• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    任意厚度梁的動力與穩(wěn)定解析解

    2016-01-26 08:27:32高榮譽王德才范家讓
    安徽建筑大學(xué)學(xué)報 2015年2期
    關(guān)鍵詞:轉(zhuǎn)換層彈塑性

    高榮譽, 王德才, 范家讓

    (1.安徽建筑大學(xué) 土木工程學(xué)院,安徽 合肥 230601;2.合肥工業(yè)大學(xué) 建筑與藝術(shù)學(xué)院,安徽 合肥 230009;

    3.合肥工業(yè)大學(xué) 土木與水利工程學(xué)院,安徽 合肥 230009)

    ?

    任意厚度梁的動力與穩(wěn)定解析解

    高榮譽1,王德才2,范家讓3

    (1.安徽建筑大學(xué) 土木工程學(xué)院,安徽 合肥230601;2.合肥工業(yè)大學(xué) 建筑與藝術(shù)學(xué)院,安徽 合肥 230009;

    3.合肥工業(yè)大學(xué) 土木與水利工程學(xué)院,安徽 合肥 230009)

    摘要:通常對于靜力、動力與穩(wěn)定問題的疊層梁僅能得到近似解。本文基于彈性力學(xué)的基本方程和狀態(tài)空間理論,拋棄任何有關(guān)應(yīng)力和位移模式的假定,導(dǎo)出梁的狀態(tài)方程,得出狀態(tài)方程變量級數(shù)表達(dá)式。采用Cayley-Hamilton定理,有效處理靜力、動力和穩(wěn)定問題,得出在任意荷載作用下任意高度疊層梁的封閉解析解。算例結(jié)果與有限元解對比,計算高效精確。

    關(guān)鍵詞:轉(zhuǎn)換層;寬扁梁;高層結(jié)構(gòu);框支剪力墻;彈塑性。

    0Introduction

    The problems of plane stress and plane strain are two classical ones in elasticity. A simple beam underplane stress was discussed in Xu (1992) and Timoshenko(1970). They adopted displacement method, stress method and stress function method, respectively. In their discussion the higher-order partial differential equations must be solved. Especially for laminated construction many unknowns must be solved, and these should be great many difficulty. In traditional elasticity, the mechanical quantities are expressed frequently in the form of polynomials. But we have proved that the true exact solution of elasticity cannot be a polynomial in coordinate variable(Fan and Ye, 1990). If the mechanical quantities are adopted in the form of polynomials, then incompatibility among the fundamental equations must appear in the deductive process. Vlasov (1957) proposed the method of initial function (MIF) to analyze problems of thick plates and shells. Bahar (1975) and Rao et al. (1977) introduced the state space and matrix method to the MIF. For an isotropic body the solutions of the initial functions can be obtained a closed form by using Caley-Hamilton theorem. But the closed form is only theoretical one since the solution of initial function has to be expressed in the form of a Meclaurin series. Taking several terms of the series, all the mechanical quantities, in fact, appear to be polynomials of coordinate variable. Adopting the displacement method of elasticity, Srinivas et al[7,8]. (1969, 1970) analyzed the simply supported laminates of isotropic or orthotropic layers. However, the number of calculation might be too great. Moreover, the number of the simultaneous equations will increase sharply as the number of layers increases. Usually, 6pequations should be established, wherepis the number of layers. All the disadvantages in above mentioned references were overcomed by Fan and Ye l[3,9](1990,1993).

    Exact analytical solution is given forp-plied beams with arbitrary height, and precision of any desired order can be obtained. All the fundamental equations of elasticity can be exactly satisfied. No matter how many layers are considered, the calculation always leads to solve a set of linear algebraic equations in two unknowns. Since the eigen-equation has no repeated root for orthotropic body, the solution of state equation can be expressed in the exact closed form by using Caley-Hamilton theorem. However, it is certain that repeated root will appear for isotropic body. The exponential function of matrix must use another approach to be expressed in the finite closed form. We have not seen the problem of buckling in elasticity [1,2]. Although the expression of the buckling problem was discussed in strength of material, only longitudinal elastic modulus was considered.Isotropic body has two elastic constants not one, and in the present study longitudinal elastic modulus and Poisson ratio were adopted to solve the buckling problem.

    1formulation and solution of the state equation for a simple beam

    1.1 formulation of the state equation

    A simple beam under plane stress is shown inFig.1. We adopt the symbols and fundamental equations as follows (Xu,1992):

    Equilibrium equations are

    (1)

    In fact, Eqn.1 is the equilibrium equation for beam dynamics andρ to be the density of the material.

    Physical equations are

    (2)

    Inserting geometrical equation inXu (1992) into above figure gives

    (3)

    Now eliminateσxfrom Eqn. 1 and Eqn.3. From the first figure of Eqn.3 one has

    (4)

    Inserting the above expression into the first figure of Eqn. 1 yields

    (5)

    From the second figure of Eqn. 1 can find

    (6)

    Substitution of Eqn. 4 into the secondfigure of Eqn. 3, one has

    (7)

    The third figure of Eqn. 3 gives

    (8)

    (9)

    After U and Y are found, the eliminated σxcan be determined from Eqn. 4.

    From Eqn. 9 we can prove that each mechanical quantity cannot be a polynomial in coordinate variable y. IfXandVwere polynomials of degreelfor variable y, from the first and the second lines of Eqn. 9UandYwould have to be polynomials of degreel+1. If this is the case, observing the other two figures of the same equation,XandVwould be polynomials of degreel+2 in y, which contradict what has been supposed. However in traditional elasticity the mechanical quantities are expressed in the form of polynomials of some coordinate variables. The errors which occur in these theories are theoretical ones and cannot be controlled. Because of this, there is a limitation of height in solved problem.

    Asimple beam as shown in Fig.1, the boundary conditions are

    (10)

    Selecting

    (11)

    We see, from Eqn.4 that the boundary condition of Eqn. 10 is satisfied. Substituting Eqn. 11 into Eqn. 9 yields state equation for each m.

    (12)

    where

    (13)

    1.2 The exact solutions for statics, dynamics and buckling problems

    The solution for state equation Eqn. 12 [Leonard,1996; Fan, 1996][10,11]is

    (14)

    Let

    (15)

    (16)

    Then Eqn. 14 becomes

    (17)

    Wheny=h, one has

    (18)

    D(y) in Eqn. 17 is called the state transfer matrix. R(0) are called initial values, which are two stresses and two displacements at the top surface.

    Statics:In statics we should selectωm=0 in Eqn. 13. If at the top surface of a beam (Fig.1) is loaded by uniformly distributed normal pressureq. Expandingqin the form of the following series, one has

    where

    (19)

    In fact, the above expression is four algebraic equation containing four unknowns Um(0),Vm(0),Um(h),Vm(h). Selecting the second and the third lines after simple calculation, one has

    (20)

    From above equation we can solveUm(0) andVm(0), then the initial values R(0) are known. After finding initial values, for arbitrary y from Eqn. 17 we can find R(y),These denote that Um(y), Ym(y), Xm(y) and Vm(y) are found. Substituting these quantities into Eqn. 11 respectively, the exact value of every mechanical quantity can be determined. It is explained that since cut off a series, some error will bring about. However the kind of error here is only one of calculation and can be controlled. As we know, there is nothing absolutely exact in the world. Even for a circle, we can not exactly calculate its area becauseπis a series too. Therefore, what is most important is not error, but the control of error. The traditional theories of elasticity are based on various simplifying assumptions, which only satisfy a part of the fundamental equations. The errors which occur in these theories are theoretical ones, and cannot be controlled. This sets great limitation to the thickness of solved problems.

    Dynamics:In the calculation of nature frequencies, letqm=0 in Eqn. 20 yields

    (21)

    At this timeωm≠0 in Eqn. 13. Nontrivial solution of Eqn. 21 gives

    (22)

    It should be mentioned that instead of being a polynomial inω2as in the ordinary theories, Eqn. 22 is a transcendental one. In fact, Eqn. 22 is the exact frequency equation for each m. It has an infinite number of roots corresponding to an infinite number of frequencies, which can be determined by using the procedure for finding the zero points of a function.

    Buckling: If the normal pressurepxacting on the two ends of a beam, the equilibrium equations are

    (23)

    (24)

    (25)

    The element of above determinant has two subscripts, corresponding to line and column respectively for element of four-order matrixG(h). Eqn. 25 is the exact buckling equation, for each m it has an infinite number of roots corresponding to an infinite number of critical stresses (the different form of buckling). However the minimal critical stress has the most practical value.

    2The exact solution for the statics, dynamics and buckling of laminated beams with two simply supported edges

    A beam is composed of p-layers with isotropic materials as shown in Fig. 2(a), in which jth layer is amplified and shown in Fig. 2 (b). In fact Fig. 2 (b) is same with Fig. 1. Repeating the process of Eqn. 17 arrived gives

    (26)

    where

    (27)

    Lety=hjin Eqn. 26 yields

    (28)

    Dj(hj) is a (4×4) constant matrix, which is different for apart layer. In fact, the above expression denotes that the mechanical quantities of the top surface and the bottom surface for thejth layer are linked up by matrixDj(hj). Eqn. 28 is suitable to arbitrary layer, and especially forj=1, 2 gives respectively.

    (29)

    (30)

    R1(h1) is four mechanical quantities of the bottom surface for 1st layer, and R2(0) is four mechanical quantities of the top surface for 2nd layer. At the interface, the continuity condition for the displacement and stresses can be written as

    Considering the above expression, substituting Eqn. 29 into Eqn. 30 yields

    Using the recurrence figure, the mechanical quantities of the top and bottom surfaces for the whole laminated beam can be written as

    (31)

    (32)

    Then Eqn. 31 becomes

    (33)

    In whichR1(0) is called initial values, ∏ is a (4×4) constant matrix. Writing the above figure in the evident form gives

    (34)

    Usually,XmandYmof the top and bottom surfaces should be priori. Therefore, the above equations are a set of linear algebraic equations with four displacements for the top and bottom surfaces of laminated beam. If a uniformly distributed normal pressureqacts at the top surface of the beam, selecting the 2ndand 3rdline a new system of equations is obtained as follows

    (35)

    From Eqn. 35 findingUm(0) andVm(0) initial values can be determined. Substitution of initial values into Eqn. 26 and letj=1 the mechanical quantities of the 1st layer can be solved. The mechanical quantities found at the bottom surface of the 1stlayer can be taken for the initial values of the 2nd layer. Thus, the mechanical quantities in the 2nd layer can be found. In the same way the whole laminated beam can be solved. In the calculations of natural frequencies and buckling, let right hand of Eqn. 35 equals zero. The nontrivial solution gives

    (36)

    It should be mentioned that, in the buckling analysis, it is usually presumed the laminated beam is under a state of uniform strain before buckling occurs. This can be achieved for thehomogeneous beam when the normal pressurepxdistribute uniformly over the edges. However, in the case of laminated beam in which the materials are inhomogeneous across the height, if the uniform strainεxis still assumed this means(sxpx)j=A,Where the constantAkeep unchanged for every layer, i.e. the value of the quantity in bracket is independent for the layer. This means thatpxis uniformly distributed on the edges of each layer, but then are sectional uniform across the total height.

    3Numerical Examples

    A simply supportedsandwich beam with isotropic materials is considered. At its unit width of the top surface is loaded by a uniformly distributed normal pressureq. L and h are span and height of the beam respectively. The top and bottom layers of the beam are identical,μ=0.25 for each layer, butE(1)=E(3)= 5E(2),h1=h3=0.1h,h2=0.8h, density ratioρ(1)=5ρ(2). Some results in Table 1 and 2 are given in comparison with FEM by using ANSYS. For the statics (ω=0)m=1, 3, 5, …, 29

    Table 1 Displacement and stress of the sandwich beam qh/E(2), qh/E(2))

    Symbols “+” and “-” locked on coordinate denote the outer and interior layers, respectively.

    Table 2 The first three natural frequency parameters Ω and the critical stress parameters Kx

    4Conclusions

    Exact analytical solution of statics, dynamics and buckling problems for laminated beams is achieved using the method of state space. The continuous conditions of stresses and displacements between plies of the laminates are satisfied, and two individual constants of isotropic body are used to express the figure of solving critical loads.

    The principle and method suggested here have clear physical meaning and overcome the contradictions and limitations arising fromincompatibility among the fundamental equations in various theories of beam. The present study satisfies the continuity conditions of stresses and displacements at the interfaces which the FEM cannot accomplish. Calculation always leads to solve a set of linear algebraic equations in two unknowns.

    Reference

    1Xu Z. L.. Applied elasticity. New Delhi:Wiley Eastern Limited, 1992

    2Timoshenko S. P. , Goodier J. N.. Theory of Elasticity. Auckland :McGraw-Hill, 1970.

    3Fan J. R., Ye J. Q..An exact solution for the statics and dynamics of laminated thick plates with orthotropics layers. International Journal of Solids and Structures, 1990, 26(5-6): 655-662.

    4Vlasov V. Z..The Method of Initial Functions in Problems of the Theory of Thick Plates and Shells. 9th Cong. Appl. Mech., Brussels, Belgium, 1957, 6(1):321-330.

    5Bahar L. Y. A State Space Approach to Elasticity. J. Franklin I., 1975,229(1): 33-41.

    6Rao N. S. V. K., Das Y. C.. A Mixed Method in Elasticity. J. Appl. Mech., 1977, 44(1): 51-56.

    7Srinivas S., Rao A. K. .Flexure of Simply Supported Thick Homogeneous and Laminated Rectangular Plates. J. Appl. Math. Mec.,1969,49(8), 449-458.

    8Srinivas S., Rao A. K.. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struc.,1970,6(11):1463-1481.

    9Fan J. R., Ye J. Q.. Exact solutions of buckling for simply supported thick laminates. Composite Structures,1993,24(1): 23-28.

    10Fan J. R.. Exact Theory of Laminated Thick Plates and Shells. Beijing:Science Press, 1996.

    11Leonard I. E.. The Matrix Exponential. SIAM Review, 1996,36(3):507-512.

    Exact Analytical Solution for Laminated Beams with Arbitrary Height

    GAO Rongyu1, WANG Decai2, FAN Jiarang3

    (1. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China;

    2. College of Architecture and Art, Hefei University of Technology, Hefei 230009, China;

    3. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China)

    Abstract:The approximate solution usually can only be obtained on solving the problem of statics, dynamics and buckling of laminated beams with arbitrary height. Based on the theory of elasticity and the method of state space, the state equation for isotropic laminated beam with simply supported edges is established without any assumptions about displacement models and stress distributions. Series expansion was carried out on the variables of the state equation. Using Caley-Hamilton theory, the exact closed analytical solutions are presented for statics, dynamics and buckling of laminated beams with arbitrary height. The method of calculating critical loads is improved in present. Numerical results of the example are obtained and compared with finite element method. The results show that the convergent solution can be achieved with high accuracy.

    Key words:state-space; laminated beam; arbitrary height; exact analytical solution

    中圖分類號:TU411.01

    文獻(xiàn)標(biāo)識碼:A

    文章編號:2095-8382(2015)02-007-07

    DOI:10.11921/j.issn.2095-8382.20150202

    作者簡介:高榮譽(1964-),男,教授,主要研究方向為高層大跨度結(jié)構(gòu)理論。

    收稿日期:2014-09-24

    猜你喜歡
    轉(zhuǎn)換層彈塑性
    矮塔斜拉橋彈塑性地震響應(yīng)分析
    彈塑性分析在超高層結(jié)構(gòu)設(shè)計中的應(yīng)用研究
    江西建材(2018年4期)2018-04-10 12:36:52
    梁式轉(zhuǎn)換層建筑施工技術(shù)淺探
    價值工程(2017年2期)2017-02-06 21:44:32
    高層鋼結(jié)構(gòu)轉(zhuǎn)換層桁架施工技術(shù)應(yīng)用
    卷宗(2016年10期)2017-01-21 14:17:04
    高層建筑厚板轉(zhuǎn)換層混凝土施工技術(shù)研究
    某圓端型實心橋墩動力彈塑性時程分析
    建筑結(jié)構(gòu)規(guī)范中側(cè)向剛度比的理解與應(yīng)用
    科技視界(2016年18期)2016-11-03 23:39:32
    淺論建筑結(jié)構(gòu)轉(zhuǎn)換層混凝土施工新技術(shù)
    建筑轉(zhuǎn)換層結(jié)構(gòu)的設(shè)計問題分析
    考慮變摩擦系數(shù)的輪軌系統(tǒng)滑動接觸熱彈塑性應(yīng)力分析
    91av网一区二区| 欧美性猛交╳xxx乱大交人| av中文乱码字幕在线| 大型黄色视频在线免费观看| 免费在线观看影片大全网站| 999久久久精品免费观看国产| 曰老女人黄片| 手机成人av网站| 美女被艹到高潮喷水动态| 国产成人精品久久二区二区免费| 在线看三级毛片| 久久久国产精品麻豆| 国产男靠女视频免费网站| 欧美乱码精品一区二区三区| 久久久水蜜桃国产精品网| 成人鲁丝片一二三区免费| 好男人在线观看高清免费视频| tocl精华| 午夜福利视频1000在线观看| 男女视频在线观看网站免费| 久久天堂一区二区三区四区| 日本成人三级电影网站| 亚洲va日本ⅴa欧美va伊人久久| 色av中文字幕| 女警被强在线播放| 日韩欧美免费精品| 国产精品一区二区三区四区久久| 国产av不卡久久| a级毛片a级免费在线| 亚洲欧美日韩卡通动漫| 男人和女人高潮做爰伦理| 夜夜夜夜夜久久久久| 精品日产1卡2卡| 欧美大码av| 麻豆一二三区av精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产伦一二天堂av在线观看| 欧美绝顶高潮抽搐喷水| 伦理电影免费视频| 美女高潮的动态| 91在线精品国自产拍蜜月 | 日韩欧美一区二区三区在线观看| 国产精品精品国产色婷婷| 最近最新免费中文字幕在线| 一进一出抽搐动态| 中出人妻视频一区二区| 国产精品永久免费网站| 国产aⅴ精品一区二区三区波| 午夜精品一区二区三区免费看| 热99re8久久精品国产| 青草久久国产| 18禁裸乳无遮挡免费网站照片| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 九九久久精品国产亚洲av麻豆 | 久久久久久久久中文| 国产高潮美女av| 亚洲精品美女久久久久99蜜臀| 亚洲成av人片免费观看| 国内久久婷婷六月综合欲色啪| 国产欧美日韩精品一区二区| 午夜福利欧美成人| 国产亚洲精品一区二区www| 国产精品久久电影中文字幕| 亚洲在线观看片| 国产激情偷乱视频一区二区| 天堂影院成人在线观看| cao死你这个sao货| 国产一区二区三区在线臀色熟女| 久久九九热精品免费| 后天国语完整版免费观看| 九九热线精品视视频播放| 欧美日本亚洲视频在线播放| 久久人人精品亚洲av| 精品国产美女av久久久久小说| 视频区欧美日本亚洲| 一边摸一边抽搐一进一小说| 国产美女午夜福利| 欧美xxxx黑人xx丫x性爽| 日本 欧美在线| 久久中文字幕人妻熟女| 观看美女的网站| 高清毛片免费观看视频网站| 国产精品精品国产色婷婷| 少妇人妻一区二区三区视频| 免费看光身美女| 成年版毛片免费区| 一区二区三区高清视频在线| 亚洲国产欧洲综合997久久,| 久久精品夜夜夜夜夜久久蜜豆| 少妇裸体淫交视频免费看高清| 午夜激情欧美在线| 成人国产综合亚洲| ponron亚洲| 色噜噜av男人的天堂激情| 久久国产乱子伦精品免费另类| xxx96com| 欧美激情在线99| 老鸭窝网址在线观看| 久9热在线精品视频| 成年免费大片在线观看| 高清毛片免费观看视频网站| 91在线精品国自产拍蜜月 | 国产精品亚洲av一区麻豆| 老司机福利观看| 久9热在线精品视频| 叶爱在线成人免费视频播放| 国产野战对白在线观看| 在线a可以看的网站| 18禁观看日本| 久久久久久久午夜电影| 女人被狂操c到高潮| 中文字幕最新亚洲高清| 全区人妻精品视频| 国产精品久久久久久精品电影| 俺也久久电影网| 99久久国产精品久久久| 亚洲av片天天在线观看| 麻豆成人av在线观看| 久久这里只有精品中国| 久久中文字幕人妻熟女| 国产高清videossex| 成人永久免费在线观看视频| 村上凉子中文字幕在线| 免费看美女性在线毛片视频| 亚洲第一电影网av| 12—13女人毛片做爰片一| 黄色女人牲交| 老司机午夜十八禁免费视频| 国产成+人综合+亚洲专区| 日韩欧美精品v在线| 麻豆国产97在线/欧美| tocl精华| 日韩国内少妇激情av| 欧美日本亚洲视频在线播放| 成人无遮挡网站| 日本三级黄在线观看| 国产成+人综合+亚洲专区| 久久精品aⅴ一区二区三区四区| 国产精品自产拍在线观看55亚洲| 久久久国产成人精品二区| 国产毛片a区久久久久| 神马国产精品三级电影在线观看| 99在线人妻在线中文字幕| 大型黄色视频在线免费观看| 两个人看的免费小视频| 在线观看一区二区三区| 亚洲乱码一区二区免费版| 国产爱豆传媒在线观看| 久久久久亚洲av毛片大全| 又黄又爽又免费观看的视频| 国内精品久久久久精免费| xxxwww97欧美| 成人欧美大片| 夜夜看夜夜爽夜夜摸| 日韩精品中文字幕看吧| 中文资源天堂在线| 人妻丰满熟妇av一区二区三区| 国内精品久久久久久久电影| 天堂动漫精品| 日本黄大片高清| 久久久久久人人人人人| 国产黄色小视频在线观看| 在线免费观看不下载黄p国产 | 巨乳人妻的诱惑在线观看| 99热精品在线国产| 校园春色视频在线观看| 国内精品久久久久久久电影| 天堂动漫精品| 99在线人妻在线中文字幕| 亚洲精品美女久久久久99蜜臀| 亚洲专区中文字幕在线| 国产久久久一区二区三区| 色在线成人网| 亚洲熟女毛片儿| 国产精品一区二区免费欧美| 免费看日本二区| 亚洲av电影在线进入| 亚洲欧美日韩无卡精品| 在线观看免费视频日本深夜| 一级a爱片免费观看的视频| 国产一区二区三区在线臀色熟女| 99久国产av精品| 国产精品亚洲一级av第二区| 1024香蕉在线观看| 久久精品91无色码中文字幕| 日韩欧美国产在线观看| 国产亚洲av高清不卡| 欧美+亚洲+日韩+国产| 国产高清有码在线观看视频| 国产精品永久免费网站| 亚洲中文字幕日韩| 51午夜福利影视在线观看| 欧美丝袜亚洲另类 | 欧美成人免费av一区二区三区| 一级毛片精品| 国内揄拍国产精品人妻在线| 嫩草影院入口| 久久久久久久久中文| 全区人妻精品视频| 黄色丝袜av网址大全| 好看av亚洲va欧美ⅴa在| 色视频www国产| 法律面前人人平等表现在哪些方面| 国产1区2区3区精品| 日日夜夜操网爽| 成人亚洲精品av一区二区| 欧美3d第一页| 亚洲精品中文字幕一二三四区| 欧美一区二区国产精品久久精品| 午夜免费激情av| 欧美色欧美亚洲另类二区| 午夜成年电影在线免费观看| 国产精品99久久99久久久不卡| 久久欧美精品欧美久久欧美| 国内揄拍国产精品人妻在线| 久久天躁狠狠躁夜夜2o2o| 午夜福利视频1000在线观看| 欧美3d第一页| 国产av麻豆久久久久久久| 国产精品98久久久久久宅男小说| 九九久久精品国产亚洲av麻豆 | 久久婷婷人人爽人人干人人爱| 中亚洲国语对白在线视频| 黄色片一级片一级黄色片| 欧美色欧美亚洲另类二区| 亚洲成a人片在线一区二区| 看黄色毛片网站| 国产aⅴ精品一区二区三区波| 精品久久久久久久人妻蜜臀av| 中文字幕高清在线视频| 亚洲午夜理论影院| 日韩欧美国产在线观看| 午夜久久久久精精品| 精品国产乱子伦一区二区三区| 午夜精品久久久久久毛片777| cao死你这个sao货| 麻豆国产97在线/欧美| 国产一区二区激情短视频| 在线观看一区二区三区| 国产av在哪里看| 国产伦精品一区二区三区视频9 | 嫩草影院入口| 99热只有精品国产| 久久精品亚洲精品国产色婷小说| 亚洲中文av在线| 亚洲美女黄片视频| 成人特级黄色片久久久久久久| 久久久久国内视频| 久久九九热精品免费| 亚洲av熟女| 久久中文字幕人妻熟女| 亚洲av美国av| 亚洲中文av在线| 亚洲性夜色夜夜综合| 国产精品久久视频播放| 亚洲精品久久国产高清桃花| 男女床上黄色一级片免费看| 在线观看免费视频日本深夜| 不卡一级毛片| 可以在线观看的亚洲视频| 精品免费久久久久久久清纯| 色综合站精品国产| 久久精品影院6| 噜噜噜噜噜久久久久久91| 国产精品美女特级片免费视频播放器 | 999久久久国产精品视频| 91字幕亚洲| 日本与韩国留学比较| 黄色女人牲交| 此物有八面人人有两片| 免费在线观看影片大全网站| 日韩欧美在线乱码| 亚洲精品在线美女| 男女午夜视频在线观看| 欧美在线黄色| 国产精品久久久久久亚洲av鲁大| 国产精品av视频在线免费观看| 国产真人三级小视频在线观看| 欧美av亚洲av综合av国产av| 国产野战对白在线观看| 国产69精品久久久久777片 | 国产免费av片在线观看野外av| 午夜福利免费观看在线| 国产亚洲精品久久久com| 中文字幕精品亚洲无线码一区| 国产单亲对白刺激| 日韩欧美国产在线观看| 欧美日韩福利视频一区二区| 午夜精品一区二区三区免费看| 免费观看精品视频网站| 亚洲 欧美一区二区三区| 国产av麻豆久久久久久久| 中文字幕高清在线视频| 天堂av国产一区二区熟女人妻| 亚洲最大成人中文| 国内精品美女久久久久久| 午夜福利欧美成人| 国产一区二区三区在线臀色熟女| 国产精品久久久久久人妻精品电影| 色视频www国产| 亚洲 欧美一区二区三区| 国产熟女xx| 久久久久免费精品人妻一区二区| 亚洲电影在线观看av| 免费av不卡在线播放| 日韩成人在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 两性夫妻黄色片| 亚洲人成伊人成综合网2020| 亚洲第一电影网av| 色尼玛亚洲综合影院| 国产精品一区二区免费欧美| 国产精品乱码一区二三区的特点| 免费在线观看日本一区| 亚洲欧美日韩高清在线视频| 小蜜桃在线观看免费完整版高清| 夜夜看夜夜爽夜夜摸| 国产蜜桃级精品一区二区三区| 一本久久中文字幕| 丰满人妻熟妇乱又伦精品不卡| 香蕉久久夜色| 我的老师免费观看完整版| 国产不卡一卡二| 俄罗斯特黄特色一大片| 99在线视频只有这里精品首页| 18禁美女被吸乳视频| 亚洲中文av在线| 成人国产综合亚洲| 日本熟妇午夜| 国产成人啪精品午夜网站| 一本一本综合久久| 国产久久久一区二区三区| 久久伊人香网站| 亚洲欧美精品综合久久99| 午夜久久久久精精品| 久久亚洲真实| 日韩成人在线观看一区二区三区| 国产真人三级小视频在线观看| 老熟妇仑乱视频hdxx| 日韩欧美在线乱码| 成人鲁丝片一二三区免费| www.精华液| 中文字幕久久专区| 国产黄片美女视频| 成人特级黄色片久久久久久久| 国内少妇人妻偷人精品xxx网站 | 久久这里只有精品19| 亚洲人成电影免费在线| aaaaa片日本免费| 日日夜夜操网爽| av福利片在线观看| 精品人妻1区二区| 天堂动漫精品| 午夜福利在线观看吧| 午夜精品在线福利| 欧美中文日本在线观看视频| 国产激情欧美一区二区| 网址你懂的国产日韩在线| 精品久久久久久,| 黄色视频,在线免费观看| 一级作爱视频免费观看| 一级毛片精品| 999久久久国产精品视频| av国产免费在线观看| 亚洲熟妇熟女久久| 国模一区二区三区四区视频 | 女人被狂操c到高潮| 99久久成人亚洲精品观看| 又黄又粗又硬又大视频| 变态另类成人亚洲欧美熟女| 午夜福利高清视频| 男女下面进入的视频免费午夜| a级毛片a级免费在线| 久久久久九九精品影院| www国产在线视频色| 精品国产乱子伦一区二区三区| 欧美日本视频| h日本视频在线播放| av黄色大香蕉| 别揉我奶头~嗯~啊~动态视频| 精品日产1卡2卡| 99国产精品99久久久久| 一级黄色大片毛片| 最新中文字幕久久久久 | 美女午夜性视频免费| 18禁观看日本| 天堂动漫精品| 一本一本综合久久| 欧美另类亚洲清纯唯美| 手机成人av网站| 日韩免费av在线播放| 久久精品影院6| 午夜亚洲福利在线播放| 国模一区二区三区四区视频 | 午夜久久久久精精品| 欧美乱码精品一区二区三区| 麻豆久久精品国产亚洲av| 成人av一区二区三区在线看| 97超视频在线观看视频| 成在线人永久免费视频| 欧美中文日本在线观看视频| 丁香六月欧美| 日韩免费av在线播放| 女人高潮潮喷娇喘18禁视频| 日韩欧美一区二区三区在线观看| 一个人免费在线观看电影 | 国产精品一区二区精品视频观看| 国产伦一二天堂av在线观看| 日本五十路高清| 十八禁人妻一区二区| 美女扒开内裤让男人捅视频| 欧美最黄视频在线播放免费| 色播亚洲综合网| 一本久久中文字幕| 少妇的逼水好多| 亚洲成人久久性| 一区二区三区高清视频在线| 久久久久久久久久黄片| 香蕉av资源在线| 中文字幕人成人乱码亚洲影| 亚洲国产色片| 麻豆久久精品国产亚洲av| 操出白浆在线播放| 悠悠久久av| 欧美黑人巨大hd| 日本黄色视频三级网站网址| 中亚洲国语对白在线视频| 天天一区二区日本电影三级| 日韩欧美国产一区二区入口| 两人在一起打扑克的视频| 91字幕亚洲| 午夜免费激情av| 亚洲一区二区三区色噜噜| 国产亚洲av嫩草精品影院| 日本撒尿小便嘘嘘汇集6| 久久人人精品亚洲av| 亚洲人成电影免费在线| 在线视频色国产色| 欧美日韩乱码在线| 国语自产精品视频在线第100页| 亚洲七黄色美女视频| 超碰成人久久| 欧美zozozo另类| 国产aⅴ精品一区二区三区波| 99在线人妻在线中文字幕| 99久久国产精品久久久| 少妇人妻一区二区三区视频| 老司机午夜福利在线观看视频| 久久久久亚洲av毛片大全| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 久久久久精品国产欧美久久久| 国产亚洲精品久久久久久毛片| 久久久久久国产a免费观看| 国产真实乱freesex| 看黄色毛片网站| 午夜a级毛片| 色视频www国产| 亚洲一区二区三区不卡视频| 国语自产精品视频在线第100页| 香蕉av资源在线| 亚洲国产色片| 又黄又粗又硬又大视频| 国产高清激情床上av| 成人无遮挡网站| 欧美丝袜亚洲另类 | 日韩欧美在线乱码| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精华国产精华精| av黄色大香蕉| 特级一级黄色大片| 国产aⅴ精品一区二区三区波| 欧美日韩综合久久久久久 | 免费观看人在逋| 精品久久蜜臀av无| 欧美精品啪啪一区二区三区| 男人舔奶头视频| 日日干狠狠操夜夜爽| 99热这里只有精品一区 | 99久久精品一区二区三区| 男人舔女人的私密视频| 国产欧美日韩精品亚洲av| 国产成人欧美在线观看| 国产黄片美女视频| 美女午夜性视频免费| 成人无遮挡网站| 国产人伦9x9x在线观看| 一级黄色大片毛片| 日韩三级视频一区二区三区| 性色avwww在线观看| 色尼玛亚洲综合影院| 国产一区在线观看成人免费| 国产69精品久久久久777片 | 悠悠久久av| 国产精品香港三级国产av潘金莲| 亚洲精品中文字幕一二三四区| 欧美一级毛片孕妇| 黄色日韩在线| 日本熟妇午夜| 色在线成人网| 国内毛片毛片毛片毛片毛片| 99久久综合精品五月天人人| 网址你懂的国产日韩在线| 日韩成人在线观看一区二区三区| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 在线永久观看黄色视频| 一卡2卡三卡四卡精品乱码亚洲| 女人高潮潮喷娇喘18禁视频| 99久久国产精品久久久| ponron亚洲| 一进一出抽搐动态| 男人舔奶头视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av成人av| 757午夜福利合集在线观看| 99riav亚洲国产免费| 欧美三级亚洲精品| 成年人黄色毛片网站| 又黄又爽又免费观看的视频| 精品免费久久久久久久清纯| 国产亚洲精品av在线| 极品教师在线免费播放| 久久精品国产综合久久久| 中文字幕熟女人妻在线| 国产亚洲精品av在线| 淫秽高清视频在线观看| 91老司机精品| 他把我摸到了高潮在线观看| 国产精品一区二区免费欧美| 长腿黑丝高跟| 亚洲在线自拍视频| bbb黄色大片| 欧美另类亚洲清纯唯美| 不卡一级毛片| 中文字幕熟女人妻在线| 丰满人妻熟妇乱又伦精品不卡| 不卡一级毛片| 成年女人永久免费观看视频| 性欧美人与动物交配| 丁香六月欧美| 无遮挡黄片免费观看| 男插女下体视频免费在线播放| 国产人伦9x9x在线观看| 啦啦啦免费观看视频1| 国内精品久久久久久久电影| 精品国产亚洲在线| 51午夜福利影视在线观看| 精品久久久久久久人妻蜜臀av| 久久久久久久久久黄片| 老司机午夜福利在线观看视频| 精品一区二区三区视频在线观看免费| 成年女人永久免费观看视频| 99久久精品国产亚洲精品| 在线观看免费视频日本深夜| 亚洲av成人av| 欧美丝袜亚洲另类 | 久久亚洲精品不卡| 老司机午夜福利在线观看视频| 久久这里只有精品中国| 黑人欧美特级aaaaaa片| 变态另类丝袜制服| 日韩欧美在线乱码| 免费观看人在逋| 欧美激情久久久久久爽电影| 日本a在线网址| 欧美日本视频| 国产高清激情床上av| 午夜激情欧美在线| 网址你懂的国产日韩在线| 亚洲av免费在线观看| 最新在线观看一区二区三区| 成人永久免费在线观看视频| 悠悠久久av| 亚洲精品色激情综合| 美女高潮的动态| 男人舔女人的私密视频| 毛片女人毛片| 精品不卡国产一区二区三区| 欧美黑人巨大hd| 国产精品乱码一区二三区的特点| 岛国视频午夜一区免费看| 亚洲一区高清亚洲精品| av在线蜜桃| 一夜夜www| 手机成人av网站| 嫩草影院精品99| 啦啦啦观看免费观看视频高清| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 国产乱人伦免费视频| 在线观看一区二区三区| 三级毛片av免费| 婷婷亚洲欧美| 国产精品日韩av在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 男人舔奶头视频| 男女视频在线观看网站免费| e午夜精品久久久久久久| 日本黄色视频三级网站网址| 国产精品女同一区二区软件 | 婷婷丁香在线五月| 精品人妻1区二区| 久9热在线精品视频| www.熟女人妻精品国产| 久久久国产欧美日韩av| 很黄的视频免费| 精品人妻1区二区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av免费在线观看| 少妇的逼水好多| 叶爱在线成人免费视频播放| 欧美精品啪啪一区二区三区| 成人午夜高清在线视频|