駱波,徐谷,阮飛
(諸暨市人民醫(yī)院,浙江 諸暨 311800)
·綜述·
肥胖兒童早期動脈粥樣硬化病變相關(guān)的脂肪細(xì)胞因子研究進(jìn)展
駱波,徐谷*,阮飛
(諸暨市人民醫(yī)院,浙江 諸暨 311800)
近年來,我國動脈粥樣硬化性疾病的發(fā)生率呈逐年上升和年輕化趨勢,甚至在肥胖兒童中也能監(jiān)測到動脈粥樣硬化的早期表現(xiàn)—頸動脈內(nèi)膜中層厚度(IMT)增加。本文著重就影響IMT的幾個主要脂肪細(xì)胞因子及其可能的作用機(jī)制進(jìn)行綜述,便于及早對肥胖兒童實(shí)施干預(yù),以降低其成年期動脈粥樣硬化性疾病的發(fā)生率。
動脈粥樣硬化;頸動脈內(nèi)膜中層厚度;脂肪細(xì)胞因子;肥胖;兒童
隨著飲食結(jié)構(gòu)和生活方式的改變,肥胖兒童人群日益龐大,與之相關(guān)并發(fā)癥(如高血壓、高血脂、胰島素抵抗、非酒精性脂肪性肝病,甚至2型糖尿病等)的發(fā)生率也明顯攀升。研究表明,兒童期肥胖及其伴隨的代謝綜合征與成人期心血管疾病密切相關(guān);盡管肥胖兒童頸動脈未出現(xiàn)明顯狹窄,亦無相應(yīng)臨床癥狀,但頸動脈內(nèi)膜中層厚度(IMT)已開始增加,表明成年后發(fā)生的心腦血管疾病很可能早在兒童期就已經(jīng)萌芽[1]。迄今為止,越來越多的脂肪因子被發(fā)現(xiàn),如脂聯(lián)素、瘦素、抵抗素、內(nèi)脂素、網(wǎng)膜素、腫瘤壞死因子-α、趨化素等,在肥胖兒童動脈粥樣硬化早期病變的發(fā)生、發(fā)展中具有一定作用;但是對于其參與動脈粥樣硬化的病理生理機(jī)制尚不完全明確?,F(xiàn)將上述幾種脂肪細(xì)胞因子與肥胖兒童IMT的相關(guān)性研究進(jìn)展進(jìn)行綜述。
1.1 脂聯(lián)素(Adiponectin)
人脂聯(lián)素由apM1基因編碼,基因位于染色體3q27,全長約16 kb,含3個外顯子和2個內(nèi)含子,編碼244個氨基酸。它是由脂肪細(xì)胞合成分泌的一種具有生物活性的特異性蛋白,有低、中、高分子量多聚體三種類型,其中高分子量脂聯(lián)素是脂聯(lián)素主要的活性形式。
已經(jīng)證實(shí),脂聯(lián)素是一種胰島素增敏激素,能刺激血管內(nèi)皮細(xì)胞產(chǎn)生NO,抑制巨噬細(xì)胞內(nèi)脂質(zhì)的蓄積[2-3]。Ouedraogo等[4]用活體顯微鏡對脂聯(lián)素基因敲除Ad(-/-)小鼠進(jìn)行研究發(fā)現(xiàn),在微循環(huán)中白細(xì)胞粘附增加5倍;免疫組化顯示,Ad(-/-)小鼠血管內(nèi)皮細(xì)胞E-選擇素和血管細(xì)胞粘附分子(VCAM-1)表達(dá)增加,說明脂聯(lián)素缺陷通過上調(diào)內(nèi)皮細(xì)胞粘附分子增加白細(xì)胞與內(nèi)皮細(xì)胞的相互作用。動物實(shí)驗(yàn)表明,脂聯(lián)素通過抑制細(xì)胞外調(diào)節(jié)蛋白激酶(ERK1/2)的活化進(jìn)而抑制胰島素樣生長因子-1(IGF-1)誘導(dǎo)的血管平滑肌細(xì)胞的遷移[5];抑制血管內(nèi)皮細(xì)胞cAMP-PKA和核轉(zhuǎn)錄因子(NF-κB)信號通路進(jìn)而抑制內(nèi)皮細(xì)胞炎癥反應(yīng)[6]。深入研究脂聯(lián)素在動脈粥樣硬化中的作用機(jī)制有助于為動脈粥樣硬化性疾病的防治提供新的策略。
研究表明,肥胖兒童和青少年血清脂聯(lián)素明顯降低,其水平與IMT呈負(fù)相關(guān)[7-8],說明脂聯(lián)素有動脈粥樣硬化保護(hù)作用。但是,有些小樣本研究并未發(fā)現(xiàn)肥胖或超重兒童脂聯(lián)素與IMT的相關(guān)性[9-10];有一項(xiàng)針對40例1型糖尿病兒童的研究表明,血清脂聯(lián)素水平和IMT均有不同程度的增高,但未發(fā)現(xiàn)兩者之間的相關(guān)性,提示高濃度脂聯(lián)素或許并不對1型糖尿病患兒提供心血管疾病保護(hù)作用[11]。此外,有報道[12-13]認(rèn)為沒有明確證據(jù)證明脂聯(lián)素與心血管疾?。–VD)之間存在關(guān)聯(lián)。邱勤勤等[14]研究發(fā)現(xiàn)脂聯(lián)素基因rs864265多態(tài)性獨(dú)立于其他代謝危險因素與動脈粥樣硬化相關(guān)。目前對于脂聯(lián)素和IMT的關(guān)系尚有爭議,需要進(jìn)行更加全面、大樣本和深入的研究。
1.2 網(wǎng)膜素(Omentin)
網(wǎng)膜素是Yang等[15]發(fā)現(xiàn)的一種主要由網(wǎng)膜脂肪組織特異性分泌的脂肪因子;其基因位于染色體1q22-23區(qū)域,含1269個堿基對,編碼313個氨基酸序列,相對分子質(zhì)量為35000。網(wǎng)膜素在人體中有2種亞型∶網(wǎng)膜素-1和網(wǎng)膜素-2,血液循環(huán)中主要為網(wǎng)膜素-1。
Yang等[15]首次提出,網(wǎng)膜素可以促進(jìn)脂肪細(xì)胞胰島素介導(dǎo)的葡萄糖攝取作用,并促進(jìn)胰島素受體后信號通路中的Akt磷酸化。其次,網(wǎng)膜素可通過抑制c-Jun氨基末端激酶(JNK)和NF-κB的激活[16-17],降低ICAM-1、VCAM-1和活性氧簇的表達(dá),從而發(fā)揮抗炎作用。此外,網(wǎng)膜素還具有調(diào)節(jié)內(nèi)皮細(xì)胞功能、舒張血管、促進(jìn)血管再生和調(diào)節(jié)細(xì)胞分化等作用。網(wǎng)膜素作為一種新近發(fā)現(xiàn)的脂肪因子,具有心血管保護(hù)作用,但是對于其生理效應(yīng)、信號轉(zhuǎn)導(dǎo)、作用機(jī)制等仍不完全明確。
在肥胖、胰島素抵抗、慢性炎癥性疾病等人群網(wǎng)膜素表達(dá)明顯降低。但是,Rahimlou等[18]研究了170例肥胖和81例非肥胖個體后認(rèn)為,兩者平均血清網(wǎng)膜素-1水平相似。而Catli等[19]證實(shí)肥胖兒童網(wǎng)膜素-1水平明顯降低。諸多研究顯示,網(wǎng)膜素與IMT呈負(fù)相關(guān),說明它是動脈粥樣硬化保護(hù)因子;通過有氧體育訓(xùn)練和減肥可使網(wǎng)膜素-1水平明顯升高[20-21];但此類研究大多集中在成人,涉及兒童的研究鮮有報道。
2.1 瘦素(Leptin)
瘦素是肥胖基因(ob基因)的編碼產(chǎn)物,基因位于染色體7q31.3,其前體由167個氨基酸殘基組成,N末端有一含21個氨基酸殘基的信號肽,在血液中該信號肽被切除形成相對分子質(zhì)量為16000的非糖基化肽。瘦素是主要由脂肪細(xì)胞分泌的一種蛋白類激素,具有抑制食欲、增加能量消耗、抑制脂肪合成等作用。
動物實(shí)驗(yàn)表明,瘦素通過激活p38絲裂原活化蛋白(p38 MAP)激酶直接刺激大鼠血管平滑肌細(xì)胞肥大[22]。細(xì)胞水平的研究顯示,瘦素與巨噬細(xì)胞表面的ObRb受體結(jié)合激活磷脂酰肌醇3激酶(PI3K)和 Janus激酶/信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活子(JAK2/STAT3)酪氨酸磷酸化,增強(qiáng)激素敏感性脂肪酶(HSL)的活性,使膽固醇降解減少[23]。此外,瘦素還可通過氧化應(yīng)激和蛋白激酶C途徑使脂蛋白脂酶(LPL)表達(dá)增加[24],而LPL又能促進(jìn)LDL和VLDL進(jìn)入細(xì)胞內(nèi),有助于泡沫細(xì)胞的形成。Yamagishi等[25]研究發(fā)現(xiàn),瘦素可通過激活蛋白激酶A(PKA),誘導(dǎo)活性氧簇的產(chǎn)生。瘦素通過多種途徑直接或間接促進(jìn)動脈粥樣硬化的形成,但其潛在病理生理機(jī)制仍值得進(jìn)一步探索。
目前普遍認(rèn)為,肥胖兒童血瘦素水平明顯升高,提示肥胖兒童存在瘦素抵抗。譚新睿等[26]研究發(fā)現(xiàn),伴黑棘皮病肥胖兒童瘦素水平高于無黑棘皮病肥胖兒童。最新研究表明,瘦素受體223AG+GG和1019GA+AA基因型的兒童肥胖發(fā)生率較高,而肥胖兒童瘦素受體223AG/GG/GA、492GG/GG/GA和1019AA/GG/GA基因聯(lián)合表達(dá)較常見[27]。生理濃度瘦素可間接通過上調(diào)脂聯(lián)素和改善高膽固醇血癥劑量依賴性地降低動脈粥樣硬化[28],而高濃度瘦素可能發(fā)揮病理作用,導(dǎo)致心血管疾病進(jìn)展[29]。研究表明,在接受胰島素治療且血糖控制的2型糖尿病患者,瘦素與IMT獨(dú)立相關(guān)[30]。Masquio等[31]進(jìn)一步證實(shí)減肥可降低血漿瘦素水平,且脂聯(lián)素/瘦素比值變化是IMT改變的獨(dú)立預(yù)測因素。通過飲食控制、體育鍛煉等手段可以明顯降低肥胖兒童的瘦素水平[32-33]。迄今對于肥胖兒童瘦素與IMT的相關(guān)性研究鮮有報道。
2.2 抵抗素(Resistin)
抵抗素是RSTN基因編碼的產(chǎn)物,是一種肽類激素,富含半胱氨酸的分泌蛋白。人抵抗素基因位于19號染色體上,含4個外顯子和3個內(nèi)含子,編碼108個氨基酸殘基組成的相對分子質(zhì)量為12500的抵抗素蛋白;它主要在外周血單核細(xì)胞中表達(dá),也可由脂肪細(xì)胞產(chǎn)生。
Jung等[34]用抵抗素對人臍靜脈內(nèi)皮細(xì)胞孵化4~12小時,再用Northern印跡法分析發(fā)現(xiàn),內(nèi)皮素(ET-1)mRNA表達(dá)明顯增加。ET-1是一種強(qiáng)效內(nèi)皮源性血管活性因子,能促進(jìn)血管平滑肌細(xì)胞的有絲分裂和內(nèi)皮細(xì)胞的增殖。體外細(xì)胞培養(yǎng)實(shí)驗(yàn)顯示,抵抗素顯著增強(qiáng)VCAM-1和單核細(xì)胞趨化因子(MCP-1)的表達(dá),并下調(diào)腫瘤壞死因子受體相關(guān)因子(TRAF-3)[35];Calabro等[36]研究表明,抵抗素能劑量依賴地誘導(dǎo)人主動脈平滑肌細(xì)胞增殖,而ERK和PI3K抑制劑能顯著抑制抵抗素刺激的血管平滑肌細(xì)胞增殖,說明抵抗素可能通過激活ERK1/2和PI3K信號通路誘導(dǎo)血管平滑肌細(xì)胞增殖。此外,抵抗素還可以促進(jìn)巨噬細(xì)胞對脂質(zhì)的蓄積并轉(zhuǎn)化成泡沫細(xì)胞。這些研究表明,抵抗素在動脈粥樣硬化的發(fā)生發(fā)展中起重要作用。
早期研究普遍認(rèn)為,肥胖兒童和健康兒童的血漿抵抗素水平無差異;近年來有越來越多的文獻(xiàn)報道,肥胖兒童和青少年的抵抗素水平明顯高于健康對照組;Huang等[37]報道對54例肥胖青少年進(jìn)行為期6個月的生活方式干預(yù),結(jié)果發(fā)現(xiàn)抵抗素水平較前明顯下降;此外,Maggio等[38]的一項(xiàng)橫斷面研究表明,肥胖兒童抵抗素水平在青春期前與正常兒童相似,而在青春期要高于正常兒童;然而,Aknc等[39]得出了完全相反的結(jié)論∶肥胖和超重兒童的抵抗素水平低于健康兒童。至今已發(fā)表的為數(shù)不多的文獻(xiàn)顯示,抵抗素與IMT呈正相關(guān),但其中關(guān)于肥胖兒童抵抗素與IMT相關(guān)性的報道則更少。
2.3 腫瘤壞死因子-α(TNF-α)
人類TNF-α位于染色體6p21.4,長約3.6kb,有4個外顯子和3個內(nèi)含子。TNF-α主要由單核巨噬細(xì)胞產(chǎn)生,也可由脂肪組織分泌,是炎癥反應(yīng)中出現(xiàn)最早的細(xì)胞因子,能誘導(dǎo)IL-2、IL-6、IL-8、IL-10等其他炎癥因子的合成和釋放。
對人臍靜脈內(nèi)皮細(xì)胞的研究發(fā)現(xiàn),TNF-α能誘導(dǎo)活性氧簇大量生成,促進(jìn)脂質(zhì)過氧化,誘導(dǎo)細(xì)胞凋亡,直接損傷血管內(nèi)皮[40];TNF-α還顯著增加LDL的穿胞作用并刺激其在血管壁內(nèi)皮下沉積[41],同時促使單核細(xì)胞轉(zhuǎn)移至內(nèi)皮下轉(zhuǎn)變成巨噬細(xì)胞,后者吞噬脂質(zhì)形成泡沫細(xì)胞。韓偉等[42]的體外實(shí)驗(yàn)證實(shí),TNF-α誘導(dǎo)內(nèi)皮細(xì)胞活化,通過刺激IL-6釋放,促進(jìn)血管平滑肌細(xì)胞增殖。此外,TNF-α可激活NF-κB,啟動炎性因子轉(zhuǎn)錄,上調(diào)ICAM-1、VCAM-1等細(xì)胞黏附分子的表達(dá),招募炎癥細(xì)胞聚集;高水平的TNF能抑制脂肪組織表達(dá)和分泌脂聯(lián)素,間接促進(jìn)動脈粥樣硬化的發(fā)生發(fā)展。
目前研究認(rèn)為,肥胖或超重兒童血TNF-α水平顯著升高,而肥胖兒童TNF-α水平又高于超重兒童[43],提示TNF-α水平隨BMI百分位的增加而上升。但是,Li等[44]對44例肥胖兒童和50例正常體質(zhì)量兒童的血清TNF-α水平進(jìn)行比較,未發(fā)現(xiàn)明顯差異。Ragab等[45]對地中海貧血兒童的一項(xiàng)研究發(fā)現(xiàn),TNF-α與IMT呈正相關(guān)。然而,關(guān)于單純性肥胖兒童TNF-α與IMT相關(guān)性的報道較少。Van等[46]對81例強(qiáng)直性脊柱炎患者的隨訪發(fā)現(xiàn),長期抗腫瘤壞死因子治療可以延緩亞臨床動脈粥樣硬化的進(jìn)展;故抗腫瘤壞死因子治療是否能預(yù)防或抑制肥胖兒童早期動脈粥樣硬化的形成值得進(jìn)一步探究。
2.4 內(nèi)脂素(Visfatin)
人內(nèi)脂素基因位于染色體7q22.1和7q31.33之間,含11個外顯子與10個內(nèi)含子,編碼的多肽含491個氨基酸,相對分子質(zhì)量為52000。內(nèi)脂素又稱 “前B細(xì)胞集落增強(qiáng)因子 (pre-B-cellcolony enhancing factor,PBEF)和尼克酰胺磷酸核糖轉(zhuǎn)移酶(nicotinamidephosphoribosyltransferase,Nampt)”,在細(xì)胞內(nèi)發(fā)揮尼克酰胺磷酸核糖轉(zhuǎn)移酶活性,調(diào)節(jié)細(xì)胞的能量代謝,而在細(xì)胞外則具有促炎作用;此外,內(nèi)脂素還能夠與胰島素受體結(jié)合,發(fā)揮類胰島素樣作用,調(diào)節(jié)機(jī)體糖脂代謝。
Lovren等[47]研究發(fā)現(xiàn),內(nèi)脂素通過蛋白激酶B(Akt)和絲裂原活化蛋白(MAP)激酶激活eNOS,促進(jìn)內(nèi)皮細(xì)胞遷移增殖和新生血管形成,并減輕TNF-α誘導(dǎo)的血管通透性。之后,Romacho等[48]也報道,內(nèi)脂素能影響細(xì)胞因子和趨化因子的分泌、巨噬細(xì)胞的存活、白細(xì)胞的募集以及血管平滑肌的炎癥反應(yīng)。此外,內(nèi)脂素還可通過內(nèi)皮損傷、脂質(zhì)聚集及膠原形成等多種途徑參與動脈粥樣硬化的形成過程。
迄今為止,絕大多數(shù)研究表明,肥胖和超重兒童血內(nèi)脂素水平高于正常體質(zhì)量兒童;僅有個別報道認(rèn)為,肥胖兒童青少年血清內(nèi)脂素并沒有明顯升高[49]。此外,Ta kesen等[50]研究發(fā)現(xiàn),不論肥胖青少年是否合并胰島素抵抗,其內(nèi)脂素水平基本一致。一項(xiàng)對122例2型糖尿病患者的研究證實(shí),內(nèi)脂素與IMT呈正相關(guān)[51];然而,內(nèi)脂素與早期動脈粥樣硬化的相關(guān)性研究多見于成人,在兒童則研究較少。
2.5 趨化素(Chemerin)
趨化素主要由脂肪細(xì)胞分泌,由163個氨基酸組成,其編碼基因全長3289bp,定位于染色體7q36.1,包含4個外顯子和3個內(nèi)含子。它通過自分泌作用于自身趨化因子樣受體1(CMKLR1),促進(jìn)脂肪細(xì)胞分化及葡萄糖轉(zhuǎn)運(yùn);同時,趨化素也是一種免疫調(diào)節(jié)因子,可通過旁分泌與內(nèi)分泌對白細(xì)胞產(chǎn)生趨化作用,參與炎癥反應(yīng)。
在細(xì)胞水平上,趨化素誘導(dǎo)體外培養(yǎng)的內(nèi)皮細(xì)胞表達(dá)ICAM-1和E-選擇素,而VCAM-1和eNOS的表達(dá)和內(nèi)皮細(xì)胞的活力不受影響[52];Hart等[53]用百日咳毒素和ChemR23基因敲除小鼠的腹腔滲出細(xì)胞進(jìn)行實(shí)驗(yàn)揭示,趨化素促進(jìn)VLA-4、VLA-5群集整合到細(xì)胞表面,迅速刺激巨噬細(xì)胞粘附于細(xì)胞外基質(zhì)蛋白結(jié)合蛋白和VCAM-1,參與炎癥反應(yīng)。袁仙仙等[54]用不同濃度重組人Chemerin處理人臍靜脈內(nèi)皮細(xì)胞,結(jié)果顯示重組人Chemerin能顯著促進(jìn)人外周血單核細(xì)胞粘附于血管內(nèi)皮細(xì)胞,以及跨血管內(nèi)皮細(xì)胞的遷移,并且隨著Chemerin濃度的增加單核細(xì)胞粘附亦增強(qiáng)。謝霆等[55]研究發(fā)現(xiàn),趨化素抑制ATP結(jié)合盒轉(zhuǎn)運(yùn)子A1的表達(dá),減少膽固醇外流,增加THP-1源性巨噬細(xì)胞膽固醇蓄積,促進(jìn)巨噬細(xì)胞向泡沫細(xì)胞轉(zhuǎn)化。此外,Kostopoulos等[56]則證實(shí),動脈粥樣硬化病變局部血管平滑肌細(xì)胞和泡沫細(xì)胞表達(dá)CMKLR1,而且該處周圍脂肪組織、血管平滑肌細(xì)胞和泡沫細(xì)胞呈趨化素免疫陽性反應(yīng),說明局部產(chǎn)生的趨化素可能通過CMKLR1對動脈粥樣硬化的進(jìn)展產(chǎn)生影響,但其具體病理生理機(jī)制尚不明確。
研究表明,肥胖兒童趨化素濃度高于精瘦兒童。一項(xiàng)包含82名少女的病例對照研究也得出相似結(jié)論,并且發(fā)現(xiàn)趨化素與脂聯(lián)素呈負(fù)相關(guān)[57]。Lachine等[58]對90例2型糖尿病患者的橫斷面研究表明,血趨化素水平與IMT呈正相關(guān),而且趨化素是IMT的獨(dú)立影響因素。對245例新診斷的2型糖尿病患者的研究顯示,趨化素與ICAM-1、E-選擇素和IMT呈正相關(guān),而與流量介導(dǎo)的肱動脈擴(kuò)張(FMD)呈負(fù)相關(guān)[59];但是,Yoo等[60]的研究并未發(fā)現(xiàn)血清趨化素水平與IMT的相關(guān)性,卻揭示其與肱動脈-踝動脈脈搏波傳導(dǎo)速度 (baPWV)密切相關(guān)。一項(xiàng)針對35例超重或肥胖的2型糖尿病患者的隨機(jī)對照研究顯示,經(jīng)過12周的強(qiáng)化生活方式干預(yù)可顯著降低其血清趨化素水平,并且趨化素降低與胰島素敏感性改善相關(guān)聯(lián)[61]。總之,趨化素對動脈粥樣硬化的影響目前尚有爭議,并且大多數(shù)研究集中在成人,對肥胖兒童的研究有待進(jìn)一步開展。
2.6 白細(xì)胞介素-6(IL-6)
成熟的IL-6含184個氨基酸殘基,相對分子質(zhì)量26000,主要由單核巨噬細(xì)胞、淋巴細(xì)胞、成纖維細(xì)胞、血管內(nèi)皮細(xì)胞等產(chǎn)生,參與機(jī)體免疫-神經(jīng)-內(nèi)分泌的調(diào)節(jié)。人IL-6基因定位于染色體7p15-21,全長約5kb,包含5個外顯子和4個內(nèi)含子,并具有一些多態(tài)性。最近,一項(xiàng)對巴西南圣克魯斯 470名在校學(xué)生的橫斷面研究顯示,IL-6(rs2069845)基因多態(tài)性與肥胖相關(guān)[62]。
Wassmann等[63]用IL-6刺激大鼠主動脈血管平滑肌細(xì)胞,發(fā)現(xiàn)血管緊張素Ⅱ受體 1(AT1)mRNA及其蛋白的表達(dá)上調(diào),血管緊張素Ⅱ誘導(dǎo)的ROS產(chǎn)生增加,內(nèi)皮依賴性的血管舒張功能受損。此外,Watson等[64]早已證實(shí),IL-6可增加ICAM-1、VCAM-1、E-選擇素的表達(dá),促進(jìn)內(nèi)皮細(xì)胞與淋巴細(xì)胞的粘附。動物實(shí)驗(yàn)表明,心臟毒素誘導(dǎo)肌肉損傷后24小時,浸潤的單核巨噬細(xì)胞即可表達(dá)高水平的IL-6;IL-6基因敲除小鼠巨噬細(xì)胞浸潤減少,炎癥因子和趨化因子表達(dá)降低,生肌決定因子(MyoD)和肌細(xì)胞生成素的表達(dá)下調(diào)[65],說明IL-6具有促炎和促血管平滑肌增殖作用。IL-6還可以促進(jìn)巨噬細(xì)胞攝取LDL,加速脂質(zhì)沉積,共同促進(jìn)動脈粥樣硬化的發(fā)生發(fā)展。
因肥胖時脂肪組織可異常分泌IL-6,故肥胖和超重兒童血IL-6水平顯著升高。Stelzer等[66]對677名中青年研究后得出相同結(jié)論,同時還發(fā)現(xiàn)合并代謝綜合征者IL-6水平更高,而且IL-6與超重等級呈正相關(guān)。Liu等[67]對280例動脈粥樣硬化患者的研究發(fā)現(xiàn),IMT與血IL-6濃度呈正相關(guān);此相關(guān)性亦見于慢性腦供血不足、阻塞性睡眠呼吸暫停、類風(fēng)濕性關(guān)節(jié)炎和老年2型糖尿病等患者。分析顯示,無論是心血管疾病患者還是心血管疾病高?;颊?,甚至表面健康人群,其IMT均與IL-6水平顯著相關(guān)[68]。Okazaki等[69]長期隨訪210例至少具有1個血管危險因素的患者,證實(shí)血清IL-6水平的慢性升高與動脈粥樣硬化進(jìn)展密切相關(guān)。此類研究同樣集中在成人,而很少涉及兒童和青少年。
眾多脂肪細(xì)胞因子組成了一個龐大而繁雜的網(wǎng)絡(luò),它們之間相互影響共同參與動脈粥樣硬化早期病變的形成,這為肥胖兒童的綜合治療提供新的思路,然而,相關(guān)研究主要集中在成人和體外實(shí)驗(yàn),部分研究結(jié)果尚有爭議,很多確切致病機(jī)制也尚未完全闡明,有待進(jìn)一步研究。
[1] Knoflach M,Kiechl S,Kind M,et al.Cardiovascular risk factors and atherosclerosis in young males∶ARMY study(Atherosclerosis Risk-Factors in Male Youngsters).Circulation,2003,108∶1064
[2] Caselli C,D'Amico A,Cabiati M,et al.Back to the heart∶the protective role of adiponectin.Pharmacol Res,2014,82∶9
[3] Villarreal-Molina MT,Antuna-Puente B.Adiponectin∶antiinflammatory and cardioprotective effects.Biochimie,2012,94(10)∶2143
[4] Ouedraogo R,Gong Y,Berzins B,et al.Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo.J Clin Invest,2007,117(6)∶1718
[5]MotobayashiY,Izawa-IshizawaY,IshizawaK,etal.Adiponectin inhibits insulin-like growth factor-1-induced cell migration by the suppression of extracellular signal-regulated kinase 1/2 activation,but not Akt in vascular smooth muscle cells.Hypertens Res,2009,32(3)∶188
[6] Chen B,Liao WQ,Xu N,et al.Adiponectin protects against cerebral ischemia-reperfusion injury anti-inflammatory action.Brain Res,2009,1273∶129
[7] Pilz S,Horejsi R,M?ller R,et al.Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin.J Clin Endocrinol Metab,2005,90(8)∶4792
[8] Beauloye V,Zech F,Tran HT,et al.Determinants of early atherosclerosis in obese children and adolescents.J Clin Endocrinol Metab,2007,92(8)∶3025
[9] Silva LR,Cavaglieri C,Lopes WA,et al.Endothelial wall thickness,cardiorespiratory fitness and inflammatory markers in obese and non-obese adolescents.Braz J Phys Ther,2014,18(1)∶47
[10]Ciccone MM,F(xiàn)aienza MF,Altomare M,et al.Endothelial and Metabolic Function Interactions in Overweight/Obese Children.J Atheroscler Thromb,2016,23(8)∶950
[11]Sherief EM,Amr NH,Adly AA,et al.Do children with type 1 diabetes have a relation between adiponectin level and vascular complications?Pediatr Endocrinol Rev,2014,11(4)∶383
[12]KanhaiDA,Kranendonk ME, UiterwaalCS,etal. Adiponectin and incident coronary heart disease and stroke. A systematic review and meta-analysis of prospective studies. Obes Rev,2013,14∶555
[13]Hao G,Li W,Guo R,et al.Serum total adiponectin level and the risk of cardiovascular disease in general population∶A meta-analysis of 17 prospective studies.Atherosclerosis,2013,228∶29
[14]邱勤勤,梁軍,劉學(xué)奎,等.脂聯(lián)素基因rs864265多態(tài)性與代謝危險因素交互作用對早期動脈粥樣硬化的影響.中華臨床醫(yī)師雜志(電子版),2015,9(9)∶1514
[15]Yang RZ,Lee MJ,Hu H,et al.Identification of omentin as a novel depot-specific adipokine in human adipose tissue∶possible role in modulating insulin action.Am J Physiol Endocrinol Metab,2006,290(6)∶E1253
[16]Yamawaki H,Kuramoto J,Kameshima S,et al.Omentin,anovel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells.Biochem Biophys Res Commun,2011,408(2)∶339
[17]Tan BK,Adya R,F(xiàn)arhatullah S,et al.Metformin treatment may increase omentin-1 levels in women with polycystic ovary syndrome.Diabetes,2010,59(12)∶3023
[18]Rahimlou M,Mirzaei K,Keshavarz SA,et al.Association of circulating adipokines with metabolic dyslipidemia in obese versus non-obese individuals.Diabetes Metab Syndr,2015,pii∶S1871-4021(15)30022
[19]Catli G,Anik A,Abaci A,et al.Low omentin-1 levels are related with clinical and metabolic parameters in obese children.Exp Clin Endocrinol Diabetes,2013,121(10)∶595
[20]Lesná J,Tichá A,Hy?pler R,et al.Omentin-1 plasma levels and cholesterol metabolism in obese patients with diabetes mellitus type 1∶impact of weight reduction.Nutr Diabetes,2015,5∶e183
[21]Saremi A,Asghari M,Ghorbani A.Effects of aerobic training on serum omentin-1 and cardiometabolic risk factors in overweight and obese men.J Sports Sci,2010,28(9)∶993
[22]Shin HJ,Oh J,Kang SM,et al.Leptin induces hypertrophy via p38 mitogen-activated protein kinase in rat vascular smooth muscle cells.Biochem Biophys Res Commun,2005,329(1)∶18
[23]O'Rourke L,Yeaman SJ,Shepherd PR.Insulin and leptin acutely regulate cholesterol ester metabolism in macrophages by novel signaling pathways.Diabetes,2001,50(5)∶955
[24]Maingrette F,Renier G.Leptin increases lipoprotein lipase secretion by macrophages∶involvement of oxidative stress and protein kinase C.Diabetes,2003,52(8)∶2121
[25]Yamagishi SI,Edelstein D,Du XL,et al.Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A.J Biol Chem,2001,276(27)∶25096
[26]譚新睿,張美真,李敏,等.肥胖兒童黑色棘皮病與脂肪因子和代謝綜合征的關(guān)系.中國當(dāng)代兒科雜志,2015,17(7)∶672
[27]Maˇ rg inean CO,Maˇ rg inean C,Voidaˇ zan S,et al.Correlations Between Leptin Gene Polymorphisms 223 A/G,1019 G/A,492 G/C,976 C/A,and Anthropometrical and Biochemical Parameters in Children With Obesity∶A Prospective Case-Control Study in a Romanian Population-The Nutrichild Study.Medicine(Baltimore),2016,95(12)∶e3115
[28]Hoffmann A,Ebert T,Kl?ting N,et al.Leptin dose-dependently decreases atherosclerosis by attenuation of hypercholesterolemia and induction of adiponectin.Biochim Biophys Acta,2016,1862(1)∶113
[29]Singh M,Bedi US,Singh PP,et al.Leptin and the clinical cardiovascular risk.Int J Cardiol,2010,140(3)∶266
[30]Yamazaki Y,Emoto M,Morioka T,et al.Clinical impact of the leptin to soluble leptin receptor ratio on subclinical carotid atherosclerosis in patients with type 2 diabetes.J Atheroscler Thromb,2013,20(2)∶186
[31]Masquio DC,de Piano A,Sanches PL,et al.The effect of weight loss magnitude on pro-/anti-inflammatory adipokines and carotid intima-media thickness in obese adolescents engaged in interdisciplinary weight loss therapy.Clin Endocrinol(Oxf),2013,79(1)∶55
[32]Rambhojan C,Bouaziz-Amar E,Larifla L,et al.Ghrelin,adipokines,metabolic factors in relation with weight status in school-children and results of a 1-year lifestyle intervention program.Nutr Metab(Lond),2015,12∶43
[33]Ibarra-Reynoso Ldel R,Pisarchyk L,Pérez-Luque EL,et al.Dietary restriction in obese children and its relation with eating behavior,fibroblast growth factor 21 and leptin∶a prospective clinical intervention study.Nutr Metab(Lond),2015,12∶31
[34]Jung HS,Park KH,Cho YM,et al.Resistin is secreted from macrophagesin atheromasand promotesatherosclerosis. Cardiovasc Res,2006,69(1)∶76
[35]Verma S,Li SH,Wang CH,et al.Resistin promotes endothelial cell activation∶further evidence of adipokine-endothelial interaction.Circulation,2003,108(6)∶736
[36]Calabro P,Samudio I,Willerson JT,et al.Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways.Circulation,2004,110(21)∶3335 [37]Huang F,Del-Río-Navarro BE,Pérez-Ontiveros JA,et al. Effect of six-month lifestyle intervention on adiponectin,resistin and soluble tumor necrosis factor-α receptors in obese adolescents.Endocr J,2014,61(9)∶921
[38]Maggio AB,Wacker J,Montecucco F,et al.Serum resistin and inflammatory and endothelial activation markers in obese adolescents.J Pediatr,2012,161(6)∶1022
[39]Aknc A,Karakurt C,Gurbuz S,et al.Association of cardiac changes with serum adiponectin and resistin levels in obese and overweight children.J Cardiovasc Med(Hagerstown),2013,14(3)∶228
[40]Deng B,Xie S,Wang J,et al.Inhibition of protein kinase C β(2)prevents tumor necrosis factor-α-induced apoptosis and oxidative stress in endothelial cells∶the role of NADPH oxidase subunits.J Vasc Res,2012,49(2)∶144
[41]Zhang Y,Yang X,Bian F,et al.TNF-α promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells∶crosstalk between NF-κB and PPAR-γ.J Mol Cell Cardiol,2014,72∶85
[42]韓偉,張明泳,馮偉偉,等.內(nèi)皮細(xì)胞條件培養(yǎng)液對血管平滑肌細(xì)胞增殖和ICAM-1、IL-1β分泌的影響.中國現(xiàn)代醫(yī)學(xué)雜志,2013,23(3)∶15
[43]McFarli n BK,Johnson CA,Moreno JP,et al.Mexican American children have differential elevation of metabolic biomarkers proportional to obesity status.J Pediatr Gastroenterol Nutr,2013,57(6)∶718
[44]Li RZ,Ma Xn,Hu XF,et al.Elevated visfatin levels in obese children are related to proinflammatory factors.J Pediatr Endocrinol Metab,2013,26(1-2)∶111
[45]Ragab SM,Safan MA,Obeid OM,et al.Lipoprotein-associated phospholipase A2(Lp-PLA2)and tumor necrosis factor-alpha(TNF-α)and their relation to premature atherosclerosis in β-thalassemia children.Hematology,2015,20(4)∶228
[46]van Sijl AM,van Eijk IC,Peters MJ,et al.Tumour necrosis factorblocking agents and progression ofsubclinical atherosclerosis in patients with ankylosing spondylitis.Ann Rheum Dis,2015,74(1)∶119
[47]Lovren F,Pan Y,Shukla PC,et al.Visfatin activates eNOS via Akt and MAP kinases and improves endothelial cell function and angiogenesis in vitro and in vivo∶translational implications for atherosclerosis.Am J Physiol Endocrinol Metab,2009,296(6)∶E1440
[48]Romacho T,Sánchez-Ferrer CF,Peiró C.Visfatin/Nampt∶an adipokine with cardiovascular impact.Mediators Inflamm,2013∶946427
[49]文晗,王海俊,董彬,等.內(nèi)肥素與兒童青少年肥胖、非酒精性脂肪肝的關(guān)聯(lián)研究.中華流行病學(xué)雜志,2012,33(3)∶269
[50]Ta kesen D,Kirel B,Us T.Serum visfatin levels,adiposity and glucose metabolism in obese adolescents.J Clin Res Pediatr Endocrinol,2012,4(2)∶76
[51]Kadoglou NP,Sailer N,Moumtzouoglou A,et al.Visfatin(nampt)and ghrelin as novel markers of carotid atherosclerosis in patients with type 2 diabetes.Exp Clin Endocrinol Diabetes,2010,118(2)∶75
[52]Landgraf K,F(xiàn)riebe D,Ullrich T,et al.Chemerin as a mediator between obesity and vascular inflammation in children. J Clin Endocrinol Metab,2012,97(4)∶E556
[53]Hart R,Greaves DR.Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5.J Immunol,2010,185(6)∶3728
[54]袁仙仙,陶紅,辛毅,等.重組人Chemerin對人外周血單核細(xì)胞功能的影響.心肺血管病雜志,2013,32(6)∶777
[55]謝霆,陳新忠,董念國,等.NF-κB途徑介導(dǎo)Chemerin抑制THP-1源性巨噬泡沫細(xì)胞ABCAl表達(dá)和降低膽固醇外流.華中科技大學(xué)學(xué)報(醫(yī)學(xué)版),2012,41(4)∶389
[56]Kostopoulos CG,Spiroglou SG,Varakis JN,et al.Chemerin and CMKLR1 expression in human arteries and periadventitial fat∶a possible role for local chemerin in atherosclerosis? BMC Cardiovasc Disord,2014,14∶56
[57]Maghsoudi Z,Kelishadi R,Hosseinzadeh-Attar MJ.Association of chemerin levels with anthropometric indexes and C-reactive protein in obese and non-obese adolescents.ARYA Atheroscler,2015,11(Suppl 1)∶102
[58]Lachine NA,Elnekiedy AA,Megallaa MH,et al.Serum chemerin and high-sensitivity C reactive protein as markers of subclinical atherosclerosis in Egyptian patients with type 2 diabetes.Ther Adv Endocrinol Metab,2016,7(2)∶47
[59]Lu B,Zhao M,Jiang W,et al.Independent Association of Circulating Level of Chemerin With Functional and Early Morphological Vascular Changes in Newly Diagnosed Type 2 Diabetic Patients.Medicine(Baltimore),2015,94(47)∶e1990 [60]Yoo HJ,Choi HY,Yang SJ,et al.Circulating chemerin level is independently correlated with arterialstiffness.J Atheroscler Thromb,2012,19(1)∶59
[61]Kim SH,Lee SH,Ahn KY,et al.Effect of lifestyle modification on serum chemerin concentration and its association with insulin sensitivity in overweight and obese adults with type 2 diabetes.Clin Endocrinol(Oxf),2014,80(6)∶825
[62]Todendi PF,Klinger EI,F(xiàn)erreira MB,et al.Association of IL-6 and CRP gene polymorphisms with obesityand metabolic disorders in children and adolescents.An Acad Bras Cienc,2015,87(2)∶915
[63]Wassmann S,Stumpf M,Strehlow K,et al.Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor.Circ Res,2004,94(4)∶534
[64]Watson C,Whittaker S,Smith N,et al.IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes.Clin Exp Immunol,1996,105(1)∶112
[65]Zhang C,Li Y,Wu Y,et al.Interleukin-6/Signal Transducer and Activator of Transcription 3 (STAT3)Pathway Is Essential for Macrophage Infiltration and Myoblast Proliferation during Muscle Regeneration.J Biol Chem,2013,288(3)∶1489 [66]Stelzer I,Zelzer S,Raggam RB,et al.Link between leptin and interleukin-6 levels in the initial phase of obesity related inflammation.Transl Res,2012,159(2)∶118
[67]Liu Z,Lu F,Pan H,et al.Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication.Atherosclerosis,2012,221(1)∶232
[68]Zhang B,Wang J,Xu Y,et al.Correlative association of interleukin-6 with intima media thickness∶a meta-analysis. Int J Clin Exp Med,2015,8(3)∶4731
[69]Okazaki S,Sakaguchi M,Miwa K,et al.Association of interleukin-6 with the progression of carotid atherosclerosis∶a 9-year follow-up study.Stroke,2014,45(10)∶2924
*為通信作者,E-mail:andia-82710@163.com