn的其他翻譯后修飾造成α-Syn聚集,引發(fā)神經(jīng)元細(xì)胞死亡[27]。Wang等[28]研究發(fā)現(xiàn),腦脊液中的磷酸化α-Syn水平明顯高于正常人、MSA和PSP患者,且與PD的嚴(yán)重程度存在微弱的相關(guān)性。Foulds等[29]研究表明,PD患者血漿的磷酸化α-Syn水平同樣高于正常人(P=0.053,n=30),需要擴(kuò)大樣本數(shù)量進(jìn)行驗(yàn)證。
根據(jù)腦脊液或血漿中總α-Syn含量從人群中分辨出PD綜合征患者,結(jié)合α-Syn寡聚體和磷酸化α-Syn的水平排除MSA,PSP和AD患者。α-Syn有可能成為診斷PD的生物標(biāo)志物。
2.2 β-淀粉樣蛋白42
Aβ42由42個(gè)氨基酸組成,主要來源于淀粉樣前體蛋白的水解[30],可在神經(jīng)元細(xì)胞外異常沉積,是AD特征性病理改變老年斑的主要成分。腦脊液Aβ42可用于鑒別PD和其他神經(jīng)退行性疾病。大多研究表明,雖然PD患者腦脊液中Aβ42水平明顯低于正常人[11-12,18],但下降幅度仍低于路易體癡呆(dementia with lewy bodies,DLB)和 AD患者[13,31]。然而,一些研究顯示,PD患者和正常人之間Aβ42水平無差異[32]。Aβ42水平與認(rèn)知功能相關(guān),腦脊液中Aβ42水平降低預(yù)示PD患者發(fā)展為癡呆的可能性較大,敏感度達(dá)到85%以上[33]。腦脊液Aβ42是預(yù)測(cè)PD由輕度認(rèn)知障礙發(fā)展為PD癡呆(PD with dementia,PDD)的早期生物標(biāo)志物之一。
2.3 Tau蛋白
Tau蛋白是人腦內(nèi)含量最高的微管相關(guān)蛋白,與微管蛋白結(jié)合促進(jìn)微管形成,構(gòu)成神經(jīng)細(xì)胞骨架。Tau蛋白異常磷酸化形成神經(jīng)元纖維纏結(jié)。有研究表明,tau蛋白含量在不同PD綜合征間沒有差異[34]。但也有研究發(fā)現(xiàn),與DLB,PDD,AD和MSA患者相比,PD患者腦脊液總tau蛋白(T-tau)和磷酸化tau蛋白(p-tau)含量下降[13,35]。因此,tau蛋白可以輔助其他生物標(biāo)志物更準(zhǔn)確的鑒別典型PD患者和其他PD綜合征患者。
2.4 UCH-L1
UCH-L1是泛素-蛋白酶體系統(tǒng)的成員,在家族性PD患者中發(fā)現(xiàn)UCH-L1蛋白表達(dá)異常。與正常人相比,PD,MSA和PSP患者腦脊液中UCH-L1含量均明顯下降。UCH-L1用于鑒別PD患者和正常人時(shí)的受試者工作特征曲線下面積達(dá)0.89。而且PD患者腦脊液UCH-L1的水平與α-Syn水平成正相關(guān)[36]。UCH-L1可結(jié)合α-Syn作為PD的候選生物標(biāo)志物。
2.5 人激肽釋放酶6(human kallikrein 6,hK6)
hK6別名neurosin,是中樞神經(jīng)系統(tǒng)絲氨酸蛋白酶家族的成員。廣泛分布于腦組織和腦脊液、血漿和母乳等體液中[37],是切割α-Syn的酶之一,主要以25 ku酶原形式存在于腦脊液中[38]。α-Syn轉(zhuǎn)基因小鼠腦內(nèi)hK6含量下降[39]。同樣PD和AD患者黑質(zhì)區(qū)hK6含量低于正常人[40]。Wennstr?m等[18]發(fā)現(xiàn),PD,DLB和PDD等α-Syn病患者腦脊液中hK6水平低于正常人和AD患者,并且與α-Syn含量顯著相關(guān)。AD患者血漿hK6含量下降[41],但關(guān)于PD患者和正常人之間血漿中hK6含量的比較還未見研究報(bào)道。
2.6 神經(jīng)纖維細(xì)絲輕鏈(neurofilament light chain,NF-L)
NF是重要的結(jié)構(gòu)蛋白,在神經(jīng)沖動(dòng)傳導(dǎo)和維持神經(jīng)元形態(tài)完整中起關(guān)鍵作用[42],可以作為神經(jīng)退行性疾病和急性神經(jīng)組織損傷所致的軸突退化的生物標(biāo)志物[43]。NF由3個(gè)不同分子量亞基組成:輕鏈、中鏈和重鏈。NF-L形成NF的支柱并可自行組裝。研究發(fā)現(xiàn),PD患者腦脊液的NF-L濃度沒有變化,但是MSA,PSP,DLB,AD和APD患者的腦脊液中NF-L濃度明顯升高[13,31],提示這些疾病神經(jīng)退化進(jìn)展更加迅速。持續(xù)跟蹤發(fā)現(xiàn),隨著疾病進(jìn)展,PD綜合征患者的腦脊液NF-L水平保持穩(wěn)定[44]。
氧化應(yīng)激在PD發(fā)病機(jī)制中扮演了重要角色[45]。當(dāng)機(jī)體的活性氧基團(tuán)水平超過細(xì)胞抗氧化防御能力時(shí)便會(huì)導(dǎo)致氧化應(yīng)激,直接損害或通過一系列過氧化鏈?zhǔn)椒磻?yīng)引起DNA、蛋白質(zhì)及脂質(zhì)的氧化降解,影響細(xì)胞結(jié)構(gòu)和功能的完整性。
3.1 DJ-1蛋白
DJ-1蛋白具有廣泛的神經(jīng)保護(hù)作用,保護(hù)神經(jīng)元免受氧化應(yīng)激損傷。DJ-1蛋白由PARK7基因編碼,此基因缺陷會(huì)導(dǎo)致常染色體隱性遺傳性PD。不同研究關(guān)于PD患者腦脊液內(nèi)DJ-1含量變化的結(jié)論不一致。Herbert等[10]發(fā)現(xiàn),PD患者腦脊液DJ-1含量低于MSA患者;Hong等[14]發(fā)現(xiàn)PD患者腦脊液DJ-1含量明顯低于正常人和AD患者,但Salvesen等[46]發(fā)現(xiàn),不同PD綜合征之間DJ-1含量并無差異。Lin等[47]研究表明,PD患者血液的DJ-1水平和正常人相比沒有變化,但是經(jīng)4-羥基-2-壬烯酸(4-hydroxy-2-nonenal,4-HNE)修飾的DJ-1在晚期PD患者血液中明顯降低,推測(cè)4-HNE修飾的DJ-1可能是PD晚期的候選標(biāo)志物之一。
3.2 8-羥基脫氧鳥苷(8-hydroxy-2′-deoxyguano?sine,8-OHdG)
8-OHdG是活性氧自由基攻擊DNA分子中的鳥嘌呤堿基8位碳原子而產(chǎn)生的氧化產(chǎn)物,是氧化應(yīng)激的可靠標(biāo)志。研究顯示,在腦脊液中,非癡呆型PD患者的8-OHdG水平高于正常人[48](P=0.022)。在血液中,非癡呆型PD患者和PDD患者的8-OHdG水平均明顯高于正常人[49]。
3.3 尿酸(uric acid,UA)
UA是嘌呤代謝的終末產(chǎn)物,能清除氧自由基,螯合金屬離子,減輕體內(nèi)氧化應(yīng)激水平,是人體主要抗氧化劑之一。對(duì)4695位參與者持續(xù)9.4年的跟蹤調(diào)查發(fā)現(xiàn),血清UA水平高的人患PD的風(fēng)險(xiǎn)低[50]。Annanmaki等[51]研究表明,PD患者血漿尿酸水平低于正常人。另一研究同樣發(fā)現(xiàn),PD患者的血清UA水平低于正常人。腦脊液中,非癡呆型PD患者UA水平和正常人無差異,但高于PDD患者。正常人腦脊液中UA和Aβ42的總體相關(guān)系數(shù)ρ達(dá)0.67,非癡呆型PD患者的腦脊液中兩者ρ達(dá)0.49。故腦脊液中UA含量和Aβ42含量正相關(guān),推測(cè)腦脊液UA通過Aβ42相關(guān)通路參與機(jī)體認(rèn)知功能的變化[52]。
3.4 輔酶Q10(coenzyme Q10,CoQ10)
CoQ10是脂溶性的抗氧化劑,是線粒體呼吸鏈酶復(fù)合體I的電子接受體,對(duì)多巴胺神經(jīng)元具有一定的營養(yǎng)和保護(hù)作用。病理?xiàng)l件下,CoQ10與其氧化形式間的平衡關(guān)系被打破。PD患者腦脊液中氧化型CoQ10與總CoQ10的比值(%CoQ10)顯著高于正常人,且比值大小與PD病程進(jìn)展呈負(fù)相關(guān)。因此,%CoQ10可用于評(píng)價(jià)PD藥物的治療效果[53]。Sohmiya等[54]發(fā)現(xiàn),PD患者的總CoQ10含量下降,%CoQ10高于正常人。
炎癥免疫反應(yīng)可保護(hù)機(jī)體免受內(nèi)外環(huán)境病理損害,但過度炎癥免疫反應(yīng)會(huì)損傷宿主細(xì)胞,加速神經(jīng)元的變性,是多種神經(jīng)退行性疾病發(fā)病的病理基礎(chǔ),屬于非特異性生物標(biāo)志物。在PD患者黑質(zhì)區(qū)檢測(cè)到小膠質(zhì)細(xì)胞激活和T淋巴細(xì)胞浸潤[55]。在PD患者的腦脊液和血清中檢測(cè)到腫瘤壞死因子α,白細(xì)胞介素(interleukin,IL)-1β,IL-6和干擾素γ等細(xì)胞因子明顯增加[56]。因此,使用抗炎免疫調(diào)節(jié)藥物調(diào)控炎癥免疫細(xì)胞的異?;钚裕梢欢ǔ潭壬蠝p緩PD的發(fā)展進(jìn)程。
4.1 白細(xì)胞介素
IL是一種淋巴因子,激活與調(diào)節(jié)免疫細(xì)胞的增殖與分化,在炎癥反應(yīng)中起重要作用。Zhang等[57]報(bào)道,PD患者腦脊液中IL-8增加。另一研究發(fā)現(xiàn),認(rèn)知損傷的PD患者腦脊液IL-6水平明顯高于正常人和非認(rèn)知損傷PD患者,并且認(rèn)知損傷的PD患者的IL-6水平和蒙特利爾認(rèn)知評(píng)估(Montreal cogni?tive assessment,MoCA)量表評(píng)分呈負(fù)相關(guān)[58],提示IL-6的神經(jīng)毒性影響認(rèn)知損傷。Scalzo等[59]發(fā)現(xiàn),PD患者血清IL-6水平顯著增高,同時(shí)IL-6水平相對(duì)高的PD患者步態(tài)減慢,更易疲勞。然而另一研究表明,PD患者血清IL-6水平和正常人之間沒有差異,但是PD患者血清中的腫瘤壞死因子α,IL-1β,IL-2和IL-10水平明顯高于正常人[60]。
4.2 C反應(yīng)蛋白(C-reactive protein,CRP)
CRP是一種主要在肝合成的微量蛋白,是急性期炎癥反應(yīng)的非特異性標(biāo)志物。組織受損時(shí)血清中的CRP水平升高,主要受IL-6調(diào)控[61]。Lindqvist等[62]發(fā)現(xiàn),在排除年齡、性別和身體狀況等因素后,PDD患者腦脊液CRP水平明顯高于非癡呆PD患者和正常人。在PD患病時(shí)間、年齡、性別、身體狀況和癡呆程度一致的條件下,高CRP水平患者的抑郁癥更加嚴(yán)重。PD患者血清或血漿CRP水平明顯高于正常人[63-65]。Farias等[63]研究表明,PD治療藥物左旋多巴和卡比多巴聯(lián)用后,患者血漿CRP的含量增加。Zhang等[65]研究表明PD患者運(yùn)動(dòng)功能評(píng)分與疾病嚴(yán)重程度均和CRP水平顯著相關(guān)。
神經(jīng)營養(yǎng)因子有營養(yǎng)神經(jīng)元,刺激軸突再生、再髓鞘化,調(diào)節(jié)小膠質(zhì)細(xì)胞的功能。神經(jīng)營養(yǎng)因子包括神經(jīng)營養(yǎng)素家族、膠質(zhì)源性神經(jīng)生長因子家族、促神經(jīng)生成細(xì)胞因子家族、運(yùn)動(dòng)神經(jīng)元神經(jīng)營養(yǎng)因子以及非特異性神經(jīng)系統(tǒng)類的營養(yǎng)因子等多個(gè)家族。神經(jīng)營養(yǎng)因子補(bǔ)充療法和基因療法為治療PD帶來一絲希望。
5.1 腦源性神經(jīng)生長因子(brain-derived neuro?trophic factor,BDNF)
BDNF主要是在中樞神經(jīng)系統(tǒng)內(nèi)表達(dá),海馬和皮質(zhì)區(qū)的含量最高。BDNF為多巴胺能神經(jīng)元提供營養(yǎng)支持,既是神經(jīng)保護(hù)分子,又是神經(jīng)調(diào)節(jié)物質(zhì)。當(dāng)BDNF的表達(dá)被抑制時(shí),PD患者的黑質(zhì)多巴胺能神經(jīng)元受損,認(rèn)知功能減退。當(dāng)表達(dá)增強(qiáng)時(shí),突觸的可塑性提高,患者的認(rèn)知功能得到一定改善[66]。Zhang等[57]研究表明,PD患者腦脊液BDNF水平下降。P?lhagen等[67]發(fā)現(xiàn),伴有重度抑郁癥的PD患者腦脊液的BDNF水平低于單純的重度抑郁癥患者。Salehi等[68]卻發(fā)現(xiàn),PD患者腦脊液BDNF含量升高,可能是因?yàn)樯項(xiàng)l件下主要由神經(jīng)元表達(dá)BDNF,但大腦受到損害時(shí)由小膠質(zhì)細(xì)胞代替合成。PD患者血清BDNF含量下降[69-71],有趣的是,Costa等[69]發(fā)現(xiàn),BDNF和認(rèn)知能力下降存在關(guān)聯(lián);Paula等[70]發(fā)現(xiàn),BDNF水平和疾病的嚴(yán)重程度相關(guān)。
5.2 胰島素樣生長因子1(insulin-like growth factor-1,IGF-1)
IGF是細(xì)胞增殖調(diào)控因子,包括胰島素、IGF-1和IGF-2三類蛋白多肽。IGF-1主要在肝合成釋放入血,局部組織則以自分泌和旁分泌形式產(chǎn)生IGF-1。其生理活性受IGF結(jié)合蛋白和IGF-1受體的調(diào)節(jié)。IGF-1可以增強(qiáng)神經(jīng)元的代謝并且調(diào)節(jié)神經(jīng)元的興奮性,保護(hù)多巴胺能神經(jīng)元免受損傷。Mashayekhi等[72]發(fā)現(xiàn),PD患者腦脊液和血清IGF-1水平均明顯高于正常人。研究表明,處于臨床前期的PD患者血清IGF-1表達(dá)上升[73-74],并且IGF-1水平和運(yùn)動(dòng)功能評(píng)分顯著相關(guān),提示IGF-1是一個(gè)評(píng)估個(gè)體患PD風(fēng)險(xiǎn)的有效工具。
近來發(fā)現(xiàn)一些生物標(biāo)志物同樣值得關(guān)注。Lu等[75]采用蛋白質(zhì)組學(xué)技術(shù)發(fā)現(xiàn),PD患者血清和正常人血清相比,存在6個(gè)差異蛋白質(zhì),經(jīng)Western蛋白印跡法驗(yàn)證了其中的3個(gè)蛋白質(zhì)。發(fā)現(xiàn)PD患者血清中纖維蛋白原γ鏈和間α胰蛋白酶抑制劑重鏈4(inter-alpha-trypsin inhibitor heavy chain family member 4,ITI-H4)表達(dá)明顯升高,血清載脂蛋白A-Ⅳ(apolipoprotein A-Ⅳ,apoA-Ⅳ)26 ku片段和ITI-H4 35 ku片段表達(dá)明顯下降。進(jìn)行差異蛋白功能分析,發(fā)現(xiàn)這3個(gè)蛋白質(zhì)與炎癥、脂質(zhì)代謝等PD發(fā)病機(jī)制有關(guān)。后續(xù)計(jì)劃擴(kuò)大患者樣本量,確證差異蛋白是否有望成為生物標(biāo)志物。
理想的PD生物標(biāo)志物應(yīng)當(dāng)具備以下條件[76]:能夠符合PD的分子病理特征,且在確診的PD患者上得到驗(yàn)證;能應(yīng)用于PD的早期診斷;診斷PD的準(zhǔn)確率和特異度均大于80%;適用于常規(guī)的臨床檢驗(yàn),具有可重復(fù)、非侵襲和易于操作等特點(diǎn)。生物標(biāo)志物可用于疾病的早期診斷、疾病進(jìn)程監(jiān)測(cè)及藥物療效評(píng)價(jià)。反過來,在多種PD動(dòng)物模型上驗(yàn)證來自PD患者的生物標(biāo)志物,有助于深入探索PD發(fā)病機(jī)制,挖掘新的藥物作用靶點(diǎn)。
PD患者腦脊液和血液來源的生物標(biāo)志物分別總結(jié)于表1和表2。腦脊液與腦組織細(xì)胞外液直接相連,能動(dòng)態(tài)反映腦組織的代謝情況及內(nèi)環(huán)境穩(wěn)定性,但是需經(jīng)腰椎穿刺獲取,且含量少,多次采集對(duì)人體有侵襲傷害。血液相對(duì)腦脊液容易獲取。血液通過血液循環(huán)與機(jī)體內(nèi)各組織的微環(huán)境緊密聯(lián)系,理論上可反映機(jī)體各個(gè)部位的疾病變化。血液由血細(xì)胞和血漿組成,其中紅細(xì)胞里也含有α-Syn和DJ-1等蛋白,若采血操作不當(dāng),則會(huì)干擾血漿生物標(biāo)志物的檢測(cè)。而血漿中的蛋白種類豐富,高豐度蛋白會(huì)一定程度影響低豐度蛋白的鑒定。
表1 帕金森?。≒D)患者腦脊液候選生物標(biāo)志物
表2 PD患者血液(血漿或血清)候選生物標(biāo)志物
綜上所述,僅通過某個(gè)獨(dú)特的生物標(biāo)志物,既要高度靈敏、特異性地鑒別PD和其他神經(jīng)退行性疾病,又可跟蹤整個(gè)PD進(jìn)展可能難以實(shí)現(xiàn)。因此,除了繼續(xù)發(fā)現(xiàn)新的PD生物標(biāo)志物外,有必要建立一個(gè)針對(duì)PD不同階段的組合生物標(biāo)志物體系[77],進(jìn)行個(gè)體化診斷和治療,有效提高疾病診斷的特異度和敏感度。采用大腦PET代謝成像標(biāo)志物,嗅覺減退、快動(dòng)眼睡眠行為障礙和自主神經(jīng)功能障礙等非運(yùn)動(dòng)癥狀標(biāo)志物,以及腦脊液總α-Syn或血漿UA等生化標(biāo)志物,聯(lián)合作為組合生物標(biāo)志物用于PD的早期診斷。另外,為鑒別診斷典型PD和其他PD綜合征,嘗試建立膽堿能功能成像標(biāo)志物和腦脊液NF-L等生化標(biāo)志物相結(jié)合的組合標(biāo)志物。最后為了追蹤PD發(fā)展進(jìn)程、監(jiān)測(cè)PD藥物治療效果,建立包括MRI影像學(xué)、PD統(tǒng)一評(píng)定量表和腦脊液%氧化型CoQ10與總CoQ10比值等相結(jié)合的組合生物標(biāo)志物[78]。
在今后的研究中,需要將組合生物標(biāo)志物體系中篩選的生物標(biāo)志物群在多個(gè)獨(dú)立研究中進(jìn)行評(píng)價(jià)和指標(biāo)量化。期待在不久的將來,組合生物標(biāo)志物實(shí)現(xiàn)基礎(chǔ)研究與醫(yī)學(xué)實(shí)踐之間的轉(zhuǎn)化醫(yī)學(xué)研究,早日將研究成果用于PD的臨床診斷和藥物療效評(píng)價(jià),實(shí)現(xiàn)基礎(chǔ)研究與臨床應(yīng)用之間的轉(zhuǎn)化研究。
[1]Alves G,F(xiàn)orsaa EB,Pedersen KF,Dreetz Gjerstad M,Larsen JP.Epidemiology of Parkinson′s disease[J].J Neurol,2008,255(5):18-32.
[2]Ma L,Su L,Xie J,Long X,Wu P,Gu L.The prevalence and incidence of Parkinson′s disease in China:a systematic review and meta-analysis[J].J Neural Transm,2014,121(2):123-134.
[3]Adler CH,Beach TG,Hentz JG,Shill HA,Cavi?ness JN,Driver-Dunckley E,et al.Low clinical di?agnostic accuracy of early vs advanced Parkinson disease:clinicopathologic study[J].Neurology,2014,83(5):406-412.
[4]Fearnley JM, Lees AJ.Ageing and Parkinson′s disease:substantia nigra regional selectivity[J].Brain,1991,114(Pt 5):2283-2301.
[5]GoldsteinDS.Biomarkers,mechanisms,and potential prevention of catecholamine neuron loss in Parkinson disease[J].Adv Pharmacol,2013,68:235-272.
[6]Goldstein DS,Holmes C,Sharabi Y.Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson′s disease and other synucleinopathies[J].Brain,2012,135(Pt 6):1900-1913.
[7]Chen JJ,Tian MX,Li XA,Hu LS.An analysis of protein bioinformatics datasets related to Lewy bodies of Parkinson′s disease[J].Prog Biochem Biophys(生物化學(xué)與生物物理進(jìn)展),2013;40(11):1100-1106.
[8]Delenclos M, Jones DR,McLean PJ,Uitti RJ. Biomarkers in Parkinson′s disease:advances and strategies[J].Parkinsonism Relat Disord,2016,22(Suppl 1):S106-S110.
[9]Henchcliffe C,Dodel R,Beal MF.Biomarkers of Parkinson′s disease and dementia with Lewy bodies[J].Prog Neurobiol,2011,95(4):601-613.
[10]Herbert MK,Eeftens JM,Aerts MB,Esselink RA,Bloem BR,Kuiperij HB,et al.CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls[J].ParkinsonismRelatDisord,2014,20(1):112-115.
[11]Nielsen HM,Hall S,Surova Y,N?gga K,Nilsson C,Londos E,et al.Low levels of soluble NG2 in cere?brospinal fluid from patients with dementia with Lewy bodies[J].J Alzheimers Dis,2014,40(2):343-350.
[12] Trupp M,Jonsson P,Ohrfelt A,Zetterberg H,Obudulu O,Malm L,et al.Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson′s disease[J].J Parkinsons Dis,2014;4(3):549-560.
[13]Hall S,?hrfelt A,Constantinescu R,Andreasson U,Surova Y,Bostrom F,et al.Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkin?sonian disorders[J].Arch Neurol,2012,69(11):1445-1452.
[14]Hong Z,Shi M,Chung KA,Quinn JF,Peskind ER,Galasko D,et al.DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson′s disease[J].Brain,2010,133(Pt 3):713-726.
[15]Andersen AD,Binzer M,Stenager E,Gramsberg JB. Cerebrospinalfluid biomarkers for Parkinson′s disease-a systematic review[J].Acta Neurol Scand,2017,135(1):34-56.
[16] Shi M,Liu C,Cook TJ,Bullock KM,Zhao Y,Ginghina C,et al.Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson′s disease[J].Acta Neuropathol,2014,128(5):639-650.
[17]van Dijk KD,Bidinosti M,Weiss A,Raijmakers P,Berendse HW,van de Berg WD.Reduced α-synu?clein levels in cerebrospinal fluid in Parkinson′s disease are unrelated to clinicaland imaging measures of disease severity[J].Eur J Neurol,2014,21(3):388-394.
[18]Wennstr?m M,Surova Y,Hall S,Nilsson C,Minthon L,Bostr?m F,et al.Low CSF levels of both α-synuclein and the α-synuclein cleaving enzyme neurosin in patients with synucleinopathy[J].PLoS One,2013,8(1):e53250.
[19]Duran R,Barrero FJ,Morales B,Luna JD,Ramirez M,Vives F.Plasma alpha-synuclein in patients with Parkinson′s disease with and without treatment[J].Mov Disord,2010,25(4):489-493.
[20]Gorostidi A, Bergareche A, Ruiz-Martínez J,Martí-Massó JF,Cruz M,Varghese S,et al. Αlpha-synuclein levels in blood plasma from LRRK2 mutation carriers[J].PLoS One,2012,7(12):e52312.
[21]Mata IF1,Shi M,Agarwal P,Chung KA,Edwards KL,F(xiàn)actor SA,et al.SNCA variant associated with Parkinson disease and plasma alpha-synuclein level[J].Arch Neurol,2010,67(11):1350-1356.
[22]Tokuda T,Qureshi MM,Ardah MT,Varghese S,Shehab SA,Kasai T,et al.Detection of elevated levels of α-synuclein oligomers in CSF from pa?tientswith Parkinson disease[J].Neurology,2010,75(20):1766-1772.
[23]Parnetti L,F(xiàn)arotti L,Eusebi P,Chiasserini D,De Carlo C,Giannandrea D,et al.Differential role of CSF alpha-synuclein species,tau,and Aβ42in Parkinson′s disease[J].Front Aging Neurosci,2014,6:53.
[24]Park MJ,Cheon SM,Bae HR,Kim SH,Kim JW. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-na?ve patients with Parkinson′s disease[J].J Clin Neurol,2011,7(4):215-222.
[25]El-Agnaf OM,Salem SA,Paleologou KE,Curran MD. Gibson MJ,Court JA,et al.Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson′s disease[J].FASEB J,2006,20(3):419-425.
[26]Gorbatyuk OS,Li S,Sullivan LF,Chen W,Kondrikova G,Manfredsson FP,et al.The phos?phorylation state of Ser-129 in human alpha-synu?clein determines neurodegeneration in a rat model of Parkinson disease[J].Proc Natl Acad Sci USA,2008,105(2):763-768.
[27]Fujiwara H,Hasegawa M,Dohmae N,Kawashima A,Masliah E,Goldberg MS,et al.alpha-Synuclein isphosphorylated in synucleinopathy lesions[J].Nat Cell Biol,2002,4(2):160-164.
[28]Wang Y,Shi M,Chung KA,Zabetian CP,Berg D,Srulijes KA,et al.Phosphorylated alpha-synuclein in Parkinson′s disease[J].Sci Trans Med,2012,4(6):1-27.
[29]Foulds PG,Mitchell JD,Parker A,Turner R,Green G,Diggle P,et al.Phosphorylated α-synu?clein can be detected in blood plasma and is poten?tially a useful biomarker for Parkinson′s disease[J].FASEB J,2011,25(12):4127-4137.
[30]Ballard C,Gauthier S,Corbett A,Brayne C,Aarsland D,Jones E.Alzheimer′s disease[J].Lancet,2011,377(9770):1019-1031.
[31]Bech S,Hjermind LE,Salvesen L,Nielsen JE,Heegaard NH,J?rgensen HL,et al.Amyloid-related biomarkers and axonal damage proteins in parkin?sonian syndromes[J].Parkinsonism Relat Disord,2012,18(1):69-72.
[32]SüssmuthSD,UttnerI,LandwehrmeyerB,Pinkhardt EH,Brettschneider J,Petzold A,et al. Differential pattern of brain-specific CSF proteins tau and amyloid-β in Parkinsonian syndromes[J].Mov Disord,2010,25(9):1284-1288.
[33]Alves G,Lange J,Blennow K,Zetterberg H,Andreasson U,F(xiàn)?rland MG,et al.CSF Aβ42predicts early-onset dementia in Parkinson disease[J].Neurology,2014,82(20):1784-1790.
[34]Shi M,Bradner J,Hancock AM,Chung KA,Quinn JF,Peskind ER,et al.Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression[J].Ann Neurol,2011,69(3):570-580.
[35]Parnetti L,Tiraboschi P,Lanari A,Peducci M,Padiglioni C,D′amore C,et al.Cerebrospinal fluid biomarkers in Parkinson′s disease with dementia and dementia with Lewy bodies[J].Biol Psychiatry,2008,64(10):850-855.
[36]Mondello S,Constantinescu R,Zetterberg H,Andreasson U,Holmberg B,Jeromin A.CSF α-synuclein and UCH-L1 levels in Parkinson′s disease and atypical parkinsonian disorders[J].Parkinsonism Relat Disord,2014,20(4):382-387.
[37]Diamandis P,Yousef M,Soosaipillai R,Grass L,Porter A,Little S,et al.Immunofluorometric assay of human kallikrein 6(zyme/protease M/neurosin)and preliminary clinical applications[J].Clin Biochem,2000,33(5):369-375.
[38]Okui A,Kominami K,Uemura H,Mitsui S,Yamaguchi N.Characterization of a brain-related serine protease,neurosin(human kaillikrein 6),in human cerebrospinal fluid[J].Neuroreport,2001,12(7):1345-1350.
[39]Spencer B,Michael S,Shen J,Kosberg K,Rockenstein E,Patrick C,et al.Lentivirus mediat?ed delivery of neurosin promotes clearance of wildtype α-synuclein and reduces the pathology in an α-synuclein model of LBD[J].Mol Ther,2013,21(1):31-41.
[40]Ogawa K,Yamada T,Tsujioka Y,Taguchi J,Takahashi M,Tsuboi Y,et al.Localization of a novel type trypsin-like serine protease,neurosin,in brain tissues ofAlzheimer′s disease and Parkinson′s disease[J].Psychiatry Clin Neurosci,2000,54(4):419-426.
[41]Menendez-Gonzalez M,Castro-Santos P,Suarez A,Calatayud MT,Perez-Pinera P,Martinez M,et al. Value of measuring plasmatic levels of neurosin in the diagnosis of Alzheimer′s disease[J].J Alzheimers Dis,2008,14(1):59-67.
[42]Elder GA,F(xiàn)riedrich VL Jr,Bosco P,Kang C,Gourov A,Tu PH,et al.Absence of the mid-sized neurofilament subunit decreases axonal calibers,levels of light neurofilament(NF-L),and neurofila?ment content[J].J Cell Biol,1998,141(3):727-739.
[43]Petzold A.Neurofilament phosphoforms:surrogate markers for axonal injury,degeneration and loss[J].J Neurol Sci,2005,233(1/2):183-198.
[44]Constantinescu R, Rosengren L, Johnels B,Zetterberg H,Holmberg B.Consecutive analyses of cerebrospinal fluid axonal and glial markers in Parkinson′s disease and atypical Parkinsonian disorders[J].Parkinsonism Relat Disord,2010,16(2):142-145.
[45]Jenner P.Oxidative stress and Parkinson′s disease[J].Handb Clin Neurol,2007,83:507-520.
[46]Salvesen L,Bech S,Lokkegaard A,Hjermind LE,Nielsen JE,Pakkenberg B,et al.The DJ-1 concentration in cerebrospinal fluid does not differentiate among Parkinsonian syndromes[J].Parkinsonism Relat Disord,2012,18(7):899-901.
[47]Lin X,Cook TJ,Zabetian CP,Leverenz JB,Peskind ER,Hu SC,et al.DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease[J].Sci Rep,2012,2:954.
[48]Gmitterová K, Heinemann U, Gawinecka J,Varges D,Ciesielczyk B,Valkovic P,et al.8-OHdG in cerebrospinal fluid as a marker of oxidativestress in various neurodegenerative diseases[J].Neurodegener Dis,2009,6(5/6):263-269.
[49]Bogdanov M,Matson WR,Wang L,Matson T,Saunders-Pullman R,Bressman SS,et al.Metab?olomic profiling to develop blood biomarkers for Parkinson′s disease[J].Brain,2008,131(Pt 2):389-396.
[50]De Lau LM,Koudstaal PJ,Hofman A,Breteler MM. Serum uric acid levels and the risk of Parkinson disease[J].Ann Neurol,2005,58(5):797-800.
[51]Annanmaki T,Muuronen A,Murros K.Low plasma uric acid level in Parkinson′s disease[J].Mov Dis?ord,2007,22(8):1133-1137.
[52]Maetzler W,Stapf AK,Schulte C,Hauser AK,Lerche S,Wurster I,et al.Serum and cerebrospinal fluid uric acid levels in lewy body disorders:ssocia?tions with disease occurrence and amyloid-β pathway[J].J Alzheimers Dis,2011,27(1):119-126.
[53]Isobe C, Murata T, Sato C, Terayama Y. Increase of oxidized/total coenzyme Q-10 ratio in cerebrospinal fluid in patients with Parkinson′s disease[J].J Clin Neurosci,2007,14(4):340-343.
[54]Sohmiya M,Tanaka M,Tak NW,Yanagisawa M,Tanino Y,Suzuki Y,et al.Redox status of plasma coenzyme Q10 indicates elevated systemic oxida?tive stress in Parkinson′s disease[J].J Neurol Sci,2004,223(2):161-166.
[55]Hirsch EC,Vyas S,Hunot S.Neuroinflammation iin Parkinson′s disease[J].Parkinsonism Relat Disord,2012,18(Suppl 1):S210-S212.
[56]Hirsch EC, Hunot S. Neuroinflammation in Parkinson′s disease:a target for neuroprotec?tion?[J].Lancet Neurol,2009,8(4):382-397.
[57] Zhang J,Sokal I,Peskind ER,Quinn JF,Jankovic J,Kenney C,et al.CSF multianalyte profile distin?guishes Alzheimer and Parkinson diseases[J].Am J Clin Pathol,2008,129(4):526-529.
[58] Yu SY,Zuo LJ,Wang F,Chen ZJ,Hu Y,Wang YJ,et al.Potential biomarkers relating pathological pro?teins,neuroinflammatory factors and free radicals in PD patients with cognitive impairment:a corssessectional study[J].BMC Neurol,2014,14:113.
[59] Scalzo P,Kümmer A,Cardoso F,Teixeira AL. Serum levels of interleukin-6 are elevated in pa?tients with Parkinson′s disease and correlate with physical performance[J].Neurosci Lett,2010,468(1):56-58.
[60] Williams-Gray H,Wijeyekoon Ruwani,Yarnall J,Lawson A,Breen P,Evans R,et al.Serum immune markers and disease progression in an incident Parkinson′s disease cohort(ICICLE-PD)[J].Mov Disord,2016,31(7):995-1003.
[61] Pepys MB,Hirschfield GM.C-reactive protein:a critical update[J].J Clin Invest,2003,111(12):1805-1812.
[62] Lindqvist D,Hall S,Surova Y,Nielsen HM,Janelidze S,Brundin L,Hansson O.Cerebrospinal fluid inflammatory markers in Parkinson′s diseaseassociations with depression,fatigue,and cognitive impairment[J].Brain Behav Immun,2013,33:183-189.
[63] de Farias CC,Maes M,Bonifácio KL,Bortolasci CC,de Souza Nogueira A,Brinholi FF,et al.Highly specific changes in antioxidant levels and lipid per?oxidation in Parkinson′s disease and its progres?sion:Disease and staging biomarkers and new drug targets[J].Neurosci Lett,2016,617:66-71.
[64] Umemura A,Oeda T,Yamamoto K,Tomita S,Kohsaka M,Park K,et al.Baseline plasma C-reactive protein concentrations and motor progno?sis in Parkinson disease[J].PLoS One,2015,10(8):e0136722.
[65] Zhang L,Yan J,Xu Y,Long L,Zhu C,Chen X,et al.The combination of homocysteine and C-reactive protein predicts the outcomes of Chinese patients with Parkinson′s disease and vascular parkinsonism[J].PLoS One,2011,6(4):e19333.
[66] Fumagalli F,Racagni G,Riva A.Shedding light into the role of BDNF in the pharmacotherapy of Parkinson′s disease[J].Pharmacogenomics J,2006,6(2):95-104.
[67] P?lhagen S,Qi H,M?rtensson B,W?linder J,Granérus AK,Svenningsson P.Monoamines,BDNF,IL-6 and corticosterone in CSF in patients with Parkinson′s disease and major depression[J].J Neurol,2010,257(4):524-532.
[68]Salehi Z,Mashayekhi F.Brain-derived neurotrophic factor concentrations in the cerebrospinal fluid of patients with Parkinson′s disease[J].J Clin Neurosci,2009,16(1):90-93.
[69]Costa A,Peppe A,Carlesimo GA,Zabberoni S,Scalici F, Caltagirone C,et al.Brain-derived neurotrophic factor serum levels correlate with cognitiveperformanceinParkinson′sdisease patients with mild cognitive impairment[J].Front Behav Neurosci,2015,9:253.
[70]Scalzo P, Kümmer A,Bretas TL,Cardoso F,Teixeira AL.Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson′s disease[J].J Neurol,2010,257(4):540-545.
[71]Ziebell M,Khalid U,Klein AB,Aznar S,Thomsen G,Jensen P,Knudsen GM.et al.Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neuro?degeneration[J].Neurobiol Aging,2012,33(2):428.e1-428.e5.
[72]Mashayekhi F,Mirzajani E,Naji M,Azari M. Expression of insulin-like growth factor-1 and insulinlike growth factor binding proteins in the serum and cerebrospinal fluid of patients with Parkinson′s disease[J].J Clin Neurosci,2010,17(5):623-627.
[73]Godau J,Knauel K,Weber K,Brockmann K,Maetzler W,Binder G,et al.Serum insulin-like growth factor 1 as possible marker for risk and early diagnosis of Parkinson disease[J].Arch Neurol, 2011,68(7):925-931.
[74]Picillo M, Erro R,Santangelo G, Pivonello R,Longo K,Pivonello C,et al.Insulin-like growth factor-1 and progression of motor symptoms in early,drug-na?ve Parkinson′s disease[J].JNeurol,2013,260(7):1724-1730.
[75]Lu W,Wan X,Liu B,Rong X,Zhu L,Li P,et al. Specific changes of serum proteins in Parkinson's disease patients[J].PLoS One,2014,9(4):e95684.
[76]Berg D.Biomarkers for the early detection of Parkinson‘s and Alzheimer′s disease[J].Neuro?degener Dis,2008,5(3/4):133-136.
[77]Wang J.Multiple biomarkers for predicting cardio?vascular events:lessons learned[J].J Am Coll Cardiol,2010,55(19):2092-2095.
[78]Picillo M,Moccia M,Spina E,Barone P,Pellecchia MT. Biomarkers of Parkinson′s disease:recent insights,current challenges,and future prospects[J].J Par?kinsonism Restless Legs Syndr,2016,6:1-13.
Overview of cerebrospinal fluid and blood candidate biomarkers in Parkinson disease
CUI Dan-dan,WANG Xiao-liang,PENG Ying
(Institute of Materia Medica,Chinese Academy of Medical Sciences&Peking Union Medical College,Beijing 100050,China)
Parkinson disease(PD)is a common,progressive and disabling neurodegenerative movement disorder.Diagnosis of PD depends on clinical history and physical examination,but misdi?agnosis is common in early stages because of similar symptoms to other movement disorders.which is why biomarkers are urgently needed to accurately diagnose PD,especially in the early stages of PD,and find new drug targets.This review discusses the curient research of the PD candidate biomarkers from cerebrospinal fluid and blood in terms of PD pathogenesis.We have found that dihy?droxyphenylacetic acid,alpha-synuclein and its related proteins in Lewy bodies,8-hydroxy deoxy?guanosine,uric acid,interleukin and neurotrophic factors are potential biomarkers.They participate in different stages of PD.In order to enhance the accuracy of early diagnosis and efficacy of drugs evalua?tion,we are to use multiple biomarkers rather than a single biomarker,in combination with different biologic pathways of biomarkers,neuroimaging as well as clinical symptoms.
Parkinson disease;biomarker;cerebrospinal fluid;blood
s:WANG Xiao-liang,E-mail:wangxl@imm.ac.cn;PENG Ying,E-mail:ypeng@imm.ac.cn
R966
A
1000-3002-(2016)12-1254-10
10.3867/j.issn.1000-3002.2016.12.004
Foundation item:The project supported by National of Science and Technology Mega Project of China(2012ZX09301002-004);and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study(BZ0150)
2016-10-10接受日期:2016-12-14)
(本文編輯:齊春會(huì))
國家科技重大專項(xiàng)(2012ZX09301002-004);新藥作用機(jī)制研究與藥效評(píng)價(jià)北京市重點(diǎn)實(shí)驗(yàn)室資助(BZ0150)
王曉良,E-mail:wangxl@imm.ac.cn;彭 英,E-mail:ypeng@imm.ac.cn