• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    任意厚度梁的動力與穩(wěn)定解析解

    2016-01-26 08:27:32高榮譽王德才范家讓
    安徽建筑大學(xué)學(xué)報 2015年2期
    關(guān)鍵詞:轉(zhuǎn)換層彈塑性

    高榮譽, 王德才, 范家讓

    (1.安徽建筑大學(xué) 土木工程學(xué)院,安徽 合肥 230601;2.合肥工業(yè)大學(xué) 建筑與藝術(shù)學(xué)院,安徽 合肥 230009;

    3.合肥工業(yè)大學(xué) 土木與水利工程學(xué)院,安徽 合肥 230009)

    ?

    任意厚度梁的動力與穩(wěn)定解析解

    高榮譽1,王德才2,范家讓3

    (1.安徽建筑大學(xué) 土木工程學(xué)院,安徽 合肥230601;2.合肥工業(yè)大學(xué) 建筑與藝術(shù)學(xué)院,安徽 合肥 230009;

    3.合肥工業(yè)大學(xué) 土木與水利工程學(xué)院,安徽 合肥 230009)

    摘要:通常對于靜力、動力與穩(wěn)定問題的疊層梁僅能得到近似解。本文基于彈性力學(xué)的基本方程和狀態(tài)空間理論,拋棄任何有關(guān)應(yīng)力和位移模式的假定,導(dǎo)出梁的狀態(tài)方程,得出狀態(tài)方程變量級數(shù)表達(dá)式。采用Cayley-Hamilton定理,有效處理靜力、動力和穩(wěn)定問題,得出在任意荷載作用下任意高度疊層梁的封閉解析解。算例結(jié)果與有限元解對比,計算高效精確。

    關(guān)鍵詞:轉(zhuǎn)換層;寬扁梁;高層結(jié)構(gòu);框支剪力墻;彈塑性。

    0Introduction

    The problems of plane stress and plane strain are two classical ones in elasticity. A simple beam underplane stress was discussed in Xu (1992) and Timoshenko(1970). They adopted displacement method, stress method and stress function method, respectively. In their discussion the higher-order partial differential equations must be solved. Especially for laminated construction many unknowns must be solved, and these should be great many difficulty. In traditional elasticity, the mechanical quantities are expressed frequently in the form of polynomials. But we have proved that the true exact solution of elasticity cannot be a polynomial in coordinate variable(Fan and Ye, 1990). If the mechanical quantities are adopted in the form of polynomials, then incompatibility among the fundamental equations must appear in the deductive process. Vlasov (1957) proposed the method of initial function (MIF) to analyze problems of thick plates and shells. Bahar (1975) and Rao et al. (1977) introduced the state space and matrix method to the MIF. For an isotropic body the solutions of the initial functions can be obtained a closed form by using Caley-Hamilton theorem. But the closed form is only theoretical one since the solution of initial function has to be expressed in the form of a Meclaurin series. Taking several terms of the series, all the mechanical quantities, in fact, appear to be polynomials of coordinate variable. Adopting the displacement method of elasticity, Srinivas et al[7,8]. (1969, 1970) analyzed the simply supported laminates of isotropic or orthotropic layers. However, the number of calculation might be too great. Moreover, the number of the simultaneous equations will increase sharply as the number of layers increases. Usually, 6pequations should be established, wherepis the number of layers. All the disadvantages in above mentioned references were overcomed by Fan and Ye l[3,9](1990,1993).

    Exact analytical solution is given forp-plied beams with arbitrary height, and precision of any desired order can be obtained. All the fundamental equations of elasticity can be exactly satisfied. No matter how many layers are considered, the calculation always leads to solve a set of linear algebraic equations in two unknowns. Since the eigen-equation has no repeated root for orthotropic body, the solution of state equation can be expressed in the exact closed form by using Caley-Hamilton theorem. However, it is certain that repeated root will appear for isotropic body. The exponential function of matrix must use another approach to be expressed in the finite closed form. We have not seen the problem of buckling in elasticity [1,2]. Although the expression of the buckling problem was discussed in strength of material, only longitudinal elastic modulus was considered.Isotropic body has two elastic constants not one, and in the present study longitudinal elastic modulus and Poisson ratio were adopted to solve the buckling problem.

    1formulation and solution of the state equation for a simple beam

    1.1 formulation of the state equation

    A simple beam under plane stress is shown inFig.1. We adopt the symbols and fundamental equations as follows (Xu,1992):

    Equilibrium equations are

    (1)

    In fact, Eqn.1 is the equilibrium equation for beam dynamics andρ to be the density of the material.

    Physical equations are

    (2)

    Inserting geometrical equation inXu (1992) into above figure gives

    (3)

    Now eliminateσxfrom Eqn. 1 and Eqn.3. From the first figure of Eqn.3 one has

    (4)

    Inserting the above expression into the first figure of Eqn. 1 yields

    (5)

    From the second figure of Eqn. 1 can find

    (6)

    Substitution of Eqn. 4 into the secondfigure of Eqn. 3, one has

    (7)

    The third figure of Eqn. 3 gives

    (8)

    (9)

    After U and Y are found, the eliminated σxcan be determined from Eqn. 4.

    From Eqn. 9 we can prove that each mechanical quantity cannot be a polynomial in coordinate variable y. IfXandVwere polynomials of degreelfor variable y, from the first and the second lines of Eqn. 9UandYwould have to be polynomials of degreel+1. If this is the case, observing the other two figures of the same equation,XandVwould be polynomials of degreel+2 in y, which contradict what has been supposed. However in traditional elasticity the mechanical quantities are expressed in the form of polynomials of some coordinate variables. The errors which occur in these theories are theoretical ones and cannot be controlled. Because of this, there is a limitation of height in solved problem.

    Asimple beam as shown in Fig.1, the boundary conditions are

    (10)

    Selecting

    (11)

    We see, from Eqn.4 that the boundary condition of Eqn. 10 is satisfied. Substituting Eqn. 11 into Eqn. 9 yields state equation for each m.

    (12)

    where

    (13)

    1.2 The exact solutions for statics, dynamics and buckling problems

    The solution for state equation Eqn. 12 [Leonard,1996; Fan, 1996][10,11]is

    (14)

    Let

    (15)

    (16)

    Then Eqn. 14 becomes

    (17)

    Wheny=h, one has

    (18)

    D(y) in Eqn. 17 is called the state transfer matrix. R(0) are called initial values, which are two stresses and two displacements at the top surface.

    Statics:In statics we should selectωm=0 in Eqn. 13. If at the top surface of a beam (Fig.1) is loaded by uniformly distributed normal pressureq. Expandingqin the form of the following series, one has

    where

    (19)

    In fact, the above expression is four algebraic equation containing four unknowns Um(0),Vm(0),Um(h),Vm(h). Selecting the second and the third lines after simple calculation, one has

    (20)

    From above equation we can solveUm(0) andVm(0), then the initial values R(0) are known. After finding initial values, for arbitrary y from Eqn. 17 we can find R(y),These denote that Um(y), Ym(y), Xm(y) and Vm(y) are found. Substituting these quantities into Eqn. 11 respectively, the exact value of every mechanical quantity can be determined. It is explained that since cut off a series, some error will bring about. However the kind of error here is only one of calculation and can be controlled. As we know, there is nothing absolutely exact in the world. Even for a circle, we can not exactly calculate its area becauseπis a series too. Therefore, what is most important is not error, but the control of error. The traditional theories of elasticity are based on various simplifying assumptions, which only satisfy a part of the fundamental equations. The errors which occur in these theories are theoretical ones, and cannot be controlled. This sets great limitation to the thickness of solved problems.

    Dynamics:In the calculation of nature frequencies, letqm=0 in Eqn. 20 yields

    (21)

    At this timeωm≠0 in Eqn. 13. Nontrivial solution of Eqn. 21 gives

    (22)

    It should be mentioned that instead of being a polynomial inω2as in the ordinary theories, Eqn. 22 is a transcendental one. In fact, Eqn. 22 is the exact frequency equation for each m. It has an infinite number of roots corresponding to an infinite number of frequencies, which can be determined by using the procedure for finding the zero points of a function.

    Buckling: If the normal pressurepxacting on the two ends of a beam, the equilibrium equations are

    (23)

    (24)

    (25)

    The element of above determinant has two subscripts, corresponding to line and column respectively for element of four-order matrixG(h). Eqn. 25 is the exact buckling equation, for each m it has an infinite number of roots corresponding to an infinite number of critical stresses (the different form of buckling). However the minimal critical stress has the most practical value.

    2The exact solution for the statics, dynamics and buckling of laminated beams with two simply supported edges

    A beam is composed of p-layers with isotropic materials as shown in Fig. 2(a), in which jth layer is amplified and shown in Fig. 2 (b). In fact Fig. 2 (b) is same with Fig. 1. Repeating the process of Eqn. 17 arrived gives

    (26)

    where

    (27)

    Lety=hjin Eqn. 26 yields

    (28)

    Dj(hj) is a (4×4) constant matrix, which is different for apart layer. In fact, the above expression denotes that the mechanical quantities of the top surface and the bottom surface for thejth layer are linked up by matrixDj(hj). Eqn. 28 is suitable to arbitrary layer, and especially forj=1, 2 gives respectively.

    (29)

    (30)

    R1(h1) is four mechanical quantities of the bottom surface for 1st layer, and R2(0) is four mechanical quantities of the top surface for 2nd layer. At the interface, the continuity condition for the displacement and stresses can be written as

    Considering the above expression, substituting Eqn. 29 into Eqn. 30 yields

    Using the recurrence figure, the mechanical quantities of the top and bottom surfaces for the whole laminated beam can be written as

    (31)

    (32)

    Then Eqn. 31 becomes

    (33)

    In whichR1(0) is called initial values, ∏ is a (4×4) constant matrix. Writing the above figure in the evident form gives

    (34)

    Usually,XmandYmof the top and bottom surfaces should be priori. Therefore, the above equations are a set of linear algebraic equations with four displacements for the top and bottom surfaces of laminated beam. If a uniformly distributed normal pressureqacts at the top surface of the beam, selecting the 2ndand 3rdline a new system of equations is obtained as follows

    (35)

    From Eqn. 35 findingUm(0) andVm(0) initial values can be determined. Substitution of initial values into Eqn. 26 and letj=1 the mechanical quantities of the 1st layer can be solved. The mechanical quantities found at the bottom surface of the 1stlayer can be taken for the initial values of the 2nd layer. Thus, the mechanical quantities in the 2nd layer can be found. In the same way the whole laminated beam can be solved. In the calculations of natural frequencies and buckling, let right hand of Eqn. 35 equals zero. The nontrivial solution gives

    (36)

    It should be mentioned that, in the buckling analysis, it is usually presumed the laminated beam is under a state of uniform strain before buckling occurs. This can be achieved for thehomogeneous beam when the normal pressurepxdistribute uniformly over the edges. However, in the case of laminated beam in which the materials are inhomogeneous across the height, if the uniform strainεxis still assumed this means(sxpx)j=A,Where the constantAkeep unchanged for every layer, i.e. the value of the quantity in bracket is independent for the layer. This means thatpxis uniformly distributed on the edges of each layer, but then are sectional uniform across the total height.

    3Numerical Examples

    A simply supportedsandwich beam with isotropic materials is considered. At its unit width of the top surface is loaded by a uniformly distributed normal pressureq. L and h are span and height of the beam respectively. The top and bottom layers of the beam are identical,μ=0.25 for each layer, butE(1)=E(3)= 5E(2),h1=h3=0.1h,h2=0.8h, density ratioρ(1)=5ρ(2). Some results in Table 1 and 2 are given in comparison with FEM by using ANSYS. For the statics (ω=0)m=1, 3, 5, …, 29

    Table 1 Displacement and stress of the sandwich beam qh/E(2), qh/E(2))

    Symbols “+” and “-” locked on coordinate denote the outer and interior layers, respectively.

    Table 2 The first three natural frequency parameters Ω and the critical stress parameters Kx

    4Conclusions

    Exact analytical solution of statics, dynamics and buckling problems for laminated beams is achieved using the method of state space. The continuous conditions of stresses and displacements between plies of the laminates are satisfied, and two individual constants of isotropic body are used to express the figure of solving critical loads.

    The principle and method suggested here have clear physical meaning and overcome the contradictions and limitations arising fromincompatibility among the fundamental equations in various theories of beam. The present study satisfies the continuity conditions of stresses and displacements at the interfaces which the FEM cannot accomplish. Calculation always leads to solve a set of linear algebraic equations in two unknowns.

    Reference

    1Xu Z. L.. Applied elasticity. New Delhi:Wiley Eastern Limited, 1992

    2Timoshenko S. P. , Goodier J. N.. Theory of Elasticity. Auckland :McGraw-Hill, 1970.

    3Fan J. R., Ye J. Q..An exact solution for the statics and dynamics of laminated thick plates with orthotropics layers. International Journal of Solids and Structures, 1990, 26(5-6): 655-662.

    4Vlasov V. Z..The Method of Initial Functions in Problems of the Theory of Thick Plates and Shells. 9th Cong. Appl. Mech., Brussels, Belgium, 1957, 6(1):321-330.

    5Bahar L. Y. A State Space Approach to Elasticity. J. Franklin I., 1975,229(1): 33-41.

    6Rao N. S. V. K., Das Y. C.. A Mixed Method in Elasticity. J. Appl. Mech., 1977, 44(1): 51-56.

    7Srinivas S., Rao A. K. .Flexure of Simply Supported Thick Homogeneous and Laminated Rectangular Plates. J. Appl. Math. Mec.,1969,49(8), 449-458.

    8Srinivas S., Rao A. K.. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struc.,1970,6(11):1463-1481.

    9Fan J. R., Ye J. Q.. Exact solutions of buckling for simply supported thick laminates. Composite Structures,1993,24(1): 23-28.

    10Fan J. R.. Exact Theory of Laminated Thick Plates and Shells. Beijing:Science Press, 1996.

    11Leonard I. E.. The Matrix Exponential. SIAM Review, 1996,36(3):507-512.

    Exact Analytical Solution for Laminated Beams with Arbitrary Height

    GAO Rongyu1, WANG Decai2, FAN Jiarang3

    (1. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China;

    2. College of Architecture and Art, Hefei University of Technology, Hefei 230009, China;

    3. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China)

    Abstract:The approximate solution usually can only be obtained on solving the problem of statics, dynamics and buckling of laminated beams with arbitrary height. Based on the theory of elasticity and the method of state space, the state equation for isotropic laminated beam with simply supported edges is established without any assumptions about displacement models and stress distributions. Series expansion was carried out on the variables of the state equation. Using Caley-Hamilton theory, the exact closed analytical solutions are presented for statics, dynamics and buckling of laminated beams with arbitrary height. The method of calculating critical loads is improved in present. Numerical results of the example are obtained and compared with finite element method. The results show that the convergent solution can be achieved with high accuracy.

    Key words:state-space; laminated beam; arbitrary height; exact analytical solution

    中圖分類號:TU411.01

    文獻(xiàn)標(biāo)識碼:A

    文章編號:2095-8382(2015)02-007-07

    DOI:10.11921/j.issn.2095-8382.20150202

    作者簡介:高榮譽(1964-),男,教授,主要研究方向為高層大跨度結(jié)構(gòu)理論。

    收稿日期:2014-09-24

    猜你喜歡
    轉(zhuǎn)換層彈塑性
    矮塔斜拉橋彈塑性地震響應(yīng)分析
    彈塑性分析在超高層結(jié)構(gòu)設(shè)計中的應(yīng)用研究
    江西建材(2018年4期)2018-04-10 12:36:52
    梁式轉(zhuǎn)換層建筑施工技術(shù)淺探
    價值工程(2017年2期)2017-02-06 21:44:32
    高層鋼結(jié)構(gòu)轉(zhuǎn)換層桁架施工技術(shù)應(yīng)用
    卷宗(2016年10期)2017-01-21 14:17:04
    高層建筑厚板轉(zhuǎn)換層混凝土施工技術(shù)研究
    某圓端型實心橋墩動力彈塑性時程分析
    建筑結(jié)構(gòu)規(guī)范中側(cè)向剛度比的理解與應(yīng)用
    科技視界(2016年18期)2016-11-03 23:39:32
    淺論建筑結(jié)構(gòu)轉(zhuǎn)換層混凝土施工新技術(shù)
    建筑轉(zhuǎn)換層結(jié)構(gòu)的設(shè)計問題分析
    考慮變摩擦系數(shù)的輪軌系統(tǒng)滑動接觸熱彈塑性應(yīng)力分析
    av网站免费在线观看视频| 丁香六月天网| a级一级毛片免费在线观看| 尾随美女入室| 亚洲国产日韩一区二区| 99久久精品一区二区三区| 亚洲精品日韩av片在线观看| 国产女主播在线喷水免费视频网站| 美女脱内裤让男人舔精品视频| 女人久久www免费人成看片| 欧美激情国产日韩精品一区| 亚洲在久久综合| 国产探花极品一区二区| 欧美+日韩+精品| 国产精品不卡视频一区二区| 一个人看视频在线观看www免费| 免费少妇av软件| 国产成人精品一,二区| a级片在线免费高清观看视频| 国产伦在线观看视频一区| 尾随美女入室| 久久人妻熟女aⅴ| 男的添女的下面高潮视频| 91久久精品电影网| 免费高清在线观看视频在线观看| 99精国产麻豆久久婷婷| 天天操日日干夜夜撸| 91aial.com中文字幕在线观看| 最黄视频免费看| 爱豆传媒免费全集在线观看| 男女边吃奶边做爰视频| 狂野欧美激情性xxxx在线观看| 亚洲国产av新网站| 极品人妻少妇av视频| 日韩三级伦理在线观看| 亚洲内射少妇av| 啦啦啦在线观看免费高清www| 国产精品无大码| 免费人妻精品一区二区三区视频| 亚洲精品视频女| 男女啪啪激烈高潮av片| 久久99一区二区三区| 国产成人精品无人区| 国产一区二区在线观看日韩| 欧美老熟妇乱子伦牲交| 男人狂女人下面高潮的视频| 美女福利国产在线| 少妇被粗大猛烈的视频| 日韩,欧美,国产一区二区三区| 久久精品国产亚洲网站| 久久久国产一区二区| 高清午夜精品一区二区三区| 熟妇人妻不卡中文字幕| av在线播放精品| 亚洲精品自拍成人| 中文资源天堂在线| 丝袜在线中文字幕| 伦理电影免费视频| 精品国产一区二区三区久久久樱花| 久久久久久久大尺度免费视频| 日韩一区二区三区影片| 韩国av在线不卡| 另类精品久久| 内地一区二区视频在线| 亚洲av成人精品一区久久| 观看免费一级毛片| 高清毛片免费看| 国产一级毛片在线| 国产日韩欧美视频二区| 久久精品夜色国产| 热re99久久精品国产66热6| 精品亚洲乱码少妇综合久久| 久久久久国产精品人妻一区二区| 久久久午夜欧美精品| 在线观看一区二区三区激情| 伊人久久国产一区二区| 国产成人午夜福利电影在线观看| 一级毛片黄色毛片免费观看视频| 80岁老熟妇乱子伦牲交| 免费观看在线日韩| 亚洲精品视频女| av在线观看视频网站免费| 国产成人精品婷婷| 国产亚洲最大av| 久久午夜福利片| 久久精品夜色国产| 少妇人妻精品综合一区二区| 韩国高清视频一区二区三区| 99热全是精品| 99热这里只有是精品在线观看| 久久99热6这里只有精品| 国产精品一二三区在线看| 午夜激情福利司机影院| 午夜精品国产一区二区电影| 乱码一卡2卡4卡精品| 亚洲经典国产精华液单| 最近最新中文字幕免费大全7| 亚洲婷婷狠狠爱综合网| 欧美精品高潮呻吟av久久| 欧美最新免费一区二区三区| 亚洲综合色惰| 我要看黄色一级片免费的| 亚洲精品一区蜜桃| 国产精品久久久久久久电影| 十分钟在线观看高清视频www | 嫩草影院入口| 精品人妻一区二区三区麻豆| 国产成人精品无人区| 九色成人免费人妻av| 国产老妇伦熟女老妇高清| 黄色欧美视频在线观看| 国内少妇人妻偷人精品xxx网站| 97在线视频观看| 国产黄色视频一区二区在线观看| 日韩在线高清观看一区二区三区| av免费观看日本| 久久青草综合色| 欧美成人精品欧美一级黄| 亚洲久久久国产精品| 国产真实伦视频高清在线观看| 国产精品女同一区二区软件| 亚洲国产欧美日韩在线播放 | 国产精品久久久久久av不卡| 大又大粗又爽又黄少妇毛片口| 夫妻性生交免费视频一级片| 大片电影免费在线观看免费| 韩国av在线不卡| 国产精品99久久久久久久久| 日韩不卡一区二区三区视频在线| 大香蕉97超碰在线| 国产伦在线观看视频一区| 日本午夜av视频| 天美传媒精品一区二区| 国产高清三级在线| 2022亚洲国产成人精品| 日日摸夜夜添夜夜爱| 九九爱精品视频在线观看| 人人妻人人澡人人爽人人夜夜| 菩萨蛮人人尽说江南好唐韦庄| 亚洲色图综合在线观看| 国产精品久久久久久av不卡| av免费观看日本| 日日撸夜夜添| 欧美另类一区| 国产综合精华液| 亚洲成人手机| 下体分泌物呈黄色| 一区二区三区免费毛片| 免费看av在线观看网站| 国产探花极品一区二区| 国产 一区精品| 亚洲欧美日韩卡通动漫| 中文字幕人妻熟人妻熟丝袜美| 久久99一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 九九在线视频观看精品| 搡老乐熟女国产| 一级av片app| 少妇高潮的动态图| √禁漫天堂资源中文www| 性色av一级| 日韩熟女老妇一区二区性免费视频| 日韩制服骚丝袜av| 国产乱来视频区| 精品酒店卫生间| 色婷婷av一区二区三区视频| 一本一本综合久久| 内射极品少妇av片p| 深夜a级毛片| 丰满少妇做爰视频| 国产伦精品一区二区三区四那| 天天操日日干夜夜撸| 亚洲国产精品一区三区| 又爽又黄a免费视频| 永久网站在线| 大码成人一级视频| 国产一级毛片在线| 成人毛片a级毛片在线播放| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 日本黄大片高清| 亚洲精品国产色婷婷电影| 午夜精品国产一区二区电影| 日韩一本色道免费dvd| 亚洲精品乱久久久久久| 中文字幕精品免费在线观看视频 | 久久精品国产鲁丝片午夜精品| 国产成人精品久久久久久| 亚洲精品国产成人久久av| 亚洲av不卡在线观看| 日本-黄色视频高清免费观看| 亚洲精品国产色婷婷电影| 99热这里只有精品一区| 久久热精品热| 高清不卡的av网站| 99久久精品一区二区三区| 国产熟女午夜一区二区三区 | 日韩 亚洲 欧美在线| 热re99久久精品国产66热6| 色婷婷av一区二区三区视频| 亚洲内射少妇av| 最近手机中文字幕大全| 日本91视频免费播放| 免费av不卡在线播放| 欧美亚洲 丝袜 人妻 在线| 伦理电影免费视频| 黄色视频在线播放观看不卡| 极品教师在线视频| 精品视频人人做人人爽| 岛国毛片在线播放| 日本欧美视频一区| 亚洲av二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频精品| 女的被弄到高潮叫床怎么办| 国产在线一区二区三区精| 成年女人在线观看亚洲视频| 国产一区二区三区av在线| 精品少妇内射三级| 中文字幕免费在线视频6| 亚洲中文av在线| 三级经典国产精品| 综合色丁香网| 国产爽快片一区二区三区| 波野结衣二区三区在线| 亚洲伊人久久精品综合| 性色avwww在线观看| 久久久久久久国产电影| 成人午夜精彩视频在线观看| 国产熟女欧美一区二区| 少妇丰满av| 有码 亚洲区| 简卡轻食公司| tube8黄色片| 国产午夜精品一二区理论片| 三级经典国产精品| 免费不卡的大黄色大毛片视频在线观看| 国产免费视频播放在线视频| 成人二区视频| 黑丝袜美女国产一区| 18禁裸乳无遮挡动漫免费视频| 久久人人爽人人片av| 亚洲中文av在线| 男女国产视频网站| 欧美97在线视频| 久久精品国产自在天天线| 少妇猛男粗大的猛烈进出视频| 午夜免费观看性视频| 少妇被粗大猛烈的视频| 天堂俺去俺来也www色官网| 人体艺术视频欧美日本| av在线播放精品| 亚洲丝袜综合中文字幕| 99久久精品热视频| 国产精品蜜桃在线观看| 久久99精品国语久久久| 国产精品一区www在线观看| 国产黄片美女视频| 有码 亚洲区| 老熟女久久久| 五月伊人婷婷丁香| a级毛色黄片| 国产熟女欧美一区二区| av卡一久久| 日韩成人伦理影院| 亚洲内射少妇av| 亚洲av在线观看美女高潮| 国产亚洲5aaaaa淫片| 精品国产国语对白av| 久久久精品免费免费高清| 日韩伦理黄色片| 18禁在线无遮挡免费观看视频| 国产精品一二三区在线看| 国产日韩一区二区三区精品不卡 | 亚洲精品aⅴ在线观看| 99热网站在线观看| 王馨瑶露胸无遮挡在线观看| 自线自在国产av| .国产精品久久| 十分钟在线观看高清视频www | 蜜桃在线观看..| 大香蕉久久网| 国产精品一区二区在线不卡| 美女中出高潮动态图| 一区二区av电影网| 久久久久久久国产电影| 成人黄色视频免费在线看| 女性被躁到高潮视频| 黄色一级大片看看| 黄色怎么调成土黄色| 十八禁高潮呻吟视频 | 国产日韩欧美亚洲二区| 一区在线观看完整版| 97精品久久久久久久久久精品| 国产男女超爽视频在线观看| 黄色毛片三级朝国网站 | 在线观看免费高清a一片| 国产av一区二区精品久久| www.色视频.com| 香蕉精品网在线| 久久久久久久久久久久大奶| 精品卡一卡二卡四卡免费| 国产精品麻豆人妻色哟哟久久| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区| 国产精品一二三区在线看| 中文资源天堂在线| 亚洲熟女精品中文字幕| 美女内射精品一级片tv| 观看免费一级毛片| 这个男人来自地球电影免费观看 | 欧美精品高潮呻吟av久久| 成人国产麻豆网| 青春草国产在线视频| 午夜福利网站1000一区二区三区| 热re99久久国产66热| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 青春草视频在线免费观看| 国产一区二区在线观看av| 色视频www国产| 在线看a的网站| 一区二区三区乱码不卡18| 看免费成人av毛片| 视频中文字幕在线观看| a级片在线免费高清观看视频| 九色成人免费人妻av| 亚洲国产毛片av蜜桃av| 色吧在线观看| 新久久久久国产一级毛片| 精华霜和精华液先用哪个| 我要看黄色一级片免费的| 97超碰精品成人国产| 日韩不卡一区二区三区视频在线| 色婷婷久久久亚洲欧美| 亚洲国产精品999| 亚洲综合色惰| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添av毛片| 国产白丝娇喘喷水9色精品| 三级国产精品欧美在线观看| 黄色怎么调成土黄色| 在线观看一区二区三区激情| 国产亚洲5aaaaa淫片| 99久久综合免费| 国产日韩欧美在线精品| 我的老师免费观看完整版| 一级毛片久久久久久久久女| av在线app专区| 国产成人精品无人区| 久久久久久久精品精品| 亚洲国产精品国产精品| 街头女战士在线观看网站| 好男人视频免费观看在线| 国产在线免费精品| 91精品伊人久久大香线蕉| 大又大粗又爽又黄少妇毛片口| 日韩三级伦理在线观看| 欧美97在线视频| 大码成人一级视频| 男女无遮挡免费网站观看| 国产成人91sexporn| 久久久久久久国产电影| 精品国产一区二区久久| 九九爱精品视频在线观看| 日韩伦理黄色片| 香蕉精品网在线| 国产 一区精品| 乱系列少妇在线播放| 久久这里有精品视频免费| 男人添女人高潮全过程视频| 日产精品乱码卡一卡2卡三| 一边亲一边摸免费视频| 色婷婷久久久亚洲欧美| 国产精品不卡视频一区二区| 美女国产视频在线观看| 欧美精品亚洲一区二区| h日本视频在线播放| 高清av免费在线| 内地一区二区视频在线| 亚洲av欧美aⅴ国产| 亚洲情色 制服丝袜| 极品教师在线视频| 中文字幕人妻丝袜制服| 偷拍熟女少妇极品色| 久久精品国产鲁丝片午夜精品| 男女啪啪激烈高潮av片| 热re99久久国产66热| 亚洲精品一二三| 最近最新中文字幕免费大全7| 国产深夜福利视频在线观看| 人人妻人人澡人人看| 18禁动态无遮挡网站| 日韩中字成人| 中文字幕免费在线视频6| 国内揄拍国产精品人妻在线| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 国产一级毛片在线| 亚洲欧洲国产日韩| 精品亚洲乱码少妇综合久久| 国产极品粉嫩免费观看在线 | 久久精品夜色国产| 国产精品福利在线免费观看| 欧美成人精品欧美一级黄| 精品国产乱码久久久久久小说| 亚洲人成网站在线播| 国产一区二区在线观看日韩| 蜜桃久久精品国产亚洲av| 永久网站在线| 91精品国产国语对白视频| 最近中文字幕高清免费大全6| 韩国av在线不卡| 欧美区成人在线视频| 国产国拍精品亚洲av在线观看| 我要看黄色一级片免费的| av视频免费观看在线观看| 少妇人妻 视频| 狂野欧美白嫩少妇大欣赏| 看十八女毛片水多多多| 久久精品久久久久久噜噜老黄| 99久久精品国产国产毛片| 在线天堂最新版资源| 伊人久久国产一区二区| 少妇丰满av| 精品亚洲乱码少妇综合久久| 777米奇影视久久| 免费少妇av软件| 精品久久国产蜜桃| 高清视频免费观看一区二区| 一区二区三区四区激情视频| 国产男女超爽视频在线观看| 国产精品熟女久久久久浪| 中文字幕人妻丝袜制服| 精品少妇内射三级| 国产在线视频一区二区| 久久久精品94久久精品| 久久精品国产鲁丝片午夜精品| 欧美日韩在线观看h| 一级二级三级毛片免费看| 国产色爽女视频免费观看| av福利片在线| 亚洲欧美一区二区三区国产| 国产熟女欧美一区二区| 日本av手机在线免费观看| 99久久精品一区二区三区| 最近最新中文字幕免费大全7| 免费看日本二区| 久久久午夜欧美精品| 国产亚洲精品久久久com| 亚洲,欧美,日韩| 嫩草影院新地址| 日本黄色日本黄色录像| 精品久久久精品久久久| av网站免费在线观看视频| 三级国产精品片| 69精品国产乱码久久久| 乱码一卡2卡4卡精品| 少妇的逼好多水| 久久亚洲国产成人精品v| 校园人妻丝袜中文字幕| 亚洲人成网站在线观看播放| 啦啦啦中文免费视频观看日本| 免费大片黄手机在线观看| 嫩草影院入口| 亚洲精品aⅴ在线观看| 国产精品秋霞免费鲁丝片| 亚洲精品,欧美精品| 欧美日韩av久久| 成人亚洲欧美一区二区av| 高清不卡的av网站| 国产成人精品福利久久| 国国产精品蜜臀av免费| 久久精品熟女亚洲av麻豆精品| 亚洲国产av新网站| 啦啦啦啦在线视频资源| 22中文网久久字幕| 免费观看无遮挡的男女| .国产精品久久| 最后的刺客免费高清国语| 九九在线视频观看精品| 久久97久久精品| 国产在线免费精品| 欧美日韩视频高清一区二区三区二| 老女人水多毛片| 91午夜精品亚洲一区二区三区| 精品一区二区三区视频在线| 国产成人精品久久久久久| 男人和女人高潮做爰伦理| 国产精品一区二区性色av| 色婷婷久久久亚洲欧美| 夫妻性生交免费视频一级片| 成人影院久久| 日韩精品免费视频一区二区三区 | 人人澡人人妻人| 麻豆成人av视频| 久久精品久久精品一区二区三区| av有码第一页| 男女国产视频网站| 丝瓜视频免费看黄片| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 一级毛片黄色毛片免费观看视频| 青青草视频在线视频观看| 欧美精品高潮呻吟av久久| 亚洲av成人精品一二三区| 一级黄片播放器| 欧美精品一区二区大全| 中文乱码字字幕精品一区二区三区| 久久人妻熟女aⅴ| 国语对白做爰xxxⅹ性视频网站| av天堂中文字幕网| 久久 成人 亚洲| 成人亚洲欧美一区二区av| 日日爽夜夜爽网站| 人妻一区二区av| 国产男人的电影天堂91| 99久久精品一区二区三区| 又大又黄又爽视频免费| a级毛色黄片| 欧美精品人与动牲交sv欧美| 热re99久久国产66热| 国产在线视频一区二区| 激情五月婷婷亚洲| av在线老鸭窝| 精华霜和精华液先用哪个| 麻豆乱淫一区二区| 三级国产精品欧美在线观看| 中文字幕精品免费在线观看视频 | 亚洲国产精品成人久久小说| 插逼视频在线观看| 亚洲av中文av极速乱| 伦理电影免费视频| 在线精品无人区一区二区三| 日本爱情动作片www.在线观看| www.av在线官网国产| 能在线免费看毛片的网站| 寂寞人妻少妇视频99o| 国产黄色视频一区二区在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美丝袜亚洲另类| 欧美bdsm另类| 狠狠精品人妻久久久久久综合| 色婷婷av一区二区三区视频| 免费黄频网站在线观看国产| 亚洲国产精品专区欧美| 精品亚洲成a人片在线观看| 亚洲怡红院男人天堂| 极品少妇高潮喷水抽搐| 视频区图区小说| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久| av线在线观看网站| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 菩萨蛮人人尽说江南好唐韦庄| 观看免费一级毛片| 777米奇影视久久| 在线观看免费视频网站a站| 狂野欧美激情性xxxx在线观看| 欧美日韩亚洲高清精品| 国产在线视频一区二区| 视频中文字幕在线观看| 久久久久久久久久成人| 9色porny在线观看| kizo精华| 校园人妻丝袜中文字幕| 亚洲欧美成人精品一区二区| 成人影院久久| 99re6热这里在线精品视频| 免费观看无遮挡的男女| 五月伊人婷婷丁香| 午夜精品国产一区二区电影| 精品久久国产蜜桃| 亚洲av二区三区四区| 久久人人爽人人片av| 七月丁香在线播放| 日韩成人伦理影院| 一区二区三区免费毛片| 国产精品福利在线免费观看| 精品久久久噜噜| 日日爽夜夜爽网站| 亚洲激情五月婷婷啪啪| videos熟女内射| 亚洲av电影在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲精品456在线播放app| 九色成人免费人妻av| 亚洲经典国产精华液单| 国产乱来视频区| 亚洲自偷自拍三级| 国产在线免费精品| 久久久久国产精品人妻一区二区| 亚洲av.av天堂| a级片在线免费高清观看视频| 欧美 亚洲 国产 日韩一| 69精品国产乱码久久久| 国产在线男女| 日韩免费高清中文字幕av| 精华霜和精华液先用哪个| a级一级毛片免费在线观看| 欧美日韩国产mv在线观看视频| 欧美精品一区二区免费开放| 久久狼人影院| 国产免费一区二区三区四区乱码| 久久99蜜桃精品久久| 美女中出高潮动态图| 18禁在线无遮挡免费观看视频| 国产精品福利在线免费观看| 成人综合一区亚洲| 亚洲高清免费不卡视频| 亚洲精品久久久久久婷婷小说| 涩涩av久久男人的天堂| 少妇裸体淫交视频免费看高清| 欧美精品人与动牲交sv欧美|